
Advances in Computational Mathematics (2005) 23: 171–190  Springer 2005

Material stability analysis of particle methods
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Material instabilities are precursors to phenomena such as shear bands and fracture. There-
fore, numerical methods that are intended for failure simulation need to reproduce the onset of
material instabilities with reasonable fidelity. Here the effectiveness of particle discretizations
in reproducing of the onset of material instabilities is analyzed in two dimensions. For this
purpose, a simplified hyperelastic law and a Blatz–Ko material are used. It is shown that the
Eulerian kernels used in smooth particle hydrodynamics severely distort the domain of mate-
rial stability, so that material instabilities can occur in stress states that should be stable. In
particular, for the uniaxial case, material instabilities occur at much lower stresses, which is
often called the tensile instability. On the other hand, for Lagrangian kernels, the domain of
material stability is reproduced very well. We also show that particle methods without stress
points exhibit instabilities due to rank deficiency of the discrete equations.
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1. Introduction

Particle methods are a class of meshfree methods. The original particle meth-
ods was based on kernel approximations [20]. In some cases, as shown by Belytschko
et al. [4], kernel methods are closely related to the mesh-free methods that are based
on field approximations. However, the kernel approximations used in particle methods
are somewhat inaccurate because they cannot exactly reproduce linear functions. With
corrected derivative methods, as developed by Randles and Libersky [23] and Krongauz
and Belytschko [17], the kernel approximations are corrected so that they can reproduce
derivatives of linear functions exactly. Alternatively, Liu et al. [18] has developed correc-
tion functions that enable particle methods to reproduce linear functions exactly; these
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corrected particle methods are identical to the moving least square (MLS) approximation
with a linear basis as used in the element-free Galerkin (EFG) methods [6].

Material instabilities occur in nonassociative plasticity and softening materials
where stress decreases with increasing strain. The literature on material instability goes
back at least as far as Hadamard [13] who examined the question of what happens when
the tangent modulus is negative. He identified the conditions for a vanishing propagation
speed of an acceleration wave as a material instability. In 1962, Hill [14] made a general
analysis of acceleration waves and stability. Other relevant works are [25,26].

Material instability is usually associated with a localized growth of the deforma-
tion, called localization. It corresponds to the phenomena that are observed in nature
where narrow bands of intense deformation occur in failure processes. These are often
called shear bands, since the deformation mode in these bands is usually shear [15,19].

Material instability in equilibrium problems is associated with loss of ellipticity of
the incremental equations of equilibrium. As shown in [21], loss of ellipticity will always
occur when the tangent modulus loses positive definiteness, but can occur even for a
positive definite tangent modulus. In the dynamic equations, tangent moduli that violate
ellipticity conditions lead to loss of hyperbolicity, so that three real positive wavespeeds
no longer occur in every direction. This is also indicative of a material instability.

In addition to material instability, particle methods have their own numerical in-
stability [3,7]. For nodal quadrature as proposed by Beissel and Belytschko [2], where
integrals are evaluated by summing the function at the nodes, there is an additional in-
stability due to rank deficiency of the discretization of the divergence of the stress. This
is also found in underintegrated finite elements: in quadrilateral elements, these spurious
modes are called hourglass modes. Rank deficiency leads to singular discrete equilib-
rium equations and occurs regardless of the state of stress. Stabilization schemes can be
developed for rank deficiency, as in finite element, see [12]. One approach to stabiliza-
tion is to use additional quadrature points called stress points or slave points as proposed
by Dyka et al. [10,11]. With a proper arrangement of particles, stress points can elimi-
nate the instability due to the rank deficiency. However, the material instability cannot,
and should not be eliminated.

Kernels used in particle methods can be classified as Lagrangian and Eulerian. La-
grangian kernels are functions of the material (or Lagrangian) coordinates and Eulerian
kernels are functions of the spatial (or Eulerian) coordinates. In 1D we have found that
Eulerian kernels do not reproduce the material instability accurately [7]. In fact, the well
known tensile instability [27] is a manifestation of error in the reproduction of material
instability by Eulerian kernels. The Lagrangian kernel, however, reproduces the onset
of material instability exactly in 1D. Randles et al. [24] investigated the stability of dual
particle dynamics and smooth particle dynamics. They found that linear completeness
led to stability; their conclusions differ from ours as discussed in section 9.

