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A uni�ed stability analysis of meshless particle methods
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SUMMARY

A uni�ed stability analysis of meshless methods with Eulerian and Lagrangian kernels is presented. Three
types of instabilities were identi�ed in one dimension: an instability due to rank de�ciency, a tensile instability
and a material instability which is also found in continua. The stability of particle methods with Eulerian
and Lagrangian kernels is markedly di�erent: Lagrangian kernels do not exhibit the tensile instability. In
both kernels, the instability due to rank de�ciency can be suppressed by stress points. In two dimensions
the stabilizing e�ect of stress points is dependent on their locations. It was found that the best approach to
stable particle discretizations is to use Lagrangian kernels with stress points. The stability of the least-squares
stabilization was also studied. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For a variety of problems with extremely large deformation, moving boundaries or discontinuities,
mesh-free methods are very attractive. Mesh-free methods, which construct the approximation
entirely in terms of nodes, are less susceptible to distortion di�culties than �nite elements. The
smoothed particle (SPH) method, which was used for modelling astrophysical phenomena [1; 2],
is the oldest of these mesh-free methods. It uses kernel estimates to construct the approximation.
Uncorrected kernel approximations appear to converge only when the size of the ‘window’ which
determines the number of nodes that interact remains constant as the model is re�ned. Mas-Gallic
and Raviart [3] proved convergence for this situation but Belytschko et al. [4] found that SPH
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1360 T. BELYTSCHKO ET AL.

does not converge when the support decreases proportionally to the particle spacing. Support sizes
independent of re�nement are very expensive since sparsity decreases markedly with re�nement.
Therefore a correction of the approximation [5] or the derivatives [6; 7] is crucial. The element-
free Galerkin (EFG) method uses a moving least-squares approximation. It is equivalent to the
Liu correction of the kernel and is consistent [8; 9]. Other meshless methods include reproducing
kernel particle method (RKPM) [5; 10], particle-in-cell method [11; 12], hp-clouds [13; 14] and
the partition of unity �nite element (PUFEM) [15; 16].
The stability of particle methods is essential to their robustness. One of the most troublesome

instabilities of the SPH method is the tensile instability. This instability was �rst identi�ed by
Swegle et al. [17] by a Neumann analysis of the one-dimensional equation. Subsequently, Dyka
et al. [18; 19], motivated by similar di�culties in �nite elements, where under-integration of
the Galerkin form leads to spurious singular modes, recommended the insertion of additional
quadrature points. They are called stress points since only the constitutive equation is evaluated at
these points. Stress points have been implemented in multi-dimensions by Libersky and Randles
[7]. Dilts [20] has argued that the tensile instability can be alleviated by the use of a moving
least-squares approximation for the dependent variables and reported results which substantiated
his claim. Swegle and co-workers have proposed a conservative smoothing scheme to eliminate the
tensile instability [17; 22; 21]. Morris has examined the stability for multi-dimensional cases and
suggested using higher-order spline kernels [23; 24]. Beissel and Belytschko [25], in earlier work
on moving least-squares approximations, found that instabilities occurred with nodal integration
of the Galerkin form of the momentum equation. These instabilities occurred in the absence of
a large tensile stress. They developed a stabilization by addition of the square of the momentum
equation to the weak form.
Clearly, several di�erent instabilities occur in particle methods. The objective of this paper

is to provide a uni�ed stability analysis to clearly identify the various instabilities and the ef-
fectiveness of various stabilization techniques. Two distinct instabilities result from the
discretization:

(i) a high-frequency instability which results from the rank de�ciency of the discrete divergence
operator;

(ii) a tensile instability which results from the interaction of the second derivative of kernel
and the tensile stress, it occurs even in one-dimensional plane response.

It will be shown that the tensile instability is to a large extent the idiosyncrasy of what we call
Eulerian kernels. In an Eulerian kernel, the stability depends on the stress and the second deriva-
tive of the kernel. This generates the tensile instability. We will show that when the kernel is
a function of the material (Lagrangian) co-ordinates, a so-called Lagrangian kernel, the tensile
instability does not occur.
On the other hand, an instability due to rank de�ciency occurs for both Lagrangian and Eulerian

kernels with nodal integration or collocation. This instability can be eliminated by stress points.
However, it is found that stress points cannot completely stabilize Eulerian kernels.
We will compare the instabilities which are expected in a continuum to the instabilities in the

particle methods. Only rate-independent materials will be considered. As part of this analysis, we
will develop upper bounds for the maximum frequency of particle discretizations in one and two
dimensions. This provides conservative estimates on the stable time steps for explicit methods.
The outline of this paper is as follows. In the next section, the governing equations for a

continuous medium are given in the framework of a Lagrangian formulation. A stability analysis
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UNIFIED STABILITY ANALYSIS OF MESHLESS PARTICLE METHODS 1361

of a continuum with rate-independent constitutive law is presented to illustrate the instabilities
which are present in the partial di�erential equations for continua. The particle approximations
are brie
y described and used to obtain the discrete equations in Section 3. Di�erent quadrature
schemes and Lagrangian and Eulerian kernels are discussed. The stability properties of nodal
integration and stress point integration with Eulerian and Lagrangian kernels are studied in a plane
wave problem and a two-dimensional anti-plane wave problem. The least-squares stabilization by
Beissel and Belytschko is also examined. In Section 5, upper bounds of the critical time step
in Galerkin-type particle methods for explicit dynamic analysis are obtained. Several examples,
including the Taylor bar normal impact and a 
uid–structure interaction, are solved with EFG
using nodal integration and stress points with a Lagrangian kernel. The results show that there is
no instability in either solid or 
uid, which veri�es that stress points with a Lagrangian kernel
su�ce to eliminate the instabilities due to particle discretizations.

2. GOVERNING EQUATIONS

Consider a continuous body, which initially occupies the domain 
0 (called the reference con�g-
uration) and is currently in the con�guration 
. The motion is given by a mapping, x= x(X; t),
which gives the position x of each material point X as a function of time. The map x(X; t)
between 
0 and 
 is assumed to be one-to-one and onto.
We will con�ne our investigation to isothermal, adiabatic processes, so the governing equations

are the conservation of mass

�J = �0 (1)

conservation of linear momentum

�0 �u= �0b+∇X · P (2)

conservation of angular momentum

F · P=PT · FT (3)

and conservation of energy

�0Ė=PT : Ḟ (4)

In the above, �0, � are, respectively, initial and current densities, P is the nominal stress tensor

(the transpose of the �rst Piola–Kirchho� stress), F= x
←−∇X= @x=@X is the deformation gradient

and J =det F, E is the internal energy per unit mass, and b is the body force per unit mass.
The superimposed dot indicates the material time derivative t, e.g. �u= @2u(X; t)=@t2, and the
superscript T denotes transpose of a tensor or vector. The mass conservation Equation (1) is
written in a Lagrangian form, where it is integrable and hence an algebraic equation. In SPH
an Eulerian form of mass conservation is often used; this complicates the numerics and stability
analysis and seems to provide no apparent bene�ts.
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1362 T. BELYTSCHKO ET AL.

The boundary conditions are

ui(X; t) = �ui(X; t); X∈�u0 (5)

n0(X) · P(X; t) = �t(X; t); X∈�t0 (6)

where �u and �t are the prescribed displacement and traction, respectively, and n0 is the outward
normal of the boundary in the reference con�guration, and �u0 , �

t
0 are disjoint subsets of the

boundary �0, i.e. �0 =�u0 ∪ �t0 and ∅=�u0 ∩ �t0.
The constitutive equation must be posed in terms of frame-invariant (objective) rates, so we use

a relation between the rates of the second Piola–Kirchho� stress S and the Green strain E,

Ṡ=CSE : Ė (7)

where CSE is the material tangent modulus. The measures of stress rate and strain rate related by
the particular tangent modulus are identi�ed by a superscript in the above because other stress and
strain rates will be used subsequently and the tangent moduli for those are di�erent. The Green
strain E is given by

E= 1
2(F

TF− I) (8)

The nominal stress is related to the second Piola–Kirchho� stress by

P=SFT (9)

It should be noted that the usual Eulerian forms of the continuity and momentum equations are
simply transformations of the above and possess identical stability properties.

