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We propose a multiscale method to study nanotube-based resonant oscillators. In the multiscale model,
nanotubes are modeled via molecular dynamics, while the metal paddle is modeled as a rigid body. The
molecular and continuum models are attached to each other through the interfaces on which carbon atoms are
located. We employ the concepts of “virtual” atoms and bonds to effectively couple the molecular and con-
tinuum models. Using the proposed multiscale method, we investigate both linear and nonlinear characteristics
of resonant oscillators. Effects of vacancy and temperature on mechanisms of oscillators are discussed.
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I. INTRODUCTION

Since carbon nanotubes have extraordinary mechanical
and electrical properties,1 they have been utilized as essential
components in the design of novel nanoscale materials and
devices. Tremendous molecular-dynamics simulations have
been conducted to study the physical phenomena of
nanotube-based composites and devices. Xiao and Hou2

studied the mechanics of nanocomposites in which defected
carbon nanotubes were embedded through molecular-
dynamics simulations. Srivastava3 employed molecular dy-
namics to discuss and test a phenomenological model for the
rotational dynamics of a single laser-powered molecular
motor that powered carbon nanotube-based gears. Molecular
dynamics also assist researchers4 to investigate the
temperature-related energy dissipation of nanoscale devices.
Recently, a new nanoscale device5–7 in which an individual
carbon nanotube serves as a torsional spring and mechanical
support has been successfully fabricated. However, numeri-
cal modeling and studies of this device have not been re-
ported.

Williams et al.5,6 reported the fabrication of nanoscale
mechanical devices incorporating multiwalled carbon nano-
tubes �MWNTs� as the torsional spring elements. They uti-
lized electron-beam lithography to pattern a device element
directly onto an individual MWNT on a silicon dioxide sub-
strate. Consequently, the device consisted of a suspended le-
ver, i.e., the “paddle,” connected by an MWNT as a torsion
beam. Papadakis et al.7 used similar techniques to synthesize
asymmetric oscillators that were also called resonant oscilla-
tors. The metal paddles in their experiments were not cen-
tered on the MWNTs, and the MWNTs were strained prima-
rily in torsion. Once the paddle was given an electrostatic
force, the oscillation was observed and the measured reso-
nance frequencies were in the range of 1–9 MHz. Such os-
cillators can be used as sensors and clocks for high-
frequency electronics. For example, with these nanoscale
resonant oscillators, the clocks can be achieved with a single-
stage device.7 More recently, Meyer et al.8 built a torsional
pendulum with an individual single-walled carbon nanotube
�SWNT�, which was also used as a torsional spring and me-
chanical support for the metal paddle. They reported that this
SWNT-based pendulum could be reproducibly turned to any

position between 0° and almost 180°. All of the fabricated
resonant oscillators described above had a paddle with a vol-
ume of about 0.04 �m3 and a nanotube with a length of
around 500 nm. Therefore, a molecular-dynamics model of
such an oscillator may contain up to trillions of atoms and
become infeasible for current computer resources.

Since molecular dynamics has limitations in simulating
large nanosystems, multiscale methods are attractive to sci-
entists and engineers. Recently developed multiscale model-
ing techniques have shown promise in treating phenomena at
both nano- and larger scales. Multiscale methods can be di-
vided into two classes: hierarchical multiscale methods and
concurrent multiscale methods. Most hierarchical models
contain a continuum approximation based on the properties
of a subscale model, such as a molecular-dynamics �MD�
model. The intrinsic properties of the material are deter-
mined at the atomic level and embedded in the continuum
model according to a homogenization procedure.9,10 How-
ever, the effects of defects cannot be considered with nano-
scale continuum approximation. Concurrent multiscale
methods11–13 employ an appropriate model in which different
methodologies are employed in each spatial scale simulta-
neously. The typical concurrent multiscale methods include
the macroatomistic ab initio dynamics �MAAD� method11

and the bridging domain coupling method.12,13 They mainly
coupled a continuum model �finite element methods� with a
molecular model �molecular dynamics�. Consequently, large
models can be simulated without losing physical phenom-
enon details at the nanoscale.

