Welcome
Undergraduate studies
Graduate studies
Prospective undergraduate students
Prospective graduate students
General information
next up previous
Next: Bibliography Up: index Previous: Acknowledgments


Estimating Thin-plate Spline Parameters

The unknown UL-TPS parameters $ W=[\xi_1, \ldots, \xi_M, a_1, a_2, b]^{T}$ in Eq. 3 are determined by solving the linear system of equations that result by fixing the displacement field values at landmark locations. Let $ \phi_{i,j}=\phi(\vert p_i-p_j\vert)$ and build the matrix

$\displaystyle K$ $\displaystyle =$ $\displaystyle \left[ \begin{array}{cc}
\Phi & \Lambda \\
\Lambda^T & O \\
\end{array} \right]$  
$\displaystyle ~~~where$ $\displaystyle ~$ $\displaystyle ~~$  
    $\displaystyle \Phi = \left[ \begin{array}{cccc}
\phi_{1,1} & \phi_{1,2} & \dots...
... \\
\phi_{M,1} & \phi_{M,2} & \dots & \phi_{M,M} \\
\end{array}\right], \quad$  
    $\displaystyle \Lambda = \left[ \begin{array}{ccc}
p_{1} & q_{1} & 1 \\
p_{2} &...
...& 1 \\
\vdots & \vdots & \vdots \\
p_{M} & q_{M} & 1 \\
\end{array}\right] ,$ (7)

where $ O$ is a $ 3\times 3$ matrix of zeros. Also, define the $ (M+3) \times 2$ matrix of landmark displacements as $ D=[d_1, \ldots, d_M, 0, 0, 0]^{T}$ where $ d_i=q_i-p_i$ for $ i = 1, \ldots, M$. The equations formed by substituting the landmark constrains into Eq. 3 can be written in matrix form as $ D = K W$. The solution $ W$ to this matrix equation is determined by least squares estimation since the matrix $ K$ is not guaranteed to be full rank.


next up previous
Next: Bibliography Up: index Previous: Acknowledgments
Xiujuan Geng 2002-07-04

Copyright © 2002 • The University of Iowa. All rights reserved. Iowa City, Iowa 52242
Questions or Comments: gary-christensen@uiowa.edu