2.1. Stability analysis for continuum

For the purpose of providing some guidelines as to what type of instability to expect, we sum-
marize here a standard stability analysis of the continuum [26–28]. Note that only the momentum
equation needs to be considered for a Lagrangian treatment, since the mass conservation equation
is algebraic; the energy equation is irrelevant in an isothermal, adiabatic process. We will assume
that the body forces vanish.
The governing equations for the large deformation of continuum are non-linear. In order to

conduct a stability analysis, we �rst derive the linearized equations. Assume perturbations in the
displacement

�u= u + ũ (10)

where the superposed ∼ denotes a perturbation. The perturbation solutions are governed by the
following equation:

�0 �̃u=∇X · P̃ (11)

From Equations (7)–(9), it follows that

P̃= S̃FT + SF̃T =CSE : (FTF̃)FT + SF̃T (12)
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In the above we have used the rate form of the constitutive equation and the minor symmetry of
the material modulus CSE

S̃=CSE : Ẽ=CSE : (FTF̃) (13)

Writing (12) in indicial form, the perturbed stress is given by

P̃ij =CSEikabF
T
arF̃rbF

T
kj + SibF̃

T
bj =FraFjkC

SE
ikabF̃rb + SibF̃jb=A

0
ijrbF̃rb (14)

The above de�nes the �rst elasticity tensor A0 as

A0ijrb=FraFjkC
SE
ikab + Sib�jr (15)

The governing equation in terms of the perturbed displacements can be obtained by substituting
Equation (14) into (11):

�0
@2ũi
@t2

(X; t)=
@
@Xj

[A0jirb(X; t)F̃rb(X; t)]=
@
@Xj

(
A0jirb

@ũr
@Xb

)
(16)

Assume that the perturbation of displacements is in the form of a plane wave

ũ= ge!t+i�n
0·X ≡ ge�(X; t) (17)

where � is the wave number, ! is a complex frequency and n0 is the normal direction of the
wavefront with respect to the initial con�guration. Then

F̃rb=
@ũr
@Xb

= i�grn0be
�(X; t) (18)

and

@
@Xj

(A0jirbF̃rb)= i�A
0
jirbgrn

0
b i�n

0
j e
�(X; t) =−�2A0jirbn0bn0j gre�(X; t) (19)

Since

@2ũi
@t2

=!2gie�(X; t) (20)

the perturbed equation (16) yields

�0!2gi + �2A0jirbn
0
bn
0
j gr =0 for i=1 to nSD (21)

or (
!2

�2
�ir +

1
�0

A0
ir

)
gr =0; A0

ir =A
0
jirbn

0
bn
0
j (22)

Thus, the characteristic equation for the continuum medium is

det
[
!2

�2
�ir +

1
�0

A0
ir

]
=0 (23)

If the matrix A0 is positive de�nite, then the roots ! must be imaginary and the continuum is
stable. Note that instabilities can occur when A0 loses positive de�niteness, which can occur
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1364 T. BELYTSCHKO ET AL.

when CSE loses positive de�niteness in CSE due to strain-softening or with absence of the major
symmetry CSEikab=C

SE
abik , i.e. a non-associative law.

Equation (23) can be used to obtain the stability condition in terms of Eulerian variables by
letting the current con�guration be the reference con�guration. This gives F= I, S= b (the Cauchy
stress), Ṡ= b∇T (the Truesdell rate) and CSE =C�T, where C�T is the modulus relating the
Truesdell rate of the Cauchy stress to the rate of deformation, see Belytschko et al. [29]. Then

det
[
!2

�2
�ir +

1
�
Air

]
=0 (24)

where

Air =Ajirbnbnj; Aijrb=C�Tikab + �ib�jr (25)

2.2. One-dimensional stability analysis

For simplicity, we consider the same stability anlysis in one dimension: a plane wave in the
X -direction. The governing equations in one dimension are

�0 �u=
@P
@X

+ �0b (26)

P = SF; Ṡ =CSEĖ=CSEFḞ; F =
@x
@X

=
@u
@X

+ 1 (27)

The equations for the perturbed solutions corresponding to Equations (11)–(14) are

�0 �̃u=
@P̃
@X

(28)

P̃ = �C
SE
F̃ = �C

SE @ũ
@X
; �C

SE
=CSEF2 + S (29)

where ũ is the perturbed displacement in the x-direction, P̃, F̃ , F , and S are the ‘11’ components
of the corresponding tensors. The linearized equation in terms of the perturbed displacement can
be written as

�0
@2ũ
@t2

=
@
@X

(
�CSE

@ũ
@X

)
= �CSE

@2ũ
@X 2

(30)

We use a Fourier representation of the perturbed solution

ũ= gei�X+i!t (31)

Substituting the above into (30) yields that the stability is governed by

!2 =
�CSE�2

�0
(32)

It can be seen that the solution becomes unstable only when �CSE60. The threshold for unstable
behaviour is

�CSE = S + CSEF2 = 0 (33)
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In current congifuration, P̃= �C�TF−1F̃ and �C�T=(� + C�T). The above condition becomes

� + C�T=0 (34)

The above equality between �CSE and �C�T is included to stress that for a particular material,
the two tangent moduli must be equivalent. The instability can occur whenever �CSE (or �C�T)
vanishes, which occurs in two situations:

(i) under tensile stress when C�T becomes su�ciently negative (this corresponds to the well-
known instability in strain softening);

(ii) under compressive stress when the C�T= |�|.
We will see that in certain particle methods, instabilities can also occur under a tensile stress or in

the absence of stress when C�T¿0. These are instabilities due to de�ciencies in the discretization.

3. DISCRETE EQUATIONS

3.1. Meshless and particle approximations

In meshless methods, all dependent variables are approximated by

u(X; t)=
∑

J∈N(X)
�J (X)uJ (t) (35)

where uJ is the nodal value at the particle XJ , N(X) is the set of particles contributing to the
evaluated point X, and �J (X) is the approximation function. The function �J is sometimes called
a shape function. In general, it does not have the interpolation property, i.e. �I (XJ ) 6= �IJ and
consequently uI 6= u(XI ). Therefore special treatment of essential boundary conditions is required
[8; 30].
A large class of particle methods can be generated by using various shape functions. In the

element-free Galerkin method (EFG), the shape functions are moving least-squares (MLS)
approximations [9],

�= [�1(X) �2(X) · · · �N (X)]= pT(X)A−1(X)B(X) (36)

where

A=
∑

J∈N(X)
WJ (X; h)p(XJ − X)pT(XJ − X) (37)

B= [W1(X)p(X1 − X) W2(X)p(X2 − X) · · · WN (X)p(XN − X)] (38)

and N is the total number of nodes within the domain of in
uence at point X, designated by the
set N(X). W (X; h) is the weight function, usually of compact support and

WJ (X; h)=W (X − XJ ; h) (39)

Here h is the size of the support or smoothing length, which is determined by a dilation parameter
Dmx, e.g. h=Dmx�X for uniformly spaced particles in one dimension; p(X) is a vector of basis
functions, usually consisting of polynomial functions to a speci�c order. The linear polynomial
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1366 T. BELYTSCHKO ET AL.

basis functions in two dimensions include pT = [1 X Y ] and su�ce for convergence of second-order
PDEs such as results from combining (2) with a constitutive equation. In the above computation,
a shift of origin is made at the evaluation point to improve the conditioning of the A matrix and
to minimize the roundo� error. The gradient of a �eld variable in EFG is

∇Xu=
∑
J
∇X�J (X)uJ (40)

Fast methods for this computation are given in Belytschko et al. [31].
The smoothed particle hydrodynamics (SPH) approximations are based on a kernel approxima-

tion and constructed as [32]

u(X)=
∑
J
V 0J WJ (X; h)uJ ; �J (X)=V 0J WJ (X; h) (41)

where V 0J is the initial volume of the particle XJ , W (X; h) is the kernel function with smoothing
length h. The kernel in SPH and the weight function in EFG play identical roles. Instead of directly
taking derivatives of Equation (41), the gradient of a �eld variable in SPH is calculated by

∇Xu=−
∑
J
V 0J ∇X′WJ (X; h)uJ (42)

which results from integration by parts and

∇X′WJ (X; h)=∇X′W (X − X′; h)|X′=XJ (43)

Since

∇X′WJ (X; h)=−∇XWJ (X; h) (44)

Equation (42) can be written as

∇Xu=
∑
J
V 0J ∇XWJ (X; h)uJ (45)

Therefore, the gradient of the shape function in Equation (41) is equivalent to the term in Equation
(45). Other formulas have been proposed to estimate the gradient of a �eld in SPH [32; 7]. Three
commonly used forms are

∇XuI =
∑
J

mJ
�0J
uJ∇XWIJ (46)

∇XuI = 1
�0I

∑
J
mJ (uJ − uI )∇XWIJ (47)

∇XuI = �0I
∑
J
mJ

(
uI
�20I

+
uJ
�20J

)
∇XWIJ (48)

where m= �0V 0 and

WIJ =W (XI − XJ ; h); ∇XWIJ =∇XW (X − XJ ; h)|X=XI (49)

Randles and Libersky [7] reported that (47) is more accurate than (46) since the gradient of u
is more explicit and thus is less susceptible to particle disorder. When (48) is applied to the
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momentum equation, the linear and angular momentum are conserved exactly, since the particle
forces are equal and opposite and act along the line joining their centres (provided that the kernel
is symmetric) [33].