In this paper, we develop a multiscale method that couples
a continuum model and a molecular model to study the me-
chanical behavior of nanotube-based resonant oscillators. In
the proposed multiscale model, the nanotube is modeled with
molecular dynamics, while the metal paddle is modeled as a
continuum. The edge-to-edge coupling technique13 is em-
ployed in this multiscale method to efficiently attach the con-
tinuum model and the molecular model. Without losing ac-
curacy, the metal paddle is treated as a rigid body since it has
only small deformation during the torsional oscillation.

The outline of this paper is as follows. A multiscale mod-
eling of nanotube-based resonant oscillators is proposed in
Sec. II. The coupling of molecular dynamics and rigid body
kinetics is introduced. In Sec. III, we discuss oscillation
mechanisms of resonant oscillators that are linear oscillator
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systems. The validation of the proposed multiscale method is
conducted through comparing the experimental results with
those predicted from multiscale simulations. Then, the
nonlinear characteristics of resonant oscillators, including the
effects of vacancy defects, temperature effects, and energy
dissipation, are discussed in Sec. V, followed by the
conclusions.

II. MULTISCALE MODELING

In a nanotube-based resonant oscillator, a part of the
nanotube is embedded in the metal paddle. Since the metal
paddle is mainly subject to rotation, it is modeled as the rigid
body. Consequently, the embedded nanotube has nearly no
deformation. Furthermore, we ignore the effect of the em-
bedded nanotube on the angular moment of inertia of the
metal paddle. Therefore, the nanotube in this oscillator can
be viewed as two individual tubes connecting with the metal
paddle, as shown in Fig. 1, which illustrates the multiscale
model of a carbon nanotube-based resonant oscillator. In
such a multiscale model, nanotubes are modeled via molecu-
lar dynamics in the molecular model �M, while the metal
paddle is treated as a rigid body in the continuum model �C.
We employ superscript and/or subscript M to denote the mo-
lecular model and C for the continuum model. The molecular
and continuum models are attached to each other through the
interfaces �int. In this paper, we mainly consider the nano-
tubes on two sides of the metal paddle that have the same
length.

Molecular model

In an isolated molecular model, the Hamiltonian HM is
given as

HM�xI�t�,pI
M�t�� = �

I

1

2mI
pI

M · pI
M + WM�xI�t�� , �1�

where mI is the mass of atom I, xI is the position of atom I,
WM�x� is the potential energy, which is the sum of the ener-
gies due to any force fields, and pI

M is the momentum and is
defined by

pI
M = mIẋI = mIḋI, �2�

where dI is the displacement of atom I. The total potential is
computed as

WM = − WM
ext + WM

int = − �
I

fI
extdI + �

I,J�I

W2�xI,xJ�

+ �
I,J�I,K�J

W3�xI,xJ,xK� , �3�

where the external potential energy WM
ext is the work done by

external forces fI
ext, such as electrostatic forces. The internal

potential energy WM
int describes the interatomic interactions. It

includes W2 and W3, which are the potentials from pairwise
and three-atom interactions, respectively. In addition, the
Hamiltonian canonical equations of motion are given as

ṗI
M = −

�H

�xI
, ẋI =

�H

�pI
M . �4�

Combining the above equations, we can obtain the equations
of motion for molecular-dynamics simulation,

mId̈I = fI
ext −

�WM
int

�xI
. �5�

In this paper, we employ the modified Morse potential func-
tion, proposed by Belytschko et al.,14 to describe the inter-
action between bonded carbon atoms. This potential can be
written as

E = Estretch + Eangle,

Estretch = De��1 − e−��r−r0��2 − 1� ,

Eangle =
1

2
k��� − �0�2�1 + ks�� − �0�4� , �6�

where Estretch is the bond energy due to bond stretching or
compressing, Eangle is the bond energy due to bond angle
bending, r is the current bond length, and � is the angle of
two adjacent bonds representing a standard deformation
measure in molecular mechanics. The parameters are

r0 = 1.42 � 10−10 m, De = 6.031 05 � 10−19 N m,

� = 2.625 � 1010 m−1, �0 = 2.094 rad,

k� = 1.13 � 10−18 N m/rad2, ks = 0.754 rad−4. �7�

It has been shown that this potential function results in rea-
sonable Young’s modulus and Poisson’s ratio of nanotubes
compared with experimental investigations.

