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Abstract-The stability of discretizations by particle methods with corrected derivatives is ana- 
lyzed. It is shown that the standard particle method (which is equivalent to the element-free Galerkin 
method with an Eulerian kernel and nodal quadrature) has two sources of instability: 

(1) rank deficiency of the discrete equations, and 
(2) distortion of the material instability. 

The latter leads to the so-called tensile instability. It is shown that a Lagrangian kernel with the 
addition of stress points eliminates both instabilities. Examples that verify the stability of the new 
formulation are given. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Meshfree methods have recently evolved in two distinct directions: 

(1) 

(2) 

methods based on field approximations such as moving least square approximations and 

radial-basis functions, such as the element-free Galerkin (EFG) method [l] and partition- 

of-unity methods, such as hp-clouds [2,3], and 

methods based on kernel approximations, which were originated by Lucy [4] and Mon- 

aghan [5]. 

In [6], it is shown that, in some cases, the two methods are closely related. The kernel approxi- 

mations used in particle methods are somewhat inaccurate because they cannot exactly reproduce 

linear functions. It has been shown in [6] that if the kernel approximations are corrected so that 

they reproduce linear functions exactly, then the corrected kernel function is identical to the 

moving least square approximation with a linear basis in EFG. Liu et al. [7] have shown the 

convergence of these methods in linear elasticity. 

A second method for improving the accuracy of particle methods is the correction of the 

derivatives. This concept was originated for kernel methods by Johnson and Beissel [8], and a 

better version was reported by Randles and Libersky [9]. Krongauz and Belytschko [lo] developed 

a corrected derivatives method with the Shepard function approximation and studied it in linear 

problems. The methods of Randles and Libersky [9] and Krongauz and Belytschko [lo] have 
many similarities. The major difference is that the Randles-Libersky form does not exactly 
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satisfy the patch test, as noted in [ll]; there are also differences in the treatment of essential 

boundary conditions. Black and Belytschko [12] have proven that the Krongauz-Belytschko 

method [lo] converges for the Poisson equation. The advantage of derivative correction over 

function correction is its improved speed. 

In this paper, we examine the stability of particle methods based on the Shepard function 

with corrected derivatives. Since stability analyses are made on infinite domains, differences in 

boundary treatments are irrelevant and the results also apply to kernel methods with corrected 

derivatives [lo]. In the analysis, we consider both nodal integration, which corresponds to a stan- 

dard particle method, and stress point stabilization [13,14]. In the stability analysis, we consider 

one-dimensional and two-dimensional problems. For these cases, we consider both Eulerian and 

Lagrangian kernels. A kernel is considered Eulerian when it is a function of the spatial (Eulerian) 

coordinates. Eulerian kernels are customarily used in particle methods. A kernel is Lagrangian 

if it is a function of the material (Lagrangian) coordinates. 

We also examine how closely Lagrangian and Eulerian kernels replicate the standard material 

instabilities. It is shown that the material instability is not replicated accurately by Eulerian 

kernels. In fact, the tensile instability is a manifestation of error in the reproduction of material 

instability by Eulerian kernels. In one dimension, the Lagrangian kernel reproduces the onset of 

material instability exactly. 

The outline of this paper is as follows. We summarize the governing equations and their particle 

discretization in the next section. Section 3 is the stability analysis in one dimension. In this 

section, different quadrature schemes with Lagrangian and Eulerian kernels are discussed. The 

stability properties in two dimensions are studied in Section 4. We show the tensile instability 

by two examples in Section 5. 

2. PARTICLE METHOD WITH CORRECTED DERIVATIVES 

2.1. Governing Equations 

We consider a problem domain 0 with a reference configuration fl;2~ and initial configuration Qc. 

Usually, the initial and reference configurations are coincident, but it is often useful to have an 

arbitrary reference configuration available. The motion is described by 

where x are the spatial (Eulerian) coordinates and X are the material (Lagrangian) coordinates. 

The above map must be one-to-one except on sets of measure zero (i.e., surfaces in 3D), where 

points can split into two to model cracking. 

The momentum equations are 
Rj, 
do + pobi = PO%, (2.2) 

3 

where pc is the initial density, P is the nominal stress tensor, b is the body force, u is the 

displacement, and superposed dots denote material time derivatives. We have used standard 

indicial notation, so repeated indices imply sums in the above and henceforth. 

When the current configuration corresponds to the reference configuration, i.e., when flR = 0, 

the above form of the momentum equations becomes the spatial form of the momentum equations 

dffji 
a~_ + phi = pi&, 

3 

(2.3) 

where p is the current density. By conservation of mass, 

PJ = PO, (2.4) 
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where J is the Jacobian determinant defined by 

J = det(F), Fij = 2. 
3 

(2.5) 

The two above forms of momentum equations are identical and differ in form only because they 

are expressed in a different description; see [15]. 