3.2. Discrete equations with particle methods

3.2.1. Galerkin method. The discrete equations in EFG and RKPM are obtained from the
Galerkin weak forms. The weak form of the linear momentum conservation can be written as∫


0
�0�u · �u d
=

∫

0
�0�u · b d
−

∫

0
∇X�u :P d
 +

∫
�t0

�u · �t d� (50)

where �u∈U0 is the test function with U0 = {u | u ∈ C0; ui(X; t)= 0 for X∈�u0}.
Substituting the particle approximation (35) into (50) and using a diagonal mass matrix, we

have

mI �uI = fextI − f intI ; mI = �0V 0I (51)

where fextI , f
int
I are the external and internal nodal forces, respectively, given by

fextI =
∫

0
�0�Ib d
 +

∫
�t0

�I �t d� (52)

f intI =
∫

0
∇X�I ·P d
 (53)

It has been shown that the above exactly conserve linear and angular momentum [4], because
of the linear completeness of the approximation. However, as pointed out by Dilts [20], this
discretization does not conserve momentum for a particle pair.

3.2.2. Collocation method. In standard SPH, the discrete equations are constructed by collocation,
i.e. enforcing the kernel approximation to the governing equations at each particle in the domain.
For example, the linear momentum equation without body force, Equation (2), is discretized to

�0I �uI =(∇X ·P)I (54)

Using (46) for the gradient of the stress, we can write the collocation equation

mI �uI =V 0I
∑
J
V 0J ∇XWIJ ·PJ (55)

The above discrete equation is identical to Equation (51) when we de�ne the internal nodal force by

f intI =−V 0I
∑
J
V 0J ∇XWIJ ·PJ (56)

The above collocation discrete equations are equivalent to nodal integration of Galerkin forms,
Equation (53), provided that the kernel is symmetric and the smoothing lengths for all particles
are identical, this is further examined in Reference [4]. However, a theoretical framework for the
simple treatment of traction (natural) boundary conditions is not available in collocation methods.
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1368 T. BELYTSCHKO ET AL.

Figure 1. Stress point integration with Voronoi cells
for quadrature; ◦ is stress point.

Figure 2. Domain of in
uence in material and spa-
tial co-ordinates with deformation x=X+2Y; y= Y:

3.3. Integration schemes

In the EFG method, the integrals (52), (53) are usually evaluated over background cells based
on an octree structure [8]. Full quadrature in the cells is computationally expensive for non-
linear and=or dynamic problems. Nodal integration [25], in which the integrals are computed
from nodal values and is truly meshless, has stability properties similar to SPH. SPH collocation
is equivalent to EFG method with nodal integration in most cases, so it will exhibit the same
instabilities.

3.3.1. Nodal integration. With nodal quadrature, the quadrature points are the nodal points. The
internal nodal forces, Equation (53), are computed by

f intI =
∑
J
V 0J ∇X�I (XJ ) ·PJ (57)

As mentioned previously, the discrete momentum equation in the collocated SPH is identical to
that in EFG with nodal integration.

3.3.2. Stress point integration. One approach to stabilizing both SPH and nodal quadrature is
to use additional quadrature points called stress points. They are called stress points since the
stresses need to be calculated at these points by the constitutive equation in terms of the master
node velocities.
Stress points were proposed by Dyka et al. [18; 19] and Randles and Libersky [7]. In stress

point integration, particles are added to the original set of particles; the original particles are called
master nodes, (see Figure 1), whereas the stress points can also be called slave particles. This
nomenclature originates in �nite element methods, where slave nodes are nodes whose motion
is determined by the motion of master nodes through kinematic relations. The slave particles
are used only for the integration of the Galerkin weak form (or computation of acceleration
for the collocated momentum equation in SPH). The kinematic values of slave nodes, such as
velocity, are evaluated from the neighbouring master nodes. The displacement and velocity at the

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1359–1400



UNIFIED STABILITY ANALYSIS OF MESHLESS PARTICLE METHODS 1369

slave particles (stress points) are

uSI =
∑
J
�J (XSI )u

M
J ; vSI =

∑
J
�J (XSI )v

M
J (58)

where �J (XSI ) is the shape function of the supporting master node J at stress point X
S
I .

The internal nodal forces, Equation (53), are then calculated as

f intI =
∑

J∈NM

V 0MJ ∇X�I (XMJ ) ·PMJ +
∑
J∈NS

V 0SJ ∇X�I (XSJ ) ·PSJ (59)

where NM , NS are sets of master nodes and stress points, respectively, which contribute to
the master node XMI , and the volumes V

0M
J and V 0SJ are computed from Voronoi diagram (see

Figure 1) such that

NM∑
J
V 0MJ +

NS∑
J
V 0SJ =V 0 (60)

In the above, V 0 is the total initial volume and NM and NS is the number of master nodes and stress
points in the model, respectively. Note that the volume for the master nodes in the integration,
V 0MI , di�ers from the volume associated with the mass, V 0I , as in Equation (51). The second term
on the RHS of (59) is the contribution of the slave particle stresses to the master node forces; the
formulas are obtained by energy equivalence as described in Reference [29].

3.4. Eulerian and Lagrangian kernels

The kernel approximation to the motion x= x(X; t) can be written in two forms. In the �rst the
kernel is a function of the material (Lagrangian) co-ordinates in the initial con�guration

v(X; t) = ẋ(X; t)=W (X − XJ ; h)v(XJ ; t)
=W (X − XJ ; h)vJ (t); X∈
0 (61)

while in the second form the kernel is a function of spatial (Eulerian) co-ordinates in the current
con�guration

v(X; t) = ẋ(X; t)=W (x− xJ ; h) ◦ x−1 v(XJ ; t)
=w(x− xJ ; h)vJ (t); X∈
0 (62)

In both of the above W (X; h)¿0 in a small subdomain called the domain of in
uence; it is often
said that W (X; h) is of compact support. Usually, the domain of in
uence is spherical and the
kernel is a function of the distance from the node, i.e.

WJ (X)=W (s; h) where s=

{ ‖X − XJ‖ for Lagrangian kernel

‖x− xJ‖ for Eulerian kernel
(63)

It should be noted that in the �rst line of (62), when the spatial derivative of the kernel is
needed, we are tacitly referring to the composition W ◦ x−1.
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1370 T. BELYTSCHKO ET AL.

We shall show that the stability characteristics of the two types of approximations are quite
di�erent. The Lagrangian kernel, Equation (61), is a function of material co-ordinates. As a
consequence, the neighbours of a particle remain neighbours throughout the simulation unless
a technique such as the visibility criterion is used to severe a connection [9]. This invariance
of neighbours detracts somewhat from the versatility of the particle method. However, it has
superior stability properties, in particular, as we will show, it does not su�er from the tensile
instability. The severance of connectivity occurs due to constitutive behaviour. This is more
representative of physical behaviour of materials than the procedures currently used in particle
methods.
For a Lagrangian kernel, the shape of the support (domain of in
uence) changes with time.

If the initial support is a ball, the current domain of in
uence can be substantially distorted (see
Figure 2 in two-dimensional case). Whether this distortion is deleterious to the performance of the
method is not clear at this time. However, the representation of the kernel in terms of the material
co-ordinates does provide a more consistent procedure for dealing with fracture since, as we will
show, separation by tensile instability is precluded.
The kernel in form (62) employs a spatial domain which maintains the same shape in space

during the simulation; the smoothing length h(t) can be made to vary with time [24].

4. STABILITY ANALYSIS OF PARTICLE EQUATIONS

4.1. Nodal quadrature in plane wave

In the following, we describe a linearized stability analyses of the discrete equations for SPH and
EFG; this is equivalent to what is often called a von Neumann stability analysis. We consider
an in�nite slab under a uniform state of stress. The solution is perturbed by harmonics of vari-
ous wavelengths. We consider the response stable if it decays or remains constant in amplitude,
and unstable if it grows. A response is asymptotically stable if it decays to zero as time goes
to in�nity. This is a classical linearized stability analysis (see [34; 35]), and although the condi-
tions are highly idealized, it yields a mathematically tractable problem that reveals a wealth of
information about the stability of a discretization. The MLS approximation in EFG is identical
to SPH discretization (3.12) for uniformly spaced interior nodes.The subsequent analysis applies
to both Galerkin methods, such as EFG, and collocation methods, such as classical SPH, since
in the stability analysis the domain is in�nite, so the treatment of boundary conditions has no
e�ect.