In this paper we examine how closely Lagrangian and Eulerian kernels reproduce
the onset of material instabilities in two dimensions. For this purpose, it is necessary to
choose a specific material law. Therefore, we have used a hyperelastic material, which
is similar to the Mooney–Rivlin material, and a Blatz–Ko material. Linearized stability
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theory is used. An infinite body is considered in a state of uniform initial stress and
deformation and the response to small perturbations is examined.

The outline of this paper is as follows: In section 2, we present our notation and
the basic equations; we also indicate why we can study an isotropic material by con-
sidering a diagonal deformation matrix. In section 3 a hyperelastic material similar to
a Mooney–Rivlin material is given. Then we obtain the domain of material stability for
this hyperelastic material based on a linearized stability analysis; this is the domain of
material stability of the governing partial differential equations (PDEs). In section 5,
stability analyses of particle methods with different integration methods and different
kernel functions are made for the hyperelastic material and the stable domains are com-
pared to that of the PDEs. The stable domain for the PDEs and for particle discretizations
for the Blatz–Ko material are developed in section 8. Section 9 gives conclusions.

2. Notation, basic principles and governing equations

To simplify the analysis, we show that for an isotropic material, it suffices to con-
sider a diagonal deformation gradient F for the initial state of deformation.

As shown in figure 1, we denote the material coordinates by X, the reference con-
figuration by �0, the spatial coordinates by x, and the current configuration by �. The
base vectors of a Cartesian system are denoted by ei , so X = Xiei . A motion is given
by the mapping x = x(X, t). The map must be one to one except on sets of measure
zero (e.g., fracture surfaces in 3D), where points can have multivalued motions to model
phenomena such as cracking.

The governing equation in the reference configuration is

ρ0ü = ∇0 · P, (1)

Figure 1. Deformed configurations.
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where ρ0 is the initial density, P is the nominal stress tensor, u is the displacement, ∇0

is the gradient with respect to the material coordinate X and the superposed dots denote
material time derivatives.

We will consider an initial, homogeneous state of deformation so the motion can be
written as x = FX, where the deformation gradient F is constant (we omit the constant
of translation). The right Cauchy–Green deformation tensor is C = FTF = UU. By
using a spectral decomposition, since C is a positive definite symmetric matrix, we can
find a rotation tensor R which can diagonalize C so that C∗ = RTCR = U∗U∗ is a
diagonal matrix where X∗ = RTX. If we let e∗

i = Rei , then in terms of the basis e∗
i

C∗ =



λ2
1 0 0

0 λ2
2 0

0 0 λ2
3


 , U∗ =




λ1 0 0
0 λ2 0
0 0 λ3


 (2)

and the corresponding deformation gradient is

F′ = ∂x
∂X∗ = ∂x

∂X
∂X
∂X∗ = FR. (3)

Using the polar decomposition F′ = QU∗, where Q is another rotation matrix
which relates x to x∗ by x = Qx∗, we arrive at the following

F∗ = ∂x∗

∂X∗ = ∂x∗

∂x
∂x
∂X

∂X
∂X∗ = QTFR = U∗ =




λ1 0 0
0 λ2 0
0 0 λ3


 . (4)

Thus, we can characterize the initial state of deformation by three stretches λi . We will
use this deformation gradient for the initial state of the body in the stability analysis,
although our analyses will be limited to two dimensions, so we will use only upper left
2 × 2 submatrix of (4).

3. Material model

An isotropic hyperelastic material [5] model is first considered here. Its potential
is given by

ψ = 1

2
c1I1 + 1

2
c2I2 −

[
3

2
c1I

1/3
3 + 3

2
c2I

2/3
3 − λ

4
(ln I3)

2

]
, (5)

where I1, I2 and I3 are the principal invariants of the right Cauchy–Green deformation
tensor C. This model is similar to the Mooney–Rivlin material except that the Mooney–
Rivlin material is incompressible, i.e. I3 = 1. We use this as a model material because
it develops material instability more readily than a Mooney–Rivlin material.