In this paper, we first consider the one-dimensional case. From (2.2) and (2.3), the momentum 

equation under uniaxial strain in the absence of body forces is 

8P(X, t) d%(X, t) wx, t) D2u(z, t) 

dX = PO at2 > - = P D9 I 
da: 

(2.6) 

where the above left and right are the Lagrangian and Eulerian forms, respectively, and P = PII, 
u= Ul, CT = cT11. 

2.2. Meshless and Particle Approximations 

We will develop the discrete equations in terms of moving least square approximations. How- 

ever, the resulting discrete equations are identical to corrected forms of SPH (as in [9]). 

An essential building block in meshless approximations is the weight function 

WI(X) = w(X -X,) = 
W(X - XI) 

,pm-xI) (2.7) 

which is the moving least square approximation that reproduces the constant function. In SPH, 

w(X - XI) is called a kernel function or smoothing function. In approximation theory, the MLS 

approximation to a constant is called a Shepard function [16]. In this paper, we use a quartic 

spline weight function 

1 - 6s2 8s3 - for s W(s) + 3s4, I 1, = 

0 3 for s > 1, 

and the exponential weight function 

e-(s/o.4)2, for s < 1 
W(s) = o 

{ , 

- 7 

for s > 1, 

(2.8) 

(2.9) 

where s = r/h, r = ]]X - XI]], and h is a measure of the size of the support, which is determined 

by a dilation parameter D,,. We define h = D,,AX for uniformly spaced particles in one 

dimension. The weight function is of compact support, i.e., WI(X) > 0 only in the neighborhood 

of X. The approximation for the displacement is 

$(X7 t> = c w.I(X>w(t). (2.10) 
J 

It should be noted that in the above, the kernel WJ(X) is a function of the material coordinates, 

so we call it a Lagrangian kernel. The above approximation reproduces constant functions exactly, 

i.e., when U~J = 1, u”(X, t) = 1. 

A correction that enables the derivatives of constant or linear fields to be reproduced exactly 

is developed by Krongauz and Belytschko [lo] and Belytschko et al. [17]. We will explain the 

corrected derivatives method concept for multidimension first. The corrected derivatives are 

denoted by Lji(X) and are approximated by 

Lag = xGir(X)ujr, 
I 

(2.11) 
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where Gil are linear combinations of the derivatives of the Shepard functions. Note that Lji(X) 

differs from s ax, with U: defined by equation (2.10). The approximation functions for the deriva- 

tives Gil are defined as linear combinations of the exact derivatives by 

Gil(X) = aij (X)wr,j (X), (2.12) 

where aij are arbitrary parameters which are determined by the reproducing conditions developed 

next (note repeated indices are summed). 

The reproducing condition for derivative of a linear function can be stated as follows: if the 

nodal values of the displacement uj~ are given by the nodal coordinates Xjl, then the derivative 

should be 1 if i = j, 0, otherwise, i.e., 

c GiIXIi = Sii. (2.13) 

The above can be written in matrix form as 

AaT = I, (2.14) 

where I is the identity matrix and for a three-dimensional approximation, 

W,XXI W,YXI W,ZXI 

A = W,XYI WI,YYI W,ZYI , 

W,XZI W,YZI W,ZZI 1 
a= [5, !z Z!]. 

(2.15) 

(2.16) 

By solving these equations, the corrected gradient function Gil(X), (2.12) can be obtained. 

The approximation for the derivatives of the displacement is then 

LJi(x) = c aik(X)WI,k(X)UjI. (2.17) 

In one dimension, the corrected derivatives are 

where 

L(X) = C a(X)wI,x(X)w, 

GI(X) = a(X)wI,x (X) 

(2.18) 

(2.19) 

and 

a(X) = 
1 

c WI,X(X)XI. 
(2.20) 

2.3. Discrete Equations 

The discrete momentum equation is obtained by the Galerkin weak form. With a Lagrangian 

kernel, the weak form of the linear momentum conservation equation is 

J Guipo?Ji, dR = 
no J’ 

buipObi dR - 
s 

8op3i da + 
no Cl0 axi s 

bu& d I?, (2.21) 
G 

where bui is the test function, bi is the body force, and fi is the boundary traction. Substituting 

the particle approximation (2.10),(2.18) into (2.21) and using a diagonal mass matrix, we have 

mIciI = f,“;” - f$“, miI = mv,O,, (2.22) 

where f:Ft, _f$‘” are the external and internal nodal forces, respectively, given by 

f?” = s,, PowI& d% + J w& d r, (2.23) 
r; 

f;l;t = s,, &.%(x)PJi dSZo = s, WI>X, (x)o~i dQ, (2.24) 

where 52 is the current domain; see [15]. 
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2.4. Integration Schemes 

2.4.1. Nodal integration 

To obtain the discrete momentum equations from the weak form, the integrals of the right- 

hand sides of (2.23) and (2.24) need to be evaluated by numerical quadrature. In the element-free 

Galerkin method, background elements or voxels are needed [I]. Beissel and Belytschko [18] have 

proposed nodal quadrature for the element-free Galerkin method, where any integral is evaluated 

by summing the function at the nodes, i.e., 

s no 
G(X) dR = c G(Xr)V’, 

I 

(2.25) 

where Vj’ = ml/p0 is the volume associated with node I. The internal nodal forces (2.24) are 

then computed by 

j$” = c v,o aW;FJ)p3i(x,). (2.26) 
J 3 

This approach was found to be unstable by Beissel and Belytschko [18], which is verified here 

for the corrected derivative approach also. 

