![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
![]() ![]() ![]() Next: Estimation Procedure Up: Registration Algorithm Previous: Regularization Constraint Transformation Parameterization A 3D Fourier series representation[17] is used to parameterize
the forward and reverse transformations. This parameterization is simpler
than the parameterizations used in our previous work [14,28,29] and each basis coefficient can be
interpreted as the weight of a harmonic component in a single coordinate
direction. Let
for ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() for ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The Fourier series parameterization is periodic in
Proposition 1 A displacement field of the form
Proof ![]() ![]()
if the ![]() ![]() The displacement field ![]() ![]() ![]() ![]() The Fourier series parameterization in Eq. 6
is useful for simplifying the linear elasticity constraint given in Eq. 5.
The operator where ![]() ![]() ![]() ![]() Likewise, the inverse consistency constraint Eq. 3 can be simplified in a similar manner. Substituting Eq. 7 into Eq. 4 and discretizing gives
![]() ![]() ![]() Next: Estimation Procedure Up: Registration Algorithm Previous: Regularization Constraint Xiujuan Geng 2002-07-04 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2002 The University of Iowa. All rights reserved.
Iowa City, Iowa 52242 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||