4.1.1. Eulerian kernel. For a plane wave in the x-direction, the only non-trivial components of
the relevant tensors are the xx components. Thus, J =F11≡F (we drop the subscripts in the
following) and consequently

�=
1
J
FP=P (64)

In EFG with an Eulerian kernel, the internal nodal force is given by

fintI =
∫


�′
I (x)�(x) d
 (65)
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For nodal integration, the above integral is evaluated by summing the integrand at the nodes. The
internal nodal force is then

fintI =
∑
J
VJ�′

I (xJ )�J ; VJ =
mJ
�J
=
mJFJ
�0J

(66)

Thus, the discrete equations are

mI �uI =fextI −
∑
J

mJ
�0J
�′
I (xJ )�JFJ (67)

FI =
1

1− @u
@x

∣∣∣∣
I

;
@u
@x

∣∣∣∣
I
=
∑
J
�′
J (xI )uJ (68)

We consider the Fourier form of a perturbation in displacement

ũI = gei�I�X+i!t (69)

and identify all perturbations by a superposed ∼. The perturbed equation is
mI �̃uI =−

∑
J

mJ
�0J
[�′
I (xJ )(�̃J FJ + �J F̃J ) + �JFJ �̃

′
I (xJ )] (70)

where
�̃′
I (xJ )=�

′′
I (xJ )(ũJ − ũI ) (71)

The perturbed stress �̃I is given by the linearized constitutive equation (29):

�̃I = P̃I = �C�TI F−1
I F̃ I (72)

where �C
�T
are the moduli for the Truesdell rate. The perturbed deformation gradient F̃ I is obtained

from the de�nition (27)

F̃ I =
@ũ
@X

∣∣∣∣
I
=FI

∑
J
�′
J (xI )ũJ (73)

Substituting (69) into (70) and (73) gives the dispersion equation which for a symmetric weight
function and identical particles is

!2 =
�C�T

�

[∑
j
�′(j�x) sin(�j�x)

]2

− �
�


∑j �′′(j�x)[1− cos(�j�x)]−

[∑
j
�′(j�x) sin(�j�x)

]2
 (74)

where �C�T is the counterpart of �C
SE
in (29) in the current con�guration ( �C

SE
= 0 when C�T = 0):

�C�T=(C�T + �) (75)

The response is unstable if the imaginary part of ! is negative, i.e. if Im(!)¡0.
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Figure 3. Frequency–wave number relations in plane wave by EFG with nodal integration and Eulerian kernel
c2 =C�T=�: (a) Dmx = 1:5; and (b) Dmx = 2:5.

Comparing the above with the continuum stability equation (32), we see that the discrete stability
equation contains a second term proportional to � which is absent in the continuum stability
equation; furthermore, the �rst term is modi�ed by a sinusoid. The above equation indicates that
there are three instabilities for the Eulerian kernel particle method:

(i) when the material is unstable, i.e. �C�T vanishes, which corresponds to the instability for
the continuum;

(ii) the spurious singular mode uI =(−1)I at the cuto� at wavenumber �= �=�x;
(iii) when �¿0 and �C�T 6=0, this is the tensile instability identi�ed by Swegle [21].
The �rst should occur in the discrete model since it occurs in the continuum. The second and

third result from the discretization.
Figure 3 shows the frequency–wave number relations as a function of the normalized stress

( ��= �=C�T) for di�erent support sizes (h=Dmx�x), for a quartic spline weight function. For
Dmx =1:5, the frequency becomes imaginary for tensile stress if the wave number � is greater
than about 0:6�=�x (the exact value depends on ��), indicating a tensile instability. For Dmx =2:5,
as seen in Figure 3, the tensile stress required for the onset of instability is greater. But the tensile
instability remains.
An instability also occurs in the absence of stress, i.e. when �=0. This is called a spu-

rious singular mode since !=0 but the mode, shown in Figure 5, is obviously not a rigid-
body translation. When !=0, for a mode other than a rigid-body mode, the unstable mode is
spurious. It is a weak instability which grows linearly with time. It is called a rank-de�cient
mode because it re
ects a rank de�ciency in the sti�ness matrix K in the linearized equilibrium
equations

�f int ≡K�d=�fext (76)

This instability is distinct from the tensile instability. It also occurs in SPH, since the discrete equa-
tions in this case are identical. As shown in Figure 4, when ��=−1, i.e when �C�T=0 the discrete
equations are also unstable for most wave numbers. This instability occurs in the continuum for
all wave numbers.
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Figure 4. Frequency–wave number relations in plane wave by EFG with nodal integration and Eulerian kernel
c2 = − C�T=�: (a) Dmx = 1:5; and (b) Dmx = 2:5.

4.1.2. Lagrangian kernel. For the Lagrangian kernel, the internal nodal force is given by (53),
which simpli�es in one dimension to

fintI =
∫

0
�′
I (X )P(X ) d
 (77)

The deformation gradient is computed by

F(X )= 1 +
@u
@X

=1 +
∑
J
�′
J (X )uJ (78)

With nodal quadrature of (77), the internal nodal force is given by

fintI =
∑
J
V 0J �

′
I (XJ )PJ (79)

This can also be obtained from (64) and (66). The perturbed momentum equation is

mI �̃uI =−
∑
J
V 0J �

′
I (XJ )P̃J (80)

where

P̃I = �CSEI F̃ I ; �CSEI =(C
SEF2 + S)|I ; F̃ I =

∑
J
�′
J (XI )ũJ (81)

For identical, uniformly spaced nodes and a symmetric weight function, the dispersion equation
is as follows:

!2 =
�CSE

�0

[∑
j
�′(j�X ) sin(�j�X )

]2
(82)

By comparing the above with (74), it can be seen that the particle equations with a Lagrangian
kernel do not exhibit the tensile instability regardless of the magnitude of the tensile stress. This
favourable property arises from the use of a Lagrangian kernel W (X). Comparing the above
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Figure 5. Spurious mode in one-dimensional discrete equation with nodal integration (dashed line corresponds
to cuf-o� frequency for linear-displacement �nite elements).

with Equation (32), shows that the unstable behaviour of the Lagrangian kernel is much closer
to the continuum behaviour, Equation (32), than the Eulerian kernel, Equation (74). As in the
continuum, instabilities occur for the Lagrangian kernel when �CSE60. However, in the Eulerian
kernel according to Equation (74), the tensile instability occurs due to the second and third terms of
that equation; these terms are absent in the Lagrangian kernel, Equation (82), and in the continuum,
Equation (32). Note that for small �, the RHS in Equations (32) and (82) are approximately
equal.
The Lagrangian kernel does not eliminate the instability due to rank de�ciency. From the dis-

persion Equation (82), we see that !=0 for wave number �= �=�X, which is the cut-o� wave
number for a uniform nodal spacing �X . This implies the existence of a spurious mode in the
discrete equation due to rank de�ciency; the mode is the same as with the Eulerian kernel, which
is shown in Figure 5.
We consider a simple example to check the tensile instability in Eulerian and Lagrangian kernels.

A rod is �xed at both ends and with an initial stress (�0 = 1:0GPa). The centre node was given
an initial velocity (v0 = 40m=s). EFG with nodal integration is used with Eulerian and Lagrangian
kernels. The material constants are �=2450 kg=m3, E=10:0GPa, l=0:04m.
The velocity at the centre node is shown in Figure 6. From Figure 6, we see that the tensile

instability will occur for the Eulerian kernel but not the Lagrangian kernel (note the velocity for
the Eulerian kernel is 10 times larger). Figure 7 shows the displacement near the centre of rod
which also shows evidence of an instability for the Eulerian kernel. However, for the Lagrangian
kernel (Figure 6(b)) no tensile instability occurs.

4.2. Stress point integration in plane wave

4.2.1. Eulerian kernel. In one dimension, for uniformly placed particles, we place stress points at
the centre of each interval (see Figure 8). With stress point integration, the internal nodal force,
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Figure 6. Stability comparing by EFG nodal integration in the rod with initial stress when Dmx = 1:5:
(a) Eulerian kernel; and (b) Lagrangian kernel.

Figure 7. Displacement distribution along the rod when using Eulerian kernel at t=4:3×10−5 s (Dmx = 1:5).

Equation (65), is given by

fintI =
∑

J∈NM

V MJ �
′
I (x

M
J )�

M
J +

∑
J∈NS

V SJ �
′
I (x

S
J )�

S
J (83)

where NM ; NS are the sets of master and stress points contributing to the integral. V MJ and V SJ
are current volumes for the master nodes and stress points. These volumes di�er from the volumes
associated with mJ in the inertial term; in this one-dimensional case,

V MJ =V SJ =VJ =2=
mJFJ
2�0 J

(84)
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Figure 8. Stress points in one dimension.