Continuum model

In this paper, the axis of the nanotube is assumed to pass
the centroid of the metal paddle. Since the metal paddle
mainly has the motion of rotation and no deformation, it is
treated as the rigid body in the continuum model. Then, the
Hamiltonian HC is given by

HC = KC + WC =
1

2
J�̇2 + WC, �8�

where KC is the total kinetic energy, J is the angular moment
of inertia of the rigid body with respect to its rotational axis,

FIG. 1. Multiscale model of a nanotube-based resonant
oscillator.
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� is the angular velocity, and WC is the total potential energy,
including strain energy �WC

int� and the work done by external
forces �WC

ext�,

WC = − WC
ext + WC

int. �9�

Since a rigid body has no deformation, its strain energy is
zero. The external potential mainly results from interfacial
loads due to the torsion of nanotubes. Therefore, the equation
of motion for the rigid body rotation is

J�̈ = T , �10�

where T is the torque applied on the metal paddle. It has been
observed that vertical deflections of nanotubes could be ig-
norable compared to torsional deflections.7 In addition, we
assume that the centroid of the metal paddle coincides with
the nanotube axis. Therefore, the direction of the torque fol-
lows the nanotube axis, denoted by ez. The torque T is then
computed as

Tez = �
I

rI � FI, �11�

where FI is the atomic force on atom I that is located at the
interface between the nanotube and the metal paddle and rI is
the position vector of atom I with respect to the tube axis.
Both FI and rI are projected on the x-y plane, while the tube
axis follows the z axis. Then, the motion of the metal paddle
can be determined via Eq. �10�.

Molecular-continuum coupling

In this multiscale method, the carbon nanotubes are at-
tached to the metal paddle without overlapping the subdo-
main except for the molecular-continuum interface. Since the
modified Morse potential consists of the bond stretching en-
ergy and the bond angle-bending energy, simply gluing car-
bon atoms on the molecular-continuum interface will not ac-
count for the bond angle-bending energy between the
nanotubes in the molecular model and the tube in the con-
tinuum model, although the tube in the continuum model is
ignored because it has no deformation. In a manner similar to
the edge-to-edge coupling technique,13 we define two types
of carbon atoms at the conjunctions between the continuum
and molecular models: �1� “real” carbon atoms that are lo-
cated on the interface and in the molecular model and �2�
“virtual” carbon atoms that are located inside the continuum
model. There are virtual bonds between real and virtual car-
bon atoms.

Figure 2 illustrates the molecular-continuum coupling
technique utilized in the multiscale modeling of nanotube-
based resonant oscillators. Although we mainly consider zig-
zag nanotubes in this paper, similar strategies can be con-
ducted for nanotubes with other chiralities. In Fig. 2, real
carbon atoms e, f , and g are in the molecular model. Among
them, atom g is located at the continuum-molecular inter-
face. Corresponding to atom g, there is a “virtual atom” h
that is inside the continuum model. In addition, there is a
“virtual” bond between atoms g and h.

Since the metal paddle is viewed as a rigid body, virtual
bonds have no change in their length, so there is no bond

stretching energy. However, the angles between virtual bonds
and their neighboring bonds in the molecular model, e.g., the
angles between bonds gh and ge/gf , as shown in Fig. 2, may
change during the rotation of the metal paddle so that the
bond angle-bending potential exists at the molecular-
continuum interface. Such an angle-bending potential must
be considered in molecular-dynamics simulations because it
has effects on the atomic forces of carbon atoms that are on
or close to the molecular-continuum interfaces. In the ex-
ample shown in Fig. 2, those atoms include atoms e, f , and g.
Consequently, the Hamiltonian of the whole system is writ-
ten as

Htotal = HM + HC + Evirtual, �12�

where HM and HC are the molecular and continuum Hamil-
tonians, respectively. Evirtual is the potential due to angle
change between the virtual bonds and other realistic bonds at
the molecular-continuum interfaces. The equations of motion
in the molecular and continuum models can be derived via
the classic Hamiltonian mechanics. It should be noted that
the equations of motion, i.e., Eq. �5�, in molecular dynamics
must be rewritten as

mId̈I = fI
ext −

��E + Evirtual�
�xI

, �13�

where E is the potential of the tubes in the molecular model.
The nanotube and the rigid body are constrained on the

interface �int by

gI = �giI� = �ui�XI� − diI� = 0 �14�

where XI is the position of atom I and dI is the atomic dis-
placement of atom I. In other words, the atomic displace-
ments are required to conform to the continuum-level dis-
placements at the positions of the atoms on the interface.
Since the continuum model is a rigid body in this paper, we
treat the entire metal paddle as an eight-node block element.