Nodal quadrature leads to discrete equations to be collocation equations used in SPH. 

2.4.2. Stress point integration 

One approach to stabilizing nodal quadrature is to use additional quadrature points called 

stress points or slave points. In this approach, slave particles are added to the original set of 

particles (the original particles are called master particles; see Figure 1). The nomenclature 

“slave” nodes originates in finite element methods, where slave nodes are nodes whose motion is 

completely determined by the motion of master nodes through kinematic relations. This concept 

holds where the kinematic variables of slave particles, such as displacement and velocity, are 

evaluated from the neighboring master particles by integration (2.10). The slave particles are 

used only for the integration of the Galerkin weak form; the discrete momentum equations are 

not enforced at the slave nodes, since the displacement of the slave nodes is not arbitrary. The 

displacement and velocity at the slave particles (stress points), according to (2.10), are 

$ =~WJ(x;)UI;, uj =cwJ(x;)wI;L, (2.27) 
J J 

where Xj is the material coordinate of a slave particle. The internal nodal forces (2.24) are given 

(2.28) 

where N,, N, are the sets of master and slave particles, respectively, which contribute to the 

master particle at XF. The volumes VJ”” and VJ”” are computed from a Voronoi diagram (see 

Figure 1) so that 

5 
I/J”” + 5 VJ”” = va. (2.29) 

J J 

In the above, V” is the initial total volume, and N, and N, are the number of master particles 

and stress points in the model, respectively. Note that the volume for the master particle I, VF”, 
differs from the volume associated with the mass VF, as in equation (2.22). The second term on 

the RHS of (2.28) is the contribution of the slave particle stresses to the master particle forces. 

The discrete equations of motion (2.22) apply only at the master particles. 
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Figure 1. Stress point integration with Voronoi cells for quadrature. 

3. STABILITY ANALYSIS 1D 

In the following, we give a linearized stability analysis of the discrete equations for the particle 

method (see [19,20]); this is often called a vonNeumann stability analysis. We consider an 

infinite slab under a uniform state of stress. The solution is perturbed by harmonics of various 

wavelengths. We consider the response stable if it decays or remains constant in amplitude, and 

unstable if it grows. A response is asymptotically stable if it decays to zero as time goes to 

infinity. 

3.1. Nodal Integration 

3.1.1. Lagrangian kernel 

We first consider a one-dimensional stability analysis with a Lagrangian kernel with nodal 

integration. For a plane wave in the X-direction, the only nontrivial components of the relevant 

tensors are the X components. So the relevant component of the deformation gradient is Fii = F 

(we drop the subscripts in the following), and it is given by 

F(X) = 1 + & = 1-t ~CJ(X)U 

J 
(3.1) 

For the Lagrangian kernel with nodal integration, the internal nodal force is given by (2.26), 

which for the 1D case is given by 

fy = c V~WI,X(~J)~‘J, V&CL. 

J POJ 

Then the discrete momentum equations are 

rnIiiI = fFt - 5: ~wI,x(XJ)PJ. 

(3.2) 

(3.3) 

We consider a material for which the constitutive rate relationship is 

f’ = (CSEF2 + PF-l) l+ = @, where C = CSEF2 + PF-I. (3.4) 

The above constant C corresponds to the relevant component of the first elasticity tensor, 

and CSE is the tangent modulus of the relation between the rate of the second Piola-Kirchhoff 
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Figure 2. Frequency relations in plane wave by particle method nodal integration 

with Lagrangian kernel. 

stress and the Green strain; see [21] or [15, Section 61. We use a Fourier representation of the 

perturbed displacement 

GI=ge inXj fiwt 
, (3.5) 

where IC is wave number and w is frequency; both can be complex. The perturbed fields are 

u(X, t) = uo(X, t> + qx, t), (3.6) 

P(X, t) = po(X, t) + P(X, t), (3.7) 

where us and PO satisfy the momentum equation. The perturbed momentum equation is 

rn$I = - C V~UJ~J(XJ)PJ, (3.8) 
J 

where a superposed tilde denotes a perturbed quantity. From (3.4) and (3.1), it follows that 

ijJ = ci$, PI = CGJ(X~)~J, Co = CSEFi + PoFg’. (3.9) 
J 

Substituting the above into equation (3.8) yields the dispersion equation 

1 
w2 = - c V&I,X(XJ)C 

mr J 
c GK(XJ) cos[n(XK - XI)] . 
K 

(3.10) 

In an infinite domain, for identical, uniformly spaced nodes and a symmetric weight function, 

we have ml = mc, VI0 = V” = mo/po, and 

#l(XJ) = 6J(XI), GI(~J) = -GJ(~I), wI,X(XJ) = -wJ,X(XI). 