The deformation gradient is computed from the displacements of the supporting master nodes at
both master nodes and stress points,

FI =
1

1− @u
@x

∣∣∣∣
I

;
@u
@x

∣∣∣∣
I
=
∑

J∈NM

�′
J (xI )u

M
J for xI = xMI or xSI (85)

The perturbed momentum equation is

mI �̃uI =−
∑

J∈NM

mJ
2�0J

[
�′
I (x

M
J )(�̃

M
J F

M
J + �MJ F̃

M
J ) + �̃

′
I (x

M
J )�

M
J F

M
J

]

− ∑
J∈NS

mJ
2�0J

[
�′
I (x

S
J )(�̃

S
J F

S
J + �

S
J F̃

S
J ) + �̃

′
I (x

S
J )�

S
J F

S
J

]
(86)

where from (64)

�̃J = P̃J = �C�TJ F−1F̃J (87)

F̃J =
@ũ
@X

∣∣∣∣
J
=FJ

∑
K∈NM

�′
K (xJ )ũ

M
K for xJ = xMJ or xSJ (88)

�̃
′
I (xJ ) =�

′′
I (xJ )(ũJ − ũMI ) for ũJ = ũMJ or ũSJ (89)

Since the displacement at a stress point is determined by its neighbouring master nodes,

uSJ =
∑

K∈NM

�K (xSJ )u
M
K (90)

then

ũSJ =F
S
J
∑

K∈NM

[�K (xSJ )− �′
K (x

S
J )u

M
K ]ũ

M
K (91)

Note that F is constant and the current distance between nodes, �x, is uniform. Therefore, if we
assume the displacement at node I vanishes, we have

uMK =
F − 1
F

(K − I)�x (92)
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For a symmetric weight function and identical particles, we have the following dispersion equa-
tion:

!2 =
�C�T

2�



[∑
j
�′
M (j)sM (j)

]2
+

[∑
j
�′
S(j)sS(j)

]2


− �
2�


∑j �′′

M (j)[1− cM (j)]−
[∑
j
�′
M (j)sM (j)

]2

+
∑
j
�′′
S (j)−

[∑
j
�′
S(j)sS(j)

]2

−F∑
j
�′′
S (j)cS(j)

∑
j
�S(j)cS(j)

+ (F − 1)�x∑
j
�′′
S (j)cS(j)

∑
j

(
j +

1
2

)
�′
S(j)cS(j)

+ (F − 1)�x∑
j

(
j +

1
2

)
�′′
S (j)sS(j)

∑
j
�′
S(j)sS(j)


 (93)

where

sM (j) = sin(�j�x); sS(j)= sin(�(j + 1
2)�x) (94)

cM (j) = cos(�j�x); cS(j)= cos(�(j + 1
2)�x) (95)

�′′
M (j) =�

′′(j�x); �′′
S (j)=�

′′((j + 1
2)�x) (96)

�′
M (j) =�

′(j�x); �′
S(j)=�

′((j + 1
2)�x) (97)

�S(j) =�((j + 1
2)�x) (98)

Figure 9 shows the frequency–wave number relations as a function of stress levels ( ��= �=C�T)
for di�erent values of Dmx, where c2 =C�T=�. The quartic spline is used as the weight function.
For small support, there is no tensile instability. However, when the support size is increased, e.g.
Dmx =2:5, an instability occurs at the cut o� wave number for �� = 1.

4.2.2. Lagrangian kernel. For a Lagrangian kernel with stress point integration, the internal nodal
force, Equation (77), is

fintI =
∑

J∈NM

V 0MJ �′
I (X

M
J )P

M
J +

∑
J∈NS

V 0SJ �′
I (X

S
J )P

S
J (99)
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Figure 9. Frequency–wave number relations in plane wave by EFG with stress point integration and Eulerian
kernel: (a) Dmx = 1:5; and (b) Dmx = 2:5.

where NM ; NS are the sets of master and stress points contributing to the integral. Thus, the
perturbed momentum equation is

mI �̃uI =−
∑
J∈NM

V 0MJ P̃MJ �
′(XMJ − XMI )−

∑
J∈NS

V 0SJ P̃SJ �
′(X SJ − XMI ) (100)

Note that the volume V 0M is di�erent from V 0 for the master nodes; in this one-dimensional case,
V 0M =V 0S =V 0=2. The stresses are calculated from the displacements of supporting master nodes
by

P̃MJ = �CSEJ F̃
M
J = �CSEJ

∑
K
�′(XMJ − XMK ) ũK (101)

P̃SJ = �CSEJ F̃
S
J = �CSEJ

∑
K
�′(X SJ − XMK ) ũK (102)

By similar algebra we obtain the following dispersion equation:

!2 =
�CSE

2�0



[∑
j
�′(j�X ) sin(�j�X )

]2

+

[∑
j
�′
((

j +
1
2

)
�X

)
sin
(
�
(
j +

1
2

)
�X

)]2
 (103)

With a Lagrangian kernel and stress point integration, the tensile instability is eliminated. The
frequency relations based on the above dispersion equation are shown in Figure 10 for various
smoothing lengths (h=Dmx�X ) and a cubic spline weight function. It can be seen that there are
no unstable modes due to rank de�ciency. However, the frequency is very small near the cut-o�
point for large dilation (Dmx¿3:0). This indicates the sti�ness matrix is nearly singular for large
support.
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Figure 10. Frequency relations in plane wave by EFG with stress points and Lagrangian kernel with
c2 = �C

SE
=�0.

For comparison, the dispersion relation for the two-node linear displacement �nite element with
lumped mass is also given in this �gure. It can be seen that the frequency given by the EFG and
SPH methods is lower than that of FEM, especially for large wave numbers, so the high-frequency
accuracy of particle methods is less than that of FEM. In EFG with background quadrature, the
frequency errors are reduced.

4.3. Least-squares stabilization

To stabilize nodal integration of EFG, Beissel and Belytschko [2] proposed a stabilization term
which contains the square of the residual of the momentum equation. In the following we study
the stability of this method.
The weak form for this stabilization in one dimension is∫



�u(� �u− �; x − �b) d
 + �

E

∫


��; x(�; x + �b− � �u) d
=0 (104)

In the above E is the Young’s modulus and �= �sl2c , where lc is a characteristic length of the dis-
cretization and �s is a dimensionless stabilization parameter. The discrete equation can be written as

∑
K
MIK �uK =fextI −

∑
K
KIKuK (105)

where the mass and sti�ness matrices are computed by nodal integration

MIK =
∑
J
�VJ�I (xJ )�K (xJ )− �

∑
J
�VJ�′′

I (xJ )�K (xJ ) (106)

KIK =
∑
J
EVJ�′

I (xJ )�
′
K (xJ ) + �

∑
J
EVJ�′′

I (xJ )�
′′
K (xJ ) (107)
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Figure 11. Frequency–wave number relations in plane wave with Beissel–Belytschko-stabilized EFG nodal
integration: (a) Dmx = 1:5; and (b) Dmx = 2:5.

We assume the nodes are identical and uniformly spaced, and the weight function is symmetric.
For the perturbation, Equation (69), the dispersion equation is

(!
c

)2
=



[∑
j
�′(j�x) sin(�j�x)

]2
+ �

[∑
j
�′′(j�x) cos(�j�x)

]2


/

[∑
j
�(j�x) cos(�j�x)

]2
− �∑

j
�′′(j�x) cos(�j�x)

∑
j
�(j�x) cos(�j�x)



(108)

where c=
√
E=�.

Figure 11 shows the frequency as a function of the relative wave number for �=0, where
�s = 0:0 corresponds to unstabilized nodal integration. For small dilations, the addition of the
stabilization terms removes the spurious mode due to rank de�ciency. With the increase of the
stabilization parameter, the frequency decreases less near the cut-o� point. For dilation Dmx¿2:5,
the stability property of the Beissel–Belytschko method changes. If stabilization parameter is small
(�s = 0:001) the improvement in the stability is not signi�cant. On the other hand, if the stabi-
lization parameter is too large, ! will vanish or become imaginary for certain wave numbers,
indicating an instability. The reason for this is that with Dmx =2:5, the stabilization term in the
mass (the second term in the denominator in Equation (108)) will change to positive for large
wave numbers, causing the denominator to be zero or negative. Thus, the method’s e�ectiveness
diminishes for moderate and large dilations.
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Figure 12. Initial position of stress point: (a) center of quadrilateral; (b) center of triangle; (c) star shape;
and (d) hexagonal shape.

4.4. Two-dimensional anti-plane wave

To investigate stability in higher dimensions, we consider a two-dimensional anti-plane motion in
an in�nite slab:

vz(x; y) 6=0; vx = vy =0 (109)

For the sake of simplicity, we consider uniformly spaced particles. Our focus is on the rela-
tionship between the placement of the stress points and instability due to rank de�ciency. The
following patterns are considered (see Figure 12 where the �lled circles indicate master nodes and
the empty circles denote stress points):

(i) Connect every four master particles to form a virtual quadrilateral and place one stress
point at the centre of the quadrilateral.

(ii) Divide each quadrilateral formed in method (a) into two virtual triangles and place one
stress point at the centre of the triangle.

(iii) Stress points at the centres of virtual triangles in a star-shape pattern.
(iv) Stress points at the centres of virtual triangles in a hexagonal pattern.