FIG. 2. The schematic diagram of virtual atoms and/or bonds at
the interface.
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Then, the continuum-level displacements at the positions of
the interfacial atoms and the virtual atoms can be calculated
via the finite element approximation,

u�Xh� = �
I=1

8

NI�Xh�uI, �15�

where NI represents the finite element shape functions at xh
and uI represents the nodal displacements calculated from
the rigid body rotation.

Multiscale simulation

At the beginning of a multiscale simulation, the metal
paddle is given an initial angle of twist. Therefore, the dis-
placements of atoms at the continuum-molecular interfaces
and virtual atoms can be determined via Eqs. �14� and �15�
as boundary conditions in the molecular model. Molecular-
dynamics simulation in the molecular model is conducted
through solving the equations of motion in Eq. �13�. The
Verlet velocity algorithm is employed as follows:

d�t + �t� = d�t� + ḋ�t��t +
1

2
d̈�t��t2, �16�

ḋ�t + �t� = ḋ�t� +
1

2
�d̈�t� + d̈�t + �t���t , �17�

where �t is the time step in molecular-dynamics simulation.
In this paper, the time step is 1 fs. After updating atomic
displacements of carbon nanotubes at each time step, we use
Eq. �11� to calculate the torque acting on the metal paddle.
Then, the rotation of the metal paddle can be determined by
solving Eq. �10�.

The above procedure can be iterated until the target time
for output is reached. It should be noted that the calculation
of the torque can be performed every several time steps to
save computation time. However, in this paper we conduct it
at each time step.

III. CHARACTERIZATION OF OSCILLATORS
AS LINEAR OSCILLATION SYSTEMS

We first study mechanical behaviors of resonant oscilla-
tors as isolated systems with an initial temperature of zero.
We also consider a small initial angle of twist, 10°, in this
section. A resonant oscillator that contains two �9,0� tubes
with a length of 4.12 nm connecting the metal paddle is in-
vestigated first. Each tube contains 360 carbon atoms. The
material of the metal paddle is gold, which has a density of
19 300 kg/m3. The dimensions of the metal paddle are as
follows: length of 8 nm, width of 4 nm, and thickness of
2 nm. It should be noted that the metal paddle contained
4800 gold atoms. Consequently, the angular moment of iner-
tia of the metal paddle is 0.007�10−36 kg m2. Once the
metal paddle is given an initial twist angle of 10°, the nano-
tubes are twisted. A torque is applied on the metal paddle due
to the torsion of the nanotubes. After the metal paddle is
released, it will rotate back and forth, and resonant oscilla-
tion can be observed. Figure 3 illustrates the configurations

of this resonant oscillator at 0.5 and 1.5 ns, respectively.
With the multiscale simulation, we obtained the evolution of
angle change for the metal paddle, as shown in Fig. 4. It is
evident that the resonant oscillation is stable and the calcu-
lated resonance frequency is 5.26 GHz.

We study the relationship between oscillators’ resonance
frequencies and the angular moments of inertia of the metal
paddles. Four groups of resonant oscillators are considered,

FIG. 3. Configurations of a nanotube-based resonant oscillator
at �a� 0.5 ns and �b� 1.5 ns.

FIG. 4. Evolution of angle change of the metal paddle in the
resonant oscillator.
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and they contain �9,0�, �15,0�, �20,0�, and �23,0� tubes, re-
spectively. All the tubes have the same length, 4.12 nm, on
both sides of the metal paddle. We vary the dimensions of
the metal paddle so that angular moments of inertia J are in
the range of 0.009�10−36–0.144�10−36 kg m2. Based on
multiscale simulations, the resonance frequencies corre-
sponding to the metal block’s angular moments of inertia are
summarized in Table I.