The first derivatives of the principal invariants are:

∂I1

∂C
= I,

∂I2

∂C
= I1I − CT,

∂I3

∂C
= I3C−T. (6)
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The second Piola–Kirchhoff stress tensor S is given by

S = 2
∂ψ

∂C
= (c1 + c2I1)I − c2C − (

c1I
1/3
3 + 2c2I

2/3
3 − λ ln I3

)
C−1. (7)

The tangent modulus tensor CSE, which is also called the second elasticity tensor,
relates the rate of the second Piola–Kirchhoff stress to the Green strain rate by Ṡ =
CSE : Ė. It is given by

CSE = 2
∂S(C)

∂C
= 2c2I ⊗ I − 2c2I − 2s0

∂C−1

∂C
− 2s1C−1 ⊗ C−1, (8)

where

s0 = c1I
1/3
3 + 2c2I

2/3
3 − λ ln I3 and s1 =

(
1

3
c1I

−2/3
3 + 4

3
c2I

−1/3
3 − λ

I3

)
I3.

Writing (8) in indicial form, the tangent modulus tensor is given by

CSE
ijkl = 2c2δij δkl − c2(δikδjl + δilδjk) + s0

(
C−1

ik C−1
j l + C−1

il C−1
jk

) − 2s1C
−1
ij C−1

kl . (9)

The spatial form of the second elasticity tensor is the fourth elasticity tensor Cτ

and it relates the convected rate of Kirchhoff stress to the rate-of-deformation, i.e. τ∇c =
Cτ : D. It is given by

Cτ
ijkl = FimFjnFkpFlqC

SE
mnpq. (10)

The relation between the Truesdell rate of the Cauchy stress and rate-of-deform-
ation is

σ∇T = J−1Cτ : D = CσT : D, (11)

where the Truesdell rate of Cauchy stress is given by

σ∇T = σ̇ + div(v)σ − L · σ − σ · LT (12)

and

σ = 1

J
F · S · FT, L = (∇v)T. (13)

4. Material stability analysis for continuum

A linearized stability analysis of an infinite slab of the material follows. Such
stability analysis are conventionally made since material behavior in this model problem
is generally relevant to arbitrarily shaped bodies in more complex states of stress. The
slab is initially at rest and in a state of uniform stress and strain. We will also call
this stability result the stability of the PDE, which is equivalent to the hyperbolicity of
the PDE.
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In a linearized stability analysis we investigate the stability of the slab to a pertur-
bation in the displacement. The perturbation can be expressed as x = x̄ + x̃ where x̃ is a
plane wave perturbation given by

x̃ = ũ = geiωt+iκn0·X; (14)

ω is the frequency and g is the polarization of the wave. The perturbed deformation
gradient is

F = F + ∂ũ
∂X

. (15)

In terms of the basis e∗
i the deformation gradient is

F∗ = QTFR = F
∗ + QT ∂ũ

∂X∗ =
[

λ1 0 0
0 λ2 0
0 0 λ3

]
+ ∂ũ∗

∂X∗ , (16)

where

ũ∗ = QTgeiωt+iκn0·X = g∗eiωt+iκn∗
0·X∗

. (17)

Since g∗ is an arbitrary vector in R3 we drop the asterisk and rewrite the perturbation as
ũ = geiωt+iκn0·X. The corresponding deformation gradient is

F =
[

λ1 0 0
0 λ2 0
0 0 λ3

]
+ ∂ũ

∂X
. (18)

The above can be used for the stability analysis for an isotropic continuum or for a
particle method on an isotropic mesh with an isotropic material.