Among the methods suggested above, method (a) will add the fewest number of stress points
in a mesh.
The linearized momentum equation in the absence of initial stress is

�u= c2�u= c2
(
@2u
@x2

+
@2u
@y2

)
(110)

where c=
√
Gtan=� is the wave speed and Gtan ; � are, respectively, the tangent shear modulus and

density. The discrete momentum equation is

MIJ �uJ =−c2KIJ uJ (111)

where repeated indices are summed over the appropriate range and

MIJ =
∫


�I�J d
 (112)

KIJ =
∫


(�I; x�J; x + �I;y�J;y) d
 (113)
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If the master nodal spacings in the x- and y-direction are �x and �y= 
�x, the spatial
coordinates of a particle can be expressed as (j�x; k�y) and the perturbation at this point is
denoted by uj; k = u(j�x; k�y). Then, at an interior particle (m�x; n�y), Equation (111) can be
rewritten in terms of the relative spatial intervals from this interior point as

Mjk �um+j; n+k =−c2Kjkum+j; n+k (114)

Consider a plane wave perturbation

um;n=A exp[i�(m�x cos �+ n�y sin �)− i!t] (115)

where � is the wave number, ! is the circular frequency, � is the angle of the normal direction
of the wavefront, and i=

√−1. Substituting (115) into the discrete equation (114) yields
!2MjkEjk = c2KjkEjk (116)

where

Ejk = exp[i�(j�x cos �+ k�y sin �)]= exp[i��x(j cos �+ k 
 sin �)] (117)

The matrices Mjk and Kjk have symmetries about this evaluation point. The normalized frequency
is given by

!�x
c

=
{

Kjk cos[��x(j cos �+ k
 sin �)]
Mjk cos[��x(j cos �+ k
 sin �)]=�x2

}1=2
(118)

If the lumped mass is used, M =�x�y= 
�x2, and the frequency is

!�x
c

=
{
1


Kjk cos[��x(j cos �+ k 
 sin �)]

}1=2
(119)

The numerical values of the sti�ness matrix for various implementations of meshfree method
are listed in Table I. The parameter for the domain of support, Dmx =2:0 and 
=�x=�y=1:0.
The entries for (±j; ±k) include four combinations, (j; k); (j; −k); (−j; k), and (−j; −k). The
plots for the frequency as a function of relative wave number for various propagation directions
are shown in Figures 13–15.
For a set of particles uniformly distributed in the x- and y-direction, the maximum admissible

wave number is �= �=�x for �=0◦ and �=
√
2�=�x for �=45◦. With nodal integration, the

frequencies at these cut-o� points vanish (see Figure 13), indicating the presence of instability
due to rank de�ciency in the discrete equations. The two associated spurious modes are shown in
Figure 16. It can be seen that the spurious mode at �=45◦ is similar to the hourglass mode in
�nite elements [36].
For cell integration and stress point integration, the spurious mode occurs only at �=45◦ for

background cell integration with one quadrature point or stress point integration with stress points
at the centre of quadrilateral (see Figures 14(a) and 15(a)).
Stress points at the centre of the quadrilateral cannot eliminate the spurious mode. This can

be deduced from the previous results. In one-point cell quadrature, if the cells are generated
by the nodes, the quadrature point coincides with the stress point. Thus, stress point quadrature
is equivalent to the superposition of nodal integration and one-point cell integration. Because
neither integration scheme eliminates the spurious mode for �=45◦, stress point integration cannot
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Table I. Values of sti�ness matrix Kjk for various implementations.

Cell integration Cell integration Stress point
j k Nodal integration 2× 2 one point quadrilateral

0 0 0.5062 0.6507 0.8142 0.6602
±1 0 0.1101 0.1016 0:9911× 10−1 0.1046
0 ±1 0.1101 0.1016 0:9911× 10−1 0.1046
±1 ±1 −0:5933× 10−1 −0:1456 −0:7282× 10−1
±2 0 −0:1132 −0:8733× 10−1 −0:4677× 10−1 −0:7997× 10−1
0 ±2 −0:1132 −0:8733× 10−1 −0:4677× 10−1 −0:7997× 10−1
±2 ±1 −0:5504× 10−1 −0:5223× 10−1 −0:4677× 10−1 −0:5090× 10−1
±1 ±2 −0:5504× 10−1 −0:5223× 10−1 −0:4677× 10−1 −0:5090× 10−1
±2 ±2 −0:1338× 10−1 −0:8851× 10−2 −0:4173× 10−2 −0:8778× 10−2
±3 0 −0:2663× 10−2 −0:5564× 10−2 −0:2782× 10−2
0 ±3 −0:2663× 10−2 −0:5564× 10−2 −0:2782× 10−2
±3 ±1 −0:8141× 10−3 −0:3478× 10−2 −0:1739× 10−2
±1 ±3 −0:8141× 10−3 −0:3478× 10−2 −0:1739× 10−2
±3 ±2 −0:9193× 10−5
±2 ±3 −0:9193× 10−5

Figure 13. Frequency–wave number relations in anti-plane wave with EFG nodal integration.

eliminate the mode either. Based on this reasoning, if we move the position of the stress point from
the centre, e.g. place the stress point randomly inside the virtual quadrilateral, the spurious modes
can be suppressed. However, this approach is generally not practical: unless the stress particle is
far from the centre of the quadrilateral, the discrete equations will be nearly singular.
As shown in Figures 15(b) and 15(c), the stability of the star-shaped pattern is almost identical

to that with the stress points located at the centre of virtual triangle generated on a rectangular grid
of nodes. However, with the star-shaped pattern the mesh is symmetric and the sti�ness matrix
is symmetric about the evaluation point. For the hexagonal pattern, Figure 15(d), there are no
spurious modes. The frequency–wave number relations for �=0 and 90◦ di�er since the nodal
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Figure 14. Frequency-wave number relations in anti-plane wave with EFG cell integration: (a) one-point cell
quadrature; and (b) 2× 2 cell quadrature.

distributions di�er in the x- and y-direction. It can also be seen that the drop in the frequency near
the cut-o� point is less than for other cases, so the higher frequencies will be more accurate. This
indicates that hexagonal arrangements of particles with stress points within each virtual triangle
are best from the viewpoints of accuracy and stability due to rank de�ciency.

5. STABLE TIME STEP FOR MESHLESS METHODS

The stable critical time step for central di�erence integration can be obtained from the maximum
frequencies based on the dispersion relations using (see e.g. [29])

�tcrit = max
i

2
!i
(
√
�2i + 1− �i) (120)

where !i is the frequency and �i the fraction of critical damping in this mode.
For non-uniform arrangements of the particles, the critical time step can be obtained by the

eigenvalue inequality. This theorem states that if

K=
Ne∑
e=1

Ke=
Ne∑
e=1

NQ∑
Q=1

KQe (121)

M=
Ne∑
e=1

Me =
Ne∑
e=1

NQ∑
Q=1

MQ
e (122)

where Ne is the number of elements or cells, NQ is the number of quadrature points in each cell
or element, KQe and M

Q
e are the sti�ness and mass matrices at quadrature point Q in cell e, then

min
e

(
min
Q
�Qmin

)
6�Gmin6�

G
max6max

e

(
max
Q
�Qmax

)
(123)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1359–1400



UNIFIED STABILITY ANALYSIS OF MESHLESS PARTICLE METHODS 1385

Figure 15. Frequency–wave number relations for anti-plane wave with EFG stress point integration and
SPH with stress points: (a) stress point at centre of quadrilateral; (b) stress point at centre of triangle;

(c) star-shaped pattern; and (d) hexagonal pattern.

where �Qmin ; �
Q
max are the minimum and maximum eigenvalues at quadrature point Q and �Gmin, �

G
max

are the extremal eigenvalues of the assembled system. Therefore, a conservative estimate of the
critical time step for the central di�erence method is

�tcrit =
2
!Gmax

=
2√
�Gmax

= min
e

2

(maxQ �
Q
max)1=2

(124)

5.1. Maximum eigenvalue bound of one-dimensional EFG

In any quadrature scheme, the sti�ness and mass matrices in one dimension are

K=
∑
Q
K(xQ)=

∑
Q
KQ; M=

∑
Q
M(xQ)=

∑
Q
MQ (125)
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Figure 16. Spurious modes in the discrete wave equation: (a) ��x= �
at �=0◦; and (b) ��x=

√
2� at �=45◦.

where

KQ =wQEJ�T; x(xQ)�; x(xQ) (126)

MQ =wQ�J�T(xQ)�(xQ); J =
hc
2

(127)

In the above xQ; wQ are the co-ordinate and the weight of the quadrature point, respectively, and
hc is the length of the cell. Since �; x is a vector, KQ is a matrix of rank 1 at most. Therefore,
the following eigenproblem has at most one non-zero eigenvalue,

KQvQ − �QMQvQ =0 (128)

Writing out (126) and (127) gives

KQ =wQEJ



�1; x�1; x �1; x�2; x · · · �1; x�N; x
�2; x�1; x �2; x�2; x · · · �2; x�N; x

...
...

...

�N;x�1; x �N; x�2; x · · · �N;x�N; x


 (129)

MQ =wQ�J



�1�1 �1�2 · · · �1�N
�2�1 �2�2 · · · �2�N
...

...
...

�N�1 �N�2 · · · �N�N


 (130)
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where �I , I =1 to N , are the shape functions which are non-zero at xQ. If the mass matrix is
diagonalized by the row sum technique, the lumped mass matrix is

MQ
lump =wQ�J



�1

�2
. . .

�N


 (131)

Obviously, the only non-zero eigenvalue of (128) with the above lumped mass is

�Q = c2
N∑
I=1

�2I; x(xQ)
�I (xQ)

(132)

and the corresponding eigenvector is

vQ=
[
�1; x
�1

�2; x
�2

· · · �N;x
�N

]T
xQ

(133)

where c is the wave velocity, c=
√
E=�.