After studying the data in Table I, we found that the reso-
nance frequency of a resonant oscillator is inversely propor-
tional to the square root of the angular moment of inertia of
the metal paddle once the utilized tubes remain the same. In
other words, the following equation can be written as

f 	
1
�J

, �18�

where f is the resonance frequency. Such relationships are
illustrated in Fig. 5 for all four groups of nanotubes studied
in Table I.

We also found that the tube length is another major pa-
rameter to determine the resonance frequencies of nanotube-
based resonant oscillators. Here, we chose �10,0� and �20,0�
zigzag tubes with various tube lengths from 2 to 17 nm to
conduct multiscale simulations. In the studied oscillators, the
angular moments of inertia of the metal paddles remain
0.007�10−36 kg m2. Similar to Fig. 5, Fig. 6 illustrates the
following relationship between the resonance frequencies of

resonant oscillators and the lengths of the embedded tubes:

f 	
1
�l

, �19�

where l is the length of the tube embedded in the resonant
oscillator.

Combining Eqs. �18� and �19�, we can derive the follow-
ing formula to predict the resonance frequency of oscillator
2, f2, if the resonance frequency of oscillator 1, f1, is known:

f1 =�J2l2

J1l1
f2, �20�

where l1 and l2 are the lengths of the embedded tubes, and J1
and J2 are the angular moments of inertia of the metal
paddles in oscillators 1 and 2, respectively. It should be noted
that the tubes had the same diameters and that we ignored the
chirality effects.

The major computation time in the developed multiscale
method is from molecular-dynamics simulation, since the
metal paddle is modeled as a rigid body and has only small
computation efforts. In the resonant oscillators fabricated in
the literature,5–7 the embedded nanotubes mostly contain up
to millions of atoms. Obviously, molecular-dynamics simu-
lations of those nanotubes are computationally intensive for
a single personal computer. To save computation time and
computer resources, the resonant oscillator contains a short
tube, and a small metal paddle can be modeled to calculate
the resonance frequency. Then, the frequencies of the corre-
sponding resonant oscillators with long tubes and large metal
paddles can be predicted via Eq. �20�.

Indeed, it is known that the resonance frequency of a
linear torsional oscillation system can be theoretically pre-
dicted via the following equation:

f =
1

2

�k

J
, �21�

where k is the torsional stiffness of the embedded linear tor-
sional spring and J is the angular moment of inertia of the
metal paddle. We can see that Eq. �20� can be derived from
Eq. �21�, but calculation of the tube’s torsional stiffness is
not needed. On the other hand, we can say that our multi-

TABLE I. Resonance frequencies with respect to different an-
gular moments of inertia.

Tubes utilized
in the oscillators

J ��10−36 kg m2�

0.144
�GHz�

0.072
�GHz�

0.036
�GHz�

0.009
�GHz�

�9,0� 1.19 1.68 2.38 4.76

�15,0� 2.60 3.66 5.21 10.4

�20,0� 4.00 5.66 8.02 16.0

�23,0� 4.85 6.85 9.68 19.3

FIG. 5. Relationships between f and 1/�J.

FIG. 6. Effects of tube length on resonance frequencies.

STUDIES OF NANOTUBE-BASED RESONANT… PHYSICAL REVIEW B 75, 125414 �2007�

125414-5



scale method is verified by theoretical analysis by deriving
Eq. �20� from Eq. �21�.

IV. COMPARISON WITH EXPERIMENTAL OUTCOMES

Papadakis et al.7 utilized MWNTs as the torsional springs
to fabricate resonant oscillators. The measured resonance fre-
quencies are in the range of 1.67–8.66 MHz. To validate the
developed multiscale method, we simulate the devices listed
in Table I of the work by Papadakis et al.7 in this section and
compare the calculated frequencies with the experimental
outcomes. At first, we assume that only the outermost tube
rotates during the motion of oscillators. Therefore, only the
outermost tube instead of the whole MWNT is modeled in
the molecular model. In Table I of Ref. 7, Papadakis et al.
listed the diameter, torsional stiffness, and shear modulus of
the MWNTs, and the measured resonance frequency for each
resonant oscillator. Indeed, the MWNT torsional stiffness
was calculated from the resonance frequency and the angular
moment of inertia of the metal paddle, while the MWNT
shear modulus was calculated from the MWNT’s torsional
stiffness, diameter, and length. Inversely, we can determine
the angular moment of inertia of the metal paddle and the
MWNT length for each device in Table I of Ref. 7. For each
device, we simulate a corresponding small model using the
multiscale method. The small model means that we use a
small metal paddle and short single-walled nanotubes with
the same diameter as the MWNT listed by Papadakis et al.7