Consider a generic particle 1 with XI = 0; then equation (3.10) can be written as 

(3.11) 

w2 = $ c w,x(jAX) sin(KjAX) 2 , j 1 (3.12) 

where a is the correction factor, which is constant in an infinite domain; j are the nodes in the 

support of the weight function of node I if we let I = 0. When D,, = 1.5, the range of j is -1 
to 1. 

The relationships between frequency and wave number are shown in Figure 2. As can be seen 

from (3.5), the response is unstable if the imaginary part of w is negative, i.e., if Im(w) < 0. 

We have also shown the results for a mesh of two-node finite elements. Two interesting features 
appear in these results. 
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(1) 

(2) 
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An instability occurs at IC = n/AX, regardless of the state of stress or the material tangent 

modulus. This is the cut-off wave number for a uniform nodal spacing AX, This implies 

the existence of a spurious singular mode in the discrete equations. This instability is 

similar to that found in finite elements due to rank deficiency. A system is considered 

to be rank deficient when the rank of the linear equations for the system is lower than 

the proper rank, which equals the number of degrees of freedom minus the number of 

rigid body modes; see 115, Section 81. This instability occurs regardless of the size of the 

support. 

The response is unstable when c = 0; this is desirable, since the continuum equations are 

also unstable when the first elasticity tensor vanishes. The instability associated with the 

vanishing of the tangent modulus (I? is called a material instability; see [Zl]. Note that the 

onset of the material instability in both the continuum and this discretization depends on 

the initial stress PO. 

It can also be seen that the dispersion error of the particle methods exceeds that of finite 

elements. 

3.1.2. Eulerian kernel 

For an Eulerian kernel with nodal integration, the internal nodal force is 

fpt = 
c VJW,z(~J)~J, VJ=mJ=-r= ~JFJ 

PJ POJ 
V,oFJ, 

J 

and the discrete equations are 

The perturbed equation (3.14) is 

m& = - F 2 [WI&J) (WJ + a&) + UJFJziiI,,(ZJ)] ) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

and 6’ is the counterpart of equation (3.4) in the current configuration (see [15]). 

c’ = (Cal + a), CUT = CSEF3, (3.17) 

where CUT relates the Truesdell rate of the Cauchy stress to the rate-of-deformation, so in one 

dimension, ~9 = (Co7 + tr)D. 

Substituting (3.16) into (3.15) gives the dispersion equation, which for a symmetric weight 

function and identical particles in an infinite domain is 

’ x w,~&Az) [l - cos(~jA~)f - a x w,Z(jAz) sin(KjAx) 

j j I 
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(a) D,, = 1.5. (b) D,, = 2.5. 

Figure 3. Frequency-wave number relations in plane wave by particle method with 
nodal integration and Eulerian kernel for Cb7 > 0; c2 = Co7/p. 

There are several very interesting features to this result. First of all, w2 does not vanish 

when C’ = 0, so the discrete equations do not always exhibit an instability when C’ = 0. This 

contradicts the behavior of the continuum equations, which always exhibit a material instability 

when 6” 5 0. There are two instabilities: 

(1) the spurious singular mode UI = (- 1)’ at the cutoff wave number rc = a/Ax; 

(2) an instability occurs when (T > 0 and C’ # 0; this is the tensile instability identified by 

Swegle et al. [22]. 

Figure 3 shows the frequency-wave number as a function of the normalized stress (5 = g/CU7) 

for different support sizes (h = DmxA2), for a quartic spline weight function with a positive 

elasticity tensor (Ca7 > 0). Figure 4 shows the same relationship, but with a negative elasticity 

tensor (Cal < 0). 

In Figure 3 for D,, = 1.5, the frequency becomes imaginary for 5 = 1, i.e., a tensile stress if 

the wave number IE is greater than about 0.67r/Ax. This corresponds to the tensile instability. 

As 8 increases, the wave number for the onset of instability decreases. For D,, = 2.5, as seen in 

Figure 3, the tensile stress required for the onset of instability is greater, but the tensile instability 

remains. When Cr = -1, C’ = 0, it is stable for D,, = 1.5. When D,, = 2.5, it is also stable for 

most frequencies. 