For uniformly spaced particle, the shape functions can be expressed in terms of the weight
as [37]

�I (x)=�xWI (x) (134)

Note that the above holds for both SPH and an approximation based on MLS, such as EFG, since
the SPH does not require a correction for linear completeness for uniformly spaced particles in
the absence of a boundary. The derivative is then given by

�I; x(x) + �xWI; x(x) (135)

For uniformly distributed particles, we have

�Q6c2
N
2
0:2587× 48�x

h3

where h is the size of the support. Since N ≈ 2h=�x, we �nally have

�Q6�
c2

h2
; �=12:42 (136)

By the generalized element eigenvalue inequality, the above is an upper bound on the maximum
eigenvalue of the system, i.e.

�Gmax6max
cell

(
max
Q
�Q
)
6�

c2

h2
(137)

Since the support h is determined by the dilation parameter (h=Dmax�x), the upper bound in
the above changes with support size for a given arrangement of particles. By comparison, the
corresponding maximum eigenvalue for linear displacement �nite elements is

�FEMmax =
4c2

�x2
(138)
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Table II. Maximum eigenvalues for uniformly spaced
particles based on Fourier analysis.

Particle method Normalized �max

Nodal integration with both kernels 1.0
Stress points with Eulerian kernel 4.0
Stress points with Lagrangian kernel 2.0

Figure 17. Maximal eigenvalues of a one-dimensional bar with EFG: (a) number
of nodes: 41; and (b) number of nodes: 101.

Also from the Fourier analysis in the previous section, we have maximum eigenvalues for some
particle discretizations with uniformly spaced particles; see Table II where the initial stress is zero,
Dmx =1:5 and the maximum eigenvalues are normalized by c2=�x2 or c2=�X 2. To compare this
result with an exact eigenvalue, we discretize a bar with length of 1 by 41 or 101 nodes with
uniform spacing. For simplicity, the material constants are E=1, �=1. Two Gauss quadrature
points are used in each cell. Figure 17 shows the maximal eigenvalues with respect to Dmax. From
the �gures we see that the maximum eigenvalues are always bounded by the values given by
Equation (137). The ratio of the eigenvalue estimate (137) to the numerical eigenvalue approaches
1.1 as the domain of in
uence increases.

5.2. Maximum eigenvalue bound of two-dimensional EFG

In a two-dimensional wave problem, the lumped mass matrix at quadrature point Q is

MQ
lump =wQJQ



�1

�2
. . .

�N


 (139)
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and the sti�ness matrix is

KQ =wQJQc2



�1; x�1; x + �1; y�1; y · · · �1; x�N; x + �1; y�N;y
�2; x�1; x + �2; y�1; y · · · �2; x�N; x + �2; y�N;y

...
...

�N;x�1; x + �N;y�1; y · · · �N;x�N; x + �N;y�N;y


 (140)

We note that the sti�ness matrix KQ is of rank 2 so there are only two non-zero eigenvalues.
If the nodes are uniformly distributed in both x- and y-direction and the shape functions are

symmetric (provided the weight function is symmetric), we have

N∑
I=1
�I; x�I; y =0 (141)

The two eigenvalues and corresponding eigenvectors associated with KQ and MQ
lump are

�Q1 = c
2
N∑
I=1

�2I; x(xQ)
�I (xQ)

; vQ1 =
[
�1; x
�1

�2; x
�2

· · · �N;x
�N

]T
xQ

(142)

�Q2 = c
2
N∑
I=1

�2I;y(xQ)

�I (xQ)
; vQ2 =

[
�1;y
�1

�2;y
�2

· · · �N;y
�N

]T
xQ

(143)

Therefore the eigenvalues for the discrete equation are bounded by

�Q6max(�Q1 ; �
Q
2 )= c

2 max

(
N∑
I=1

�2I; x
�I
;
N∑
I=1

�2I; y
�I

)
(144)

If cubic spline function is used as the weight function and the nodal spacings in the x- and
y-direction are equal, we have [37]

N∑
I=1

�2I; x
�I

=
N∑
I=1

�2I; y
�I
≈ �1
h2
; �1 = 13:30 (145)

Then the upper bound for the eigenvalues is

�Q6�1
c2

h2
(146)

For more general cases where other types of weight functions are used, we numerically obtain
an empirical relation for the summation in the upper bound. For example, in this problem we
have [37]

N∑
I=1

�2I; x
�I

=
N∑
I=1

�2I; y
�I
≈ �2
h2
; �2 = 15:00 (147)
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Figure 18. Maximal eigenvalues of two-dimensional wave equation with EFG: (a) upper bound given by
Equation (146); and (b) upper bound given by Equation (149).

Then another upper bound for the wave equation is

�Q6�2
c2

h2
(148)

To examine this estimate we consider a numerical example on a square with width of 1.
A total number of 21×21=441 nodes are uniformly distributed within the square. A cell structure
which is coincident with the nodes is used and 2 × 2 quadrature is used in each cell. Figure 18
shows the maximal eigenvalues for the wave equation. Equation (146) gives better upper bound
for small Dmax but the analytical eigenvalues are less than the numerical ones for Dmax¿3:5. The
eigenvalues given by Equation (148) are larger than the numerical ones except for Dmax = 5:0.

6. NUMERICAL EXAMPLES

6.1. Taylor bar impact

The �rst example is the Taylor bar problem, in which a cylindrical bar impacts a rigid surface, as
shown in Figure 19(a). The radius of the cylinder is 3.2 mm and its height is 32.4 mm. The initial
velocity of the cylinder is 227 m=s. Von Mises J2 
ow theory with linear isotropic hardening is
applied for the computation. The material constants are given as �=8930 kg=m3, E=117 GPa,
�=0:35, Ep = 100 MPa, �Y =400 MPa.
Since the problem is axisymmetric, axisymmetry formulation of the governing equations is used

and only half of the cylinder is discretized with uniformly distributed particles (see Figure 19(b),
where the �lled circles indicate boundary nodes). It should be noted that the particles are not
placed on the boundary lines.
Two meshless methods, EFG with full cell integration and nodal integration with stress points,

are used to solve the problem. The response is computed to 80 �s. In EFG with cell integration,
the cell structure is coincident with the nodes and 2 × 2 quadrature rule is used in each cell.
The problem is solved with 20 × 50 nodes and a time step �t=0:005 �s. So 20 × 200 parti-
cles are used for stress point integration. The stress points can be located either at the centre
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Plate 1. Deformed shape and equivalent plastic strain of a Taylor bar with EFG stress points: 
(a) 20 µsec; (b) 40 µsec; (c) 60 µsec; and (d) 80 µsec.
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Plate 2. Crack propagation in a finite plate: (a) t = 15 (µsec); (b) t = 30 (µsec); (c) t = 45 (µsec); and (d) t = 60 (µsec). 

Copyright © 2000 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng. 2000; 48

Plate 3. Damage zone in a disk (t = 1.0 msec)
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Figure 19. Normal impact of a Taylor bar with particle method: (a) schematic model; and (b) particle
discretization.

Figure 20. Time history of the radius and height of a Taylor bar: (a) radius at impact surface; and (b) height
of the bar.

of quadrilateral or centre of triangle; both implementations yield almost identical results. The re-
sults shown here are obtained with the stress points at the centre of quadrilateral. The time step
is �t=0:005 �s. The parameter for the domain of in
uence for these meshless methods is the
same, Dmx =2:0.
The time histories of the radius at the contacting surface and the height of the bar are given in

Figure 20. The results at t=80 �s are compared with the solution of Hallquist [38] computed by
DYNA3D. The radius at the impact plane is 7.13 mm by the full cell integration and 6.98 mm
by the stress point integration (DYNA3D: 7.03 mm). The height of the bar is 21.46 mm by both
cell integration and stress point integration (DYNA3D: 21.47 mm).
The deformed shape of the bar and the contour plot of the equivalent plastic strain at four

di�erent times are shown in Plate 1. The maximum of the equivalent plastic strain is 3.33 by
the cell integration and 3.18 by the stress point integration (DYNA3D: 2.96). The meshless
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Figure 21. Fluid–structure interaction: (a) schematic model; and (b) computational model.

Table III. Material parameters for structure–
uid interaction.

Structure: steel Fluid: water, compressible and inviscid
�=7:8 g=cm3

E=2:3297× 1012 dyn=cm2
�=0:35
�Y =2:606× 109 dyn=cm2
Ep=2:144× 1010 dyn=cm2

�=1:0 g=cm3

B=2:0× 1010 dyn=cm2

=7

methods yield larger maximal equivalent plastic strain than �nite elements, but the discrepancy is
small.