Then, we predict the resonance frequencies of the devices in
the experiments via Eq. �20� and compare them with the
experimental outcomes.7 Figure 7 shows that although some
resonance frequencies calculated from multiscale simulations
compare well with the experimental measurements, all the
numerical results are lower than the experimental measure-
ments, especially for oscillators containing nanotubes with
diameters in the range of 16–22 nm. This is because we
model only the outermost tube and ignore the interlayer me-
chanical coupling in the MWNTs.

It has been known that the relationship between MWNT
torsional stiffness �K� and its shear modulus �G� via the con-
tinuum mechanics model15 is as follows:

K =

�dout

4 − din
4 �

32l
G , �22�

where dout and din are the outer and inner diameters of the
MWNT and l is the tube length. When we consider only the

outermost shell of the MWNT, dout=d and din=d−2t, where
d is the MWNT diameter listed in Table I of the work by
Papadakis et al.7 and t is the thickness of one nanotube layer,
which is 0.34 nm. If the whole MWNT is taken as the tor-
sional spring element, din is set as zero. Obviously, the cal-
culated resonance frequency based on multiscale simulation
is the least frequency that the simulated oscillator can have
since only the outermost tube is modeled as the torsional
spring element. Such a frequency is called the lower bound
frequency for a resonant oscillator in this paper. Based on
Eq. �21�, the maximum resonant frequency, called the upper
bound frequency here, that an oscillator can have when the
whole MWNT acts as the torsional spring element is calcu-
lated as

fupper =� d4

d4 − �d − 2t�4 f lower. �23�

Figure 7 also shows that all the experimental outcomes are in
the range from the lower bound frequencies to the upper
bound frequencies. When the diameters of MWNTs are in
the range of 16–22 nm, the experimental measurements are
very close to the upper bound resonance frequencies, shown
in Fig. 7. We can conclude that mechanical coupling in
MWNTs plays a significant role during MWNT torsion in
those devices.

V. NONLINEAR CHARACTERISTICS OF
RESONANT OSCILLATORS

The advantage of our multiscale modeling method is that
we can easily investigate nonlinear characteristics of reso-
nant oscillators. In previous research,16 a carbon nanotube
has been observed to have a constant torsional stiffness
within small angles of twist. If the angle of twist becomes
larger, the nanotube’s torsional stiffness gets smaller until the
torsional buckling occurs. Therefore, we think that the reso-
nance frequency of a resonant oscillator may decrease when
the initial angle of twist is enlarged. For the resonant oscil-
lator studied in Figs. 3 and 4, we consider the initial angle of
twist in the range of 5°–55° in this section. We find that if the
initial angle of twist is less than 15°, the resonance frequency
becomes a constant of 5.26 GHz, as calculated from Fig. 4.
When the initial angle of twist is enlarged to 30° and 55°, the
resonant frequencies are dropped to 4.90 and 4.00 GHz, re-
spectively, as shown in Fig. 8. We do not consider the occur-
rence of buckling in this paper. It should be noted that the
relationship illustrated in Fig. 8 is for the resonant oscillator
with a �9,0� tube with a length of 4.12 nm. The range for the
angle of twist in which tubes can be employed as linear
torsional springs varies for tubes with different sizes and
lengths.

Obviously, the resonance frequencies of resonant oscilla-
tors as nonlinear systems can no longer be predicted via Eqs.
�20� and �21�. In this section, we also consider the effects of
vacancy defects and temperature since they are significant to
the mechanisms of nanoscale devices.