When Cu7 < 0, Figure 4 shows that the behavior is even more complex. For D,, = 1.5, 

the response is unstable at all frequencies, which is exactly the behavior found in a material 

instability. However, for D,, = 2.5, there are ranges of frequency in which the discrete response 

is stable even if C’ < 0. 

In summary, it can be seen that the particle equations with an Eulerian kernel distort the 

onset of material instability and exhibit a tensile instability. On the other hand, the Lagrangian 

kernel does not exhibit the tensile instability regardless of the magnitude of the tensile stress and 

reproduces the onset of material instability exactly. 

From (3.12) and (3.18), we can obtain the relations between normalized stress and wave number 

for the threshold frequency; i.e., w2 = 0. Figures 5 and 6 show the stable fields and unstable 

domains. For a Lagrangian kernel, it becomes unstable when 5 = -1, i.e., C = 0 no matter what 

the wave number is. This is a material instability that also occurs in the PDE which governs 

the continuum. However, for Eulerian kernel, the onset of this instability does not replicate the 

material instability. In other words, due to the character of the discretization, the Eulerian kernel 

distorts the material instability. 
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Figure 4. Frequency-wave number relations in plane wave by particle method with 
nodal integration and Eulerian kernel for CUT < 0; c2 = -Co7/p. 
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Figure 5. Stable and unstable domains for Lagrangian kernel as compared to the 
exact domain. 

5L 

‘gzl 
unstabb exacl 

3 

(a) Co7 > 0. (b) CUT < 0. 

Figure 6. Stable and unstable domains for Eulerian kernel as compared to the exact 
domain. 
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3.2. Stress Point Integration 

In the following, we show that the Lagrangian kernel with stress points eliminates the instability 

due to rank deficiency and correctly replicates the material instability. 

We examine the stability of Lagrangian kernels with stress points for a uniform particle dis- 

tribution in one dimension. We place stress points at the center of each interval. The internal 

nodal force is obtained by specializing (2.27), 

where N,, N, are the sets of master particles and stress points contributing to the integral. 

Thus, the perturbed momentum equation is 

I 
rnIuI = - c vpWI,X (XJm) Py - c VJSWI,X (x;) F$. (3.20) 

JENM JENs 

Note that the volume Vom differs from V” for the master particles. The stresses are calculated 

from the displacements of supporting master particles by 

I;m = i?pF = c c GK (xy) iiK, Fj = CFj = CCGK (X:)G,. (3.21) 
K K 

By algebra similar to that in the preview section, we obtain the following dispersion equation: 

J = - 
??ip c i VJOmwl,x (XJm) C’ C GK (XJm) cos [PC (X2 - XT)] 

JEN,,, K 1 
+ C VJO”WI,X(X;)C C GK (X$) cos [K (XE - X,“)] . 

JEN, K II 
For an infinite bar of uniformly spaced particles, the above can be written as 

Here, we have set I = 0 and 

sj = sin (~j~ AX) , 3, =sin(K(j,+i)AX), 

wj,x = w,x(j,AX), ,.,=w.,((j,+;)AX), 

(3.22) 

(3.23) 

(3.24) 

and a, and a, are the correction factor for master particles and slave particles. j, and j, are 

the local integers because we set I = 0. For D,, = 1.5, j, will be -1 to 1 and j, will be -2 
to 1. 

The frequency-wave number relations are shown in Figure 7a. for various support sizes (h = 

D,,,AX) and a quartic spline weight function. It can be seen that there are no unstable modes 
due to rank deficiency at the cutoff wave number. However, the frequency is very small near the 
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(a) Quartic spline. (b) Exponential. 

Figure 7. Frequency relations in plane wave by EFG with stress points Lagrangian 
kernel with lumped mass. 

cut-off point for large support size (D mx 2 2.5). This indicates that we are close to instability 
for large supports. 

At the cut-off wave number (K = r/AX), equation (3.23) can be written as 

2 a,C 

w=2po ( 1 
2 

c 
Wj,XSj 

j.” 
= $(WS)'; (3.25) 

where W = {aj,x}, S = {Sj}. With D,, = 1.5 (range of j, is -2 to l), 

W = { 4, -a, a, b}T , s = (1, -l,l, -l}T ) 

where a and b are positive and a > b, and thus, 

(3.26) 

W2 = z (2(a - b))2. (3.27) 

When D,, = 2.5 (_h are -3 to 2), W = {-c,-b,-a,a,b,c}T, s = {-~,i,-i,i,-i,l}T, 

where a, b, and c are positive and a > b >> c, and thus, 

w2 = 2 (2(a - b + c))2. (3.28) 

It is obvious that with increasing support size, the frequency decreases at the wave number 

K = r/AX. For the exponential weight function, the discretization, as in Figure 7b, is more 

stable than for quartic spline weight function. We believe this is due to the fact that this weight 

function is more concentrated about its node than the quartic spline weight function. The peaks 

of these plots are different because the correction factors a, are different. 