6.2. Fluid-structure impact

The second example is the impact of a circular cylinder into a quiescent pool of water and is
designed to simulate the laboratory experiments [39]. The cylindrical shell is supported by clamps
over the entire length of the cylinder and is su�ciently long to ensure two-dimensional behaviour.
The structure and 
uid are shown in Figure 21(a) where R=10:48 cm and t=0:08636 cm.
Due to symmetry only half of the model is simulated. The shell structure is modelled with 25

two-node linear beam elements clamped at the saddle support, as shown in Figure 21(b). The
velocity of the structure is prescribed as an initial condition for all nodes and the velocity of the
top node is set to the constant driving velocity for the rest of the simulation. The 
uid is simulated
with 3715 particles and the area of the 
uid is 800 cm× 800 cm. The particles are denser around
the impacted area and gradually become coarser. The EFG method with stress point integration
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Figure 22. Circumferential strains in shell for 162 cm=s impact: (a) �=0◦; (b) �=20◦; (c) �=40◦;
(d) �=60◦; (e) �=90◦; and (f) �=120◦.
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Figure 23. Shape of shell and free surface of 
uid for 162 cm=s impact.

is used with the dilation parameter Dmx =2:0 and the stress points located at the center of each
triangle (see Figure 12(b)). The total Lagrangian formulation is used.
The material of the shell structure is steel which is simpli�ed to linear isotropic hardening

elastoplastic material. The water is modelled as inviscid compressible 
uid and the equation of
state is [40]

p=
B



[(
�
�0

)

− 1
]

(149)

The material parameters are given in Table III.
The interaction between the shell structure and the 
uid is handled by the pinball contact

algorithm [41; 42]. In the 
uid, the top layer of particles are selected as pinballs (�lled circles in
Figure 21(b)). For the structure, each beam element is transformed into a pinball which is always
located at the centre of the beam.
The problem is solved with the driving velocity v0 prescribed as 162 and 369 cm=s. In the

former case the shell structure will stay elastic while in the latter case the structure will undergo
plastic deformation. The time step is �xed; it is 0:1 �s for low driving speed and 0:05 �s for high
impact speed. The computed circumferential strains at several locations in the shell are compared
with the experiment given in Reference [39].
Figure 22 shows the computed strains for the 162 cm=s impact, from which we see that these

results agree adequately well with the experimental data. At �=0; 20 and 120◦, the external
surface of the shell is in compression and the internal surface is in tension while at locations
�=60 and 90◦, the external surface is in tension. The interesting place is at �=40◦ where
the circumferential strains on external and internal surfaces change signs with the increase of
time. The largest discrepance occurs at �=40◦, where the computed external and internal strains
alternate between compression and tension and the maximum strains occur much earlier than in the
experiment. The strains at locations other than �=40◦ become smaller with the time approaching
20 ms, indicating the shell starts to bounce back.
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Figure 24. Circumferential strains in shell for 369 cm=s impact: (a) �=0◦; (b) �=20◦; (c) �=40◦;
(d) �=60◦; (e) �=90◦; and (f) �=120◦.
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Figure 25. Shape of shell and free surface of 
uid for 369 cm=s impact.

Figure 26. Velocity of 
uid particles for 162 cm=s impact: (a) t=10 ms; and (b) t=15 ms.

Figure 23 shows the deformed shape of structure and free surface of 
uid at various times. Since
these lines are drawn from the positions of the particles or nodes, they do not contact directly
with each other. The displacement at the bottom point of the shell in the last two time intervals
are larger than the �rst two, signalling the bouncing back of the shell. This is consistent with the
strain pro�les.
The computed strains for the 369 cm=s impact are shown in Figure 24. Since the experimental

records are available only for �=0 and 90◦, the comparison between the experiment and compu-
tation is given for these locations. For this higher impact velocity, the agreement is not as good as
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Figure 27. Velocity of 
uid particles for 369 cm=s impact: (a) t=10 ms; (b) t=15 ms.

for the lower velocity, and in fact the pronounced drop in strain at about 6 ms at �=0◦ (Figure
24(a)) is not accurately captured by the computation though there is a drop in computed strains
at 4 ms. It can be seen that the strains at locations �=0 and 90◦ change to plastic.
The pro�les of the shell and the free surfaces of the 
uid are shown in Figure 25 where we can

see signi�cant deformation of the shell structure. The velocities of the 
uid particles are shown in
Figures 26 and 27.

6.3. Damage model

We will use a damage model introduced by Kachanov [43] and developed by Lemaitre [44] for an
isotropic linear elastic virgin material to calculate the damage zone propagation in both the plate
with a crack and the disk.
The behaviour for a given state of damage is described by

�ij =(1− D)Cijkl�kl (150)

where D is damage variable which is scalar and its value is in the domain [0; 1]. The damage
evolution law used as

D(�̃)= 1− �D0 (1− At)
�̃

− At
exp[Bt(�̃− �D0 )]

(151)

where �D0 is the initial damage threshold strain, and At; Bt are characteristic parameters of the
material. �̃ is the non-local value of the equivalent strain which is de�ned as

�̃=
√∑

i
〈�i〉2+ (152)

〈�i〉+ is positive part of the principal strain �i.
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The �rst case is a �nite plate containing a horizontal crack emanating from the edge with the
crack tip centred in the plate. The length and width of the plate are 0.1 and 0.04 m. There are
tensile tractions (�=1:0Mpa) on the two sides of the plate. The material constants are given
as �=2450 kg=m3, E=32 GPa, �=0:2, �D0 = 8:5×10−5, At =1:0 and Bt =7300. To solve this
problem, we use EFG Lagrangian kernel.
We de�ne the crack as where the damage variable is equal to 1. So, the damage zone evolution,

which is shown in Plate 2, is the crack propagation. In Plate 2(c) and (d), there is a branching
for the crack propagation. We think it is because the stress waves are re
ected by the boundary
and they interact with each other.
The second case is a disk whose radius is 0.2 m and there is a hole whose radius is 0.08 m.

An initial radial velocity is prescribed along the hole. The material constants are given as
�=5000 kg=m3, E=1:0 GPa, �=0:2, �D0 = 1:7×10−3, At =1:0 and Bt =2600.
Plate 3 is the damage zone of the disk at time t=1:0ms. At the beginning, there is a compressive

wave which propagates radially outward. The compressive wave is re
ected by the boundary as
a tensile wave. The interaction of the tensile and compressive waves results in a damage zone
which travels radially outward.

7. CONCLUSIONS

A stability analysis of meshless particle methods was performed. The stability properties of EFG
and SPH with Eulerian and Lagrangian kernels under di�erent quadrature schemes were investi-
gated using Fourier analysis. The stability of the least-squares stabilization proposed by Beissel
and Belystchko [25] was also studied.
We have shown that in a plane-wave one-dimensional analysis, three types of instability occur

in the particle methods:

(i) An instability which occurs due to rank de�ciency of the discretization of the divergence
and makes the equilibrium equations singular; this occurs regardless of the value of the
stress.

(ii) A tensile instability which occurs when the stress is tensile and the second derivative of
the kernel large enough.

(iii) An instability under compressive stress; this instability also occurs in the continuum equa-
tions so the discretization’s capability to mimic this instability is desirable.

Several �ndings are note worthy:

(i) The tensile instability can be eliminated by using a Lagrangian kernel, i.e. by letting the
kernel be a function of the material (Lagrangian) co-ordinates.

(ii) Even in one dimension, stress points do not eliminate the tensile instability for Eulerian
kernels, and they fail to eliminate the instability due to rank de�ciency for large dilations.

(iii) The least-squares stabilization by Beissel and Belystchko [25] suppresses the aliasing in-
stabilities for small to moderate dilations but fails for large dilations.

In two dimensions, our studies were limited to anti-plane motion. The studies indicate that
stress point stabilization is quite delicate in two-dimensional discretizations. For the straightforward
scheme where stress points are placed at the centre of virtual quadrilateral generated by the initial
positions of the particles, the rank de�ciency instability persists. For adequate stabilization of this
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spurious mode, stress points must be placed in virtual triangles generated by particle positions, i.e.
the density of the stress points must be greater than that resulting from virtual quadrilaterals. The
implications of this �nding to three-dimensional stress point stabilization require further study.
From the above conclusions, it appears that the best approach to stable particle discretizations

of solids and 
uids is to use Lagrangian kernels with stress points. Even in the absence of stress
points, Lagrangian kernels eliminate the tensile instability. With careful placement of stress points,
instabilities can be avoided in multi-dimensional problems.
Eulerian kernels with stress points can also be used, but judiciously. The stress required for the

onset of tensile instability is increased by stress points, and in most solids this level of tensile stress
is su�cient for fracture. Thus, if a reasonable constitutive equation is used, the tensile instability
can be avoided. However, care must be taken in 
uids, for as shown in this paper, even with
stress point stabilization, the aliasing mode can occur in Eulerian kernels if the dilation becomes
large.
Estimates for the stable time step for central di�erence time integration were also presented.

For uniformly spaced particles the maximum frequency obtained from the Fourier analysis can be
used to evaluate the critical time step. For arbitrary spacing, the eigenvalue inequalities yield a
conservative estimate on the upper bound of the maximal eigenvalue. Closed-form expressions of
the upper bounds for one- and two-dimensional EFG were obtained.
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