FIG. 7. Comparisons between experimental and semianalytical
results.
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Effects of vacancy defects

It has been shown that vacancy defects can dramatically
reduce the stiffness, strength, and torsional stiffness of
nanotubes.16,17 Vacancy defects can be caused by ion irradia-
tion, absorption of electrons, or nanotube fabrication pro-
cesses. Such defects are modeled by taking out atoms, fol-
lowed by bond reconstruction.17 Vacancy defects can be
classified as one-atom vacancy, two-atom vacancy, and clus-
ter vacancy; details are provided by Hou and Xiao.16 Two
uncertainties associated with vacancy defects on nanotubes
are considered in this paper. One uncertainty is the number
of missing atoms and the other is the location of a vacancy
defect. Due to the unique structures of single-walled carbon
nanotubes, they can be mapped onto two-dimensional �2D�
graphene planes with a thickness of 0.34 nm. Consequently,
a three-dimensional �3D� model can be simplified as a 2D
surface problem when considering vacancy defects on nano-
tubes. We employ a homogeneous Poisson point process to
determine the occurrence probability of a specified number
of Poisson points, i.e., missing atoms in this paper, via

P�N�A� = k� =
e−�A��A�k

k!
, k = 1,2,3, . . . , �24�

where A is the plane area, N�A� is the number of Poisson
points �or missing atoms� on this area A, and � is the Poisson
point density �or missing atom density� per area. On the
other hand, we assume that vacancy defects occur on carbon
nanotubes in a completely random manner. For a given num-
ber of Poisson points, they are deposed on a two-dimensional

graphene sheet, to which the considered nanotube can be
mapped, at random positions. We mark the carbon atoms,
which are those nearest to the Poisson points, as the missing
atoms. After taking out the missing atoms, we perform bond
reconstruction to generate one-atom, two-atom, and/or
cluster-atom vacancy defects.

In this section, we choose �10,0� tubes with the length of
4.12 nm as torsional springs for nanotube-based resonant os-
cillators. The surface area of the carbon nanotube is
20.24 nm2. The following missing atom densities are consid-
ered: 0.1, 1, 2, and 3 nm−2. The probability distribution of
the number of missing atoms for each missing atom density
is shown in Fig. 9. In other words, the probability distribu-
tion in Fig. 9 determines the number of simulations for a
specific number of missing atoms once the total number of
simulations is given.

For a given number of missing atoms, the vacancy defects
will be randomly located as described above. Figure 10 il-
lustrates the side view of a vacancy-defected �10,0� nano-
tube. We can see that there are five one-atom vacancies, two
two-atom vacancies, and one cluster-atom vacancy. Obvi-
ously, for the same number of missing atoms, the numbers
and locations of vacancy defects can vary from case to case.

We conduct 100 simulations for each given missing atom
density to investigate the statistical properties of the reso-
nance frequencies when the resonant oscillators contain
vacancy-defected nanotubes. All metal paddles have the an-
gular moment of inertia of 0.0237�10−36 kg m2 in the stud-
ied resonant oscillators. Figure 11 shows the relationship be-
tween the resonance frequency and the missing atom density
on the carbon nanotube surface. Due to uncertainties of va-
cancy defects, the resonance frequencies follow the Gaussian
distribution. We can see that on average a larger missing
atom density results in a lower resonance frequency since the
nanotube with more missing atoms generally has less tor-
sional stiffness. However, due to the uncertainties of vacancy
defects, it is possible that a resonant oscillator embedding a

FIG. 8. Relationship of resonant frequencies and initial angles
of twist.

FIG. 9. Probability distributions of Poisson points at four miss-
ing atom densities.

FIG. 10. The side view of a vacancy-defected �10,0� nanotube
�1 represents the one-atom vacancy defect, 2 represents the two-
atom vacancy defect, and 3 represents the cluster-atom vacancy
defect�.

FIG. 11. Vacancy defect effects on the resonant frequency.
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nanotube with more missing atoms has a higher resonance
frequency.