For comparison, the dispersion relation for the two-node linear displacement finite element 

with lumped mass is also given in this Figure 7. It can be seen that the frequency given by the 

EFG methods is lower than that of FEM, especially for large wave numbers, the discretization is 

more dispersive. Moreover, it can be seen that the high-frequency accuracy of particle methods 

is less than that of FEM. 
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4. STABILITY ANALYSIS IN 2D 

To investigate whether our findings apply to higher-dimensional problems, we consider a two- 

dimensional plane wave motion in an infinite domain. Two arrangements of particles are consid- 

ered: rectangular and hexagonal. For nodal integration, nodes are connected to form a virtual 

quadrilateral or triangles. For stress points, slave nodes are placed in the centers of virtual 

quadrilaterals or triangles (see Figure 8, where the filled circles indicate the master particles and 

the empty circles denote the stress points). 

(a) Center of quadrilateral. (b) Hexagonal shape. 

Figure 8. Positions of stress points in two-dimensional meshes. 

4.1. Nodal Integration 

4.1.1. Lagrangian kernel 

In ZD, for nodal integration with a Lagrangian kernel, the discrete perturbed momentum 

equation is 

m&(Xr) = -j$” = - c V,ow~,j(XJ)~ji(X,). (4.1) 
JEN 

The perturbed stress is given by 

where 

CijrE = C~~,J&F’, + Sil&jjrr & = c GLK(XJ)%-(XK]. (4.3) 
K 

The perturbation is 

&.(XK) = A,e iK(xK COS f?+yK sin 8)+iwt 
(4.4) 

In a plane wave, Ax = A cos B and Ay = A sin 8. 8 is the direction of the normal direction of the 

wave front. Then, the above can be written as 

&(XK) = AeTein(XKex+YKeV)tiUt, (4.5) 

where Ox = cos0 and By = sin0. 

Substituting equations (4.2) and (4.4) into equation (4.1), we obtain the dispersion equation 

(4.6) 

where 

SdxJ) = c G~K(XJ)CKI, 

K (4.7) 
CKI = c&(XK@X + UK&) - tc(Xr6X + Yl@y)]. 

In 2D plane strain, 

(4-8) 
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(a) Rectangular. (b) Hexagonal. 

Figure 9. Frequency-wave number relations of nodal integration with Lagrangian 
kernel with D,, = 1.5. c2 = p/p. 

Letting the current configuration be the reference configuration, so F = I, and 

we can see that the tensor c is not major symmetric. 

Figure 9 shows the frequency as a function of relative wave number for various wave directions 8. 

For a rectangular arrangement of nodes with 0 = 0, the plot between K, = 0 and 27r/AX is 

symmetric for PC = n/AX because AX is one side’s length of quadrilateral. This is identical to 

what we got from 1D analysis before. From the plots, we find that no matter whether we use 

quadrilateral or hexagonal pattern, no tensile instability occurs. However, a spurious mode due 

to rank deficiency occurs for nodal integration with Lagrangian kernel. 

4.1.2. Eulerian kernel 

The momentum equation is 

+ ~(xJ)~~,j(xJ)~p(xJ) + J(xJ)w~,~(XJ)~~~(XJ)] . 
The perturbed Jacobian is 

d%(XJ) 
+f(xJ) = J(xJ)&j 7 = +J)&t c gtK(XJ)k(XK)* 

3 K 

The perturbed shape function is 

c’r,j(xJ) = WI&J) (CJt - fiIt) , 

(4.10) 

(4.11) 

(4.12) 

where 

r = bJ -XIII. (4.13) 
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The perturbed Cauchy stress is 

In 2D plane strain, 

Let the current configuration be the reference configuration, P = I. So 

Cjrl = C.$s - aij&l + bi,fllj + Oilbjr. 

Substituting equations (4.11), (4.12), and (4.14) into (4.10) gives the dispersion equation 

where 

+ wf,j(xJ)aij(xJ)etSt(xJ) + ~ij(XJ)WI,jt(XJ)~t(cJI - I)] , 

SZ(XJ) = ~%K(XJ)CKI> 

K 
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(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Figure 10 shows the relationships between frequency and wave number for nodal integration 

with an Eulerian kernel. When the tensile stress is normalized by 5 = a/p = 1.0, we can see that 

the discretization is unstable for 0 = 30’ and 45’. It is tensile instability for nodal integration 

with Eulerian kernel. That is what we get from 1D analysis. 
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(b) Hexagonal. 

Figure 10. Frequency-wave number relations for nodal integration with Eulerian 
kernel for D,, = 1.5, c2 = p/p. 

