

Lecture 4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed. 4: Nonideal Transistor Theory 2 Outline □ Nonideal Transistor Behavior – High Field Effects • Mobility Degradation • Velocity Saturation – Channel Length Modulation – Threshold Voltage Effects • Body Effect • Drain-Induced Barrier Lowering • Short Channel Effect – Leakage • Subthreshold Leakage • Gate Leakage • Junction Leakage Process and Environmental Variations

Chan Length Mod I-V

$$
I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)
$$

λ = *channel length modulation coefficient*

- not feature size
- Empirically fit to I-V characteristics

Threshold Voltage Effects

- \Box V_t is V_{gs} for which the channel starts to invert
- \Box Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
	- Body voltage: *Body Effect*
	- Drain voltage: *Drain-Induced Barrier Lowering*
	- Channel length: *Short Channel Effect*

Body Effect

- \Box Body is a fourth transistor terminal
- \Box V_{sb} affects the charge required to invert the channel
	- Increasing V_s or decreasing V_b increases V_t

$$
V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)
$$

φs = *surface potential* at threshold

$$
\phi_s = 2v_T \ln \frac{N_A}{n_i}
$$

- Depends on doping level N_A
- And intrinsic carrier concentration n_i
- γ = *body effect coefficient*

$$
\gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon_{si} N_A} = \frac{\sqrt{2q\varepsilon_{si} N_A}}{C_{ox}}
$$

Body Effect Cont.

□ For small source-to-body voltage, treat as linear

$$
V_t = V_{t0} + k_{\gamma} V_{sb}
$$

$$
k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\epsilon_{si}N_A}{v_T \ln\frac{N_A}{n_i}}}}{2C_{ox}}
$$

4: Nonideal Transistor Theory CMOS VLSI Design 4th Ed. 45 **15**

DIBL

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel 1_m
- □ Drain-Induced Barrier Lowering
	- Drain voltage also affect V_t

$$
V_t' = V_t - \eta V_{ds}
$$

High drain voltage causes current to

Short Channel Effect

- \Box In small transistors, source/drain depletion regions extend into the channel
	- Impacts the amount of charge required to invert the channel
	- And thus makes V_t a function of channel length
- \Box Short channel effect: V_t increases with L
	- Some processes exhibit a reverse short channel effect in which V_t decreases with L

Leakage Sources

- \Box Subthreshold conduction
	- Transistors can't abruptly turn ON or OFF
	- Dominant source in contemporary transistors
- □ Gate leakage
	- Tunneling through ultrathin gate dielectric
- \Box Junction leakage
	- Reverse-biased PN junction diode current

 10^{9} .

 $10⁶$

 $10³$

 $10⁰$

 10^{-3}

 10^{-6}

 10^{-9}

Ō

 V_{DD} trend

 $0.3 0.6$

 0.9

 1.2

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$
I_{\text{gate}} = WA \left(\frac{V_{DD}}{t_{ox}} \right)^2 e^{-B \frac{t_{ox}}{V_{DD}}}
$$

- A and B are tech constants

-
- Greater for electrons
	- So nMOS gates leak more
- V_{DD} Negligible for older processes $(t_{ox} > 20 \text{ Å})$ From [Song01] □ Critically important at 65 nm and below (t_{ox} ≈ 10.5 Å)

10 Å

12 Å

 15^A 19^A

 1.5

 1.8

Junction Leakage

Reverse-biased p-n junctions have some leakage

- Ordinary diode leakage
- Band-to-band tunneling (BTBT)
- Gate-induced drain leakage (GIDL)

Diode Leakage

Reverse-biased p-n junctions have some leakage

$$
I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)
$$

At any significant negative diode voltage, $I_D = -I_s$

I_s depends on doping levels

- And area and perimeter of diffusion regions
- $-$ Typically $\lt 1$ fA/ μ m² (negligible)

Band-to-Band Tunneling

 \Box Tunneling across heavily doped p-n junctions

– Especially sidewall between drain & channel when *halo doping* is used to increase V_t

Increases junction leakage to significant levels

$$
I_{BTBT} = W X_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}} \qquad E_j = \sqrt{\frac{2q N_{halo} N_{sd}}{\varepsilon (N_{halo} + N_{sd})}} \left(V_{DD} + v_T \ln \frac{N_{halo} N_{sd}}{n_i^2} \right)
$$

- $-$ X $_{\rm j}$: sidewall junction depth
- E_q : bandgap voltage
- A, B: tech constants

Gate-Induced Drain Leakage

Occurs at overlap between gate and drain

- Most pronounced when drain is at V_{DD} , gate is at a negative voltage
- Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

So What?

- \Box So what if transistors are not ideal?
	- They still behave like switches.
	- But these effects matter for…
		- Supply voltage choice
		- Logical effort
		- Quiescent power consumption
		- Pass transistors
		- Temperature of operation

Process Corners

 \Box Process corners describe worst case variations

– If a design works in all corners, it will probably work for any variation.

Describe corner with four letters (T, F, S)

- nMOS speed
- pMOS speed
- Voltage
- Temperature

Important Corners

 \Box Some critical simulation corners include