Effects of temperature and energy dissipation

Temperature effects, including energy dissipation at finite
temperatures, are usually significant to the mechanisms of
nanoscale devices.4 We first investigate the temperature ef-
fects on the resonance frequencies of carbon-nanotube
�CNT�-based resonant oscillators at finite temperatures.
Three types of nanotubes, �20,0�, �15,0�, and �10,0�, are em-
ployed as torsional spring elements in oscillators. The length
of all of these tubes �on each side of the metal paddle� is
8.236 nm. The metal paddle is made of gold, and its dimen-
sions �length, width, and height� are 14, 2, and 14 nm. The
angular moment of inertia of the metal paddle with respect to
the rotation axis is J=0.126�10−36 kg m2.

During the multiscale simulation, the Hoover thermostat18

is applied in the molecular model to maintain nanotubes at a
desired temperature. The initial rotation angle is set to be
10°. Figure 12 shows the resonance frequencies of the oscil-
lators mentioned above at various temperatures, including
10, 100, 300, 600, 800, and 1000 K. We can see that the
temperature effects on the resonance frequencies are slightly
significant, e.g., a higher temperature results in a lower reso-
nance frequency. The reason is that nanotubes have lower
torsional stiffness at higher temperatures.

Energy dissipation is a critical issue for nanoscale devices
at finite temperatures because it determines the quality factor
of devices. The quality factor is defined as the inverse of the
energy dissipation, which is a measure to estimate how much
energy can be recovered. Although finite temperatures have
slight effects on the resonance frequency of a resonant oscil-
lator, energy dissipation does exist. Here, we consider a reso-
nant oscillator containing �10,0� tubes with a length of
4.12 nm on each side of the metal paddle, whose angular
moment of inertia is J=0.002�10−36 kg m2. The resonance
frequency of this oscillator is 5.53 GHz. Figure 13 illustrates
that the oscillation angle decreases when the oscillator is at
300 K. In other words, the energy dissipation exists, and we
believe that the oscillator will decay away eventually.

We next investigate energy dissipation of resonant oscil-
lators with various resonance frequencies. In those oscilla-
tors, the same �10,0� nanotubes with the length of 4.12 nm
are employed. We vary the dimensions of the metal paddles

so that various resonance frequencies can be achieved. Fig-
ure 14 illustrates energy dissipation of resonant oscillators
with various frequencies at the room temperature of 300 K.
It is evident that larger energy dissipation occurs in the reso-
nant oscillator with higher resonance frequency. In other
words, the nanotube-based resonant oscillator that has a
lower resonance frequency has a higher quality factor.

VI. CONCLUSIONS

In this paper, we proposed a multiscale method to model
and study nanotube-based resonant oscillators. We found that
if a small angle of twist was given to the metal paddle, os-
cillators would act as linear oscillator systems. We mostly
modeled the outermost tube of the MWNT that was utilized
as a spring element in a resonant oscillator. Considering me-
chanical coupling between interlayer tubes in the MWNT,
we could provide a range of resonance frequencies via mul-
tiscale simulation for a studied oscillator, and the experimen-
tal measurements fell into such ranges. In addition, the pro-
posed multiscale method had advantages in simulating
nonlinear characteristics of resonant oscillators, such as
when initial angles of twist were large, when nanotubes had
vacancy defects, and when oscillators were at finite tempera-
tures. The conclusion is that larger initial angles of twist
resulted in lower resonant frequencies. On average, more va-
cancy defects on the nanotube resulted in lower resonant
frequencies. Although temperature effects were found to
have only slight effects on the resonant frequencies of oscil-
lators, energy dissipation did exist, and the oscillator would
finally cease. Oscillators having lower resonance frequencies

FIG. 12. Temperature effects on resonant frequency.

FIG. 13. Illustration of oscillation angle at room temperature of
300 K.

FIG. 14. Effects of high frequency on energy dissipation
rate.
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had lower energy dissipate rates, i.e., higher quality factors.
The issue of energy dissipation should be considered
when designing nanoelectromechanical systems utilizing
nanotube-based resonant oscillators.

It should be noted that it was possible to simulate half of
the resonant oscillator systems since the systems simulated
in this paper were symmetric. However, if the metal paddle
does not attach to the center of the carbon nanotube, the
whole system must be modeled. On the other hand, we only
consider SWNTs in this paper. The MWNT-based resonant

oscillators can also be simulated via the proposed multiscale
method. Such modeling and simulation will be our future
research.
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