4.2. Stress Points 

4.2.1. Lagrangian kernel 

In 2D, for stress points integration with Lagrangian kernel, the perturbed momentum equation 

= - C T/,omwT,j (xzF) pj;i (Xz;“) - C V,‘Wl,j (X5) Pji (XS,) 
(4.19) 

JENM JENs 
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Substituting equation (4.2) into equation (4.19), the 

Lagrangian kernel is 

XIAO 

stability equation for stress points with 

where 

Si (X7) = C G~K (X7) CKI, 
K 

s, (xs,) = c G~K (xs,) CKI. 

(4.21) 

K 

Figure 11 shows the plots for the frequency as a function of normalized wave number for various 

propagation directions. No tensile instability occurs for stress point integration with Lagrangian 

kernel. 

For rectangular pattern (Figure lla), the discretization is unstable for 0 = 45” at the cut off 

wave number. This is a spurious singular mode rather than a tensile instability: it occurs even if 

the stress vanishes. 

(a) Rectangular. 

Y’J”I’J “[““I”” 
OO 0.5 1 1.5 

KAX/lT 

(b) Hexagonal 

Figure 11. Frequency-wave number relations of stress point with Lagrangian kernel 
for D,, = 1.5, 2 = p/p. 

4.2.2. Eulerian kernel 

In 2D, for stress points integration with Eulerian kernel, the perturbed momentum equation is 

ml& (XT) = - C VJ"" [j(xI;“) WIf (x7) aij (KY) + J (XT) WI,j (XT) (x7) 
JENM 

+ J (XT) WIj (XT?) &j (x7)] 

- C vJ”” [” (xsJ) wI,j (xsJ) aij (XSJ) + J (XSJ) WI,j (XSJ) CTij (XSJ) 
JENS 

+ J (X5) WI,3 (XSJ) eij (x;,] 

(4.22) 
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From equations (4.11), (4.12), and (4.14), for XJ = x7 or xSJ, we have 

& (XJ) J (xJ) = J (XJ) bij F = J (XJ) &t c QtK (XJ) k (XK) , 
3 K 

GI,j (XJ) = wI,jt (6 (XJ) - (Xy)) , 
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(4.23) 

because 

c 
the current configuration be reference configuration, u(xg) 0, then we get the 

perturbed for slave nodes by following approximation: 

fi (x;) WK (x5) ‘6 

we get the dispersion for 

stress points 

“2 = 

WI,juij (X1;“) et% (Xl;“) + oij (xzf”) et, 1) ] 

*ij et 

where 

si (XJ) 

12 shows relationships between frequency and for stress points 

The tensile stress is We find the tensile instability is 

eliminated by for Eulerian kernel in lD, we 

the tensile instability. 
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Figure 12. number relations stress points Eulerian kernel 
D nl5 = 1.5. c2 = ,u/p. 
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5. NUMERICAL EXAMPLES 

5.1. One-Dimensional Stability 

We consider a simple 1D example to verify our analysis of the tensile instability. A rod is fixed 

at both ends, and an initial stress is prescribed, 00 = l.OGPa. The center node of the rod is 

given an initial velocity, wo = 40m/s. Nodal integration is used with Eulerian and Lagrangian 

kernels. The material constants are density p = 2450 kg/m3, Young’s modulus E = lO.OGPa, 

the length of the rod 1 = 

The velocity at the center node of rod is shown in Figure 13. From Figure 13, we see that the 

tensile instability occurs for the Eulerian kernel but not the Lagrangian kernel (note the velocity 

for the Eulerian kernel is ten times larger). 

For the Eulerian kernel with D,, = 2.5, there is no tensile instability when the initial stress 

is the same (8 = 0.1) as above. However, upon increasing the initial stress so that c = 0.16, the 

tensile instability is found again. 

We also examine this problem with slave nodes (stress points) between the original nodes 

using Lagrangian kernel and Eulerian kernel with D,, = 1.5. The problem was studied for 

5 E [O.O, 1.01. In all cases, the tensile instability is eliminated by stress points integration. 

40 I- 4OOr 

30 

200 

20 

.z 
8 10 

% 8 8 

0 
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-200 

-10 

(a) Lagrangian kernel. (b) Eulerian kernel. 

Figure 13. Velocity at center of prestressed rod with nodal integration for D,, = 1.5 

showing the instability in the Eulerian kernel. 

5.2. Two-Dimensional Demonstration 

This example shows the onset of a tensile instability for an Eulerian kernel in a 2D problem. 

We use a hyperelastic material [23] 

u = & [(cl + czIl)B - c2B2 - (~11,“~ + 2c21,2’~ - ,A lnr,) I] , (5.1) 

where B = FFT. The material constants are cl = 1.265e5 N/m2, c2 = 1.012e4 N/m2, and 

X = 1.012e7N/m2. 11 = tr(B) and 13 = det(B). The material density is p = 125.4Kg/m3. 

A pressure of 6.2e7 N/m2 is applied for 0.1 ms on the inner surface of the rubber ring; 1040 par- 

ticles are used for nodal integration. The discrete model with stress points consists of 540 master 
nodes and 480 slave nodes. Figure 14 shows the deformed rubber ring at the same time by La- 

grangian kernel and Eulerian kernel with nodal integration. Figure 15 shows the results with the 
stress point formulation. Figures 14b and 15b show the clustering of particles in the Eulerian 

kernel which is typical of the tensile instability. 
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(a) Lagrangian kernel. (b) Eulerian kernel. 

Figure 14. Deformed rubber ring by nodal integration (t = 0.16 ms). 

(a) Lagrangian kernel. (b) Eulerian kernel. 

Figure 15. Deformed rubber ring by stress points (t = 0.12 ms). 

5.3. Material Instability 

Here we will show the performance of Lagrangian and Eulerian kernels for a shear band problem. 
A Jz flow constitutive model is used, and the stress rate relation is 

The yield condition is 

f(7,q) = d - Cry(E) = 0, 

a.f 3 dev a.f 
z=gr , - = -&(q = --H(C), 

ac 

where cry(~) is the yield stress in uniaxial tension, E is the effective plastic strain, B is the von 
Mises effective stress which is [(3/2)rd”’ : ~~~~~~~~~ and H(E) is the plastic modulus. For softening 
material which is unstable material, H is negative. 

The steel ring loaded by an increasing pressure (2.0e8N/m2 per ms) is used. The material 
constants are p = 7800Kg/m3, E = 2.0ell N/m2, H = -E/10, ay(0) = 2.0e8N/m2. 1050 nodes 
are used in nodal integration, and an additional 900 slave nodes are used for stress point. 

Figures 16 and 17 show the distribution of the effective strain in the deformed steel ring. We 
found that the shear bands occur because of the instability material [15]. From [24], we know 
the field of shears bands around a circular hole loaded uniform pressure because at every point of 
the field, the principal stress coincides to radial and circumference directions. The shear bands 
will be logarithmic spirals emerging from the inner surface at an angle f7r/4. 

Regardless of whether we use nodal integration or stress points, the shear bands we obtained 
have the property we mentioned above for both Lagrangian kernel and Eulerian kernel. When a 
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(a) Lagrangian kernel. (b) Eulerian kernel. 

Figure 16. Deformed steel ring by nodal integration (t = 0.4 ms). 

(a) Lagrangian kernel. (b) Eulerian kernel 

Figure 17. Deformed steel ring by stress points (t = 0.4 ms). 

shear band has grown across the ring, the system will be unstable; i.e, the ring will break into 
fragments [25-271. 

The shear bands usually are initiated where stress or strain concentrations occur due to geom- 
etry or material inhomogeneity. In a numerical simulation with uniformly distributed stress, a 
slight imperfection from either material or numerical may trigger the localization. So shear bands 
will occur at different positions and on different patterns for different methods. With Eulerian 
kernel, the positions of shear bands differ from with Lagrangian kernel because of these effects. 

In this problem, slight differences are introduced by the Eulerian kernel, but the differences 
are not severe. The material instability occurs suddenly due to the rapid decrease in the material 
modulus in the material model. 

6. CONCLUSION 

A stability analysis of the particle method with corrected derivatives has been presented. 
The stability properties of the particle method with Eulerian and Lagrangian kernels under 
nodal integration and stress points integration were investigated using Fourier analysis in one 
dimension. In two dimensions, the stability of stress points integration with Lagrangian kernel 
was also studied. 

We have shown that in a plane wave one-dimensional analysis, two types of instability occur 
in the particle methods: 

(1) an instability which occurs due to rank deficiency of the discretization of the divergence 
and makes the equilibrium equations singular; this occurs regardless of the value of the 
stress; 

(2) a material instability, which should be present since it occurs in the governing PDEs. 
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However, Eulerian kernels severely distort the material instability; this is manifested in one 

dimension in the tensile instability. 

Several findings are noteworthy. 

(1) The tensile instability only occurs with an Eulerian kernel; for a Lagrangian kernel, only 

the material instabilities occur. 

(2) In one dimension, stress points eliminate the instability due to rank deficiency. However, 

in two dimensions, the stabilization depends on the arrangement and number of stress 

points. For the straightforward scheme where stress points are placed at the center of 

virtual quadrilateral generated by the initial positions of the particles, the rank deficiency 

instability persists. For adequate stabilization of this spurious mode, stress points must 

be placed in virtual triangles generated by particle positions; i.e., the density of the stress 

points must be greater than that resulting from virtual quadrilaterals. The implications 

of this finding to three-dimensional stress point stabilization require further study. 

From this study, we conjecture that the best approach to stable particle discretizations of solids 

and fluids is to use Lagrangian kernels with stress points. Lagrangian kernel functions may be 

limited in the distortions they can tolerate. However, if the distortions are severe, reinitialization 

of the Lagrangian kernel can always be done. 
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