If the perturbation of the nominal stress is written as P = P + P̃, the perturbed
equations of motion (1) can be written as:

ρ0
¨̃u = ∇0 · P̃. (19)

Here, the perturbed nominal stress is given in terms of the perturbed second Piola–
Kirchhoff stress and the perturbed deformation gradient as (see [5]):

P̃ij = S̃irF
T
rj + Sit F̃

T
tj = CSE

irklFakFjr F̃al + SilF̃j l

= (
CSE

iralFjrFka + Silδjk

)
F̃kl = CijklF̃kl, (20)

where the perturbed second Piola–Kirchhoff stress tensor is given in terms of F̃ by

S̃ij = CSE
ijklẼkl = CSE

ijklF
T
kaF̃al (21)

and

Cijkl = CSE
iralFjrFka + Silδjk. (22)
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The governing equation in terms of perturbed displacements can be obtained by
substituting (20) into (19):

ρ0
∂ũi

∂t2
= ∂P̃ji

∂Xj

= ∂

∂Xj

(
CjiklF̃kl

) = Cjikl

∂ũk

∂Xj∂Xl

. (23)

For simplicity, we now consider a two-dimensional body in plane strain. Therefore,
λ3 = 1 and u ∈ R2. The plane wave perturbation (14) can be written in two dimensions
as

ũ = geiωt+iκn0·X = {gx gy }Teiωt+iκ(Xn0
1+Yn0

2). (24)

Substituting (24) into (23) yields

ω2gi − κ2

ρ0
Cjikln

0
jn

0
l gk = 0 (25)

and the condition for a nontrivial solution of the above is that

det

[
ω2δik − κ2

ρ
Cjikln

0
jn

0
l

]
= det

[
ω2δik − κ2

ρ0
Aik

]
= 0, (26)

where

Aik = Cjikln
0
jn

0
l . (27)

The strong ellipticity condition can be expressed as

Cjikln
0
jn

0
l hihk > 0 ∀h and n0. (28)

If this condition is satisfied, the roots ω will be real and the continuum is stable; there are
also the hyperbolicity conditions for the time-dependent PDE. Because the deformation
gradient is a diagonal matrix, the right Cauchy–Green deformation tensor is

C = FT · F =
[
λ2

1 0
0 λ2

2

]
. (29)

Substituting (29) into (7) we obtain the second Piola–Kirchhoff stress S:

S = (c1 + c2I1)

[
1 0
0 1

]
− c2

[
λ2

1 0
0 λ2

2

]
− s0

[
λ−2

1 0
0 λ−2

2

]
, (30)

where I1 = λ2
1 + λ2

2 + 1 and I3 = λ2
1λ

2
2. The components of the second elasticity tensor

are then

CSE
1111 = 2s0 − 2s1

λ4
1

, CSE
2222 = 2s0 − 2s1

λ4
2

,

CSE
1122 = CSE

2211 = 2c2 − 2s1

λ2
1λ

2
2

, (31)

CSE
1212 = CSE

2121 = CSE
1221 = CSE

2112 = −c2 + s0

λ2
1λ

2
2

.

The effective tangent modulus tensor C will be given by equation (22).
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Figure 2. The stable domain of the PDE for material model in equation (5).

We consider the following material constants: c1 = 0.1256 MPa, c2 =
0.01012 MPa and λ = 10.12 MPa. In two dimensions, n1 = cos θ and n2 = sin θ

and θ represents the wave front direction, so the stable domain of the material is given
by (28) with A defined by

A11 = C1111 cos2 θ + C2112 sin2 θ,

A12 = C1122 cos θ sin θ + C2121 cos θ sin θ,

A21 = C2211 cos θ sin θ + C1212 cos θ sin θ,

A22 = C1221 cos2 θ + C2222 sin2 θ.

(32)

For a given deformation gradient

F =
[
λ1 0
0 λ2

]
,

if there exists ωI such that Im(ωI ) < 0 for any θ , the material will be unstable. The
stable domain for the material considered above is shown in figure 2. It can be seen that
the entire compressive domain (0 < λi � 1) is stable. However, for sufficiently large
extensional deformations, the material is unstable.

5. Particle methods

We now consider the stability of particle methods for the above hyperelastic ma-
terial (5). For this purpose we first give the discrete momentum equations for a particle
method. We will then examine two types of particle methods:

• Methods with a Lagrangian kernel, where the kernel (also called the smoothing func-
tion or weight function) is expressed in terms of the material (Lagrangian) coordi-
nates, i.e. w(X − XI ) [3,7].
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• Methods with an Eulerian kernel, where the kernel is expressed in term of the spatial
(Eulerian) coordinates, i.e. w(x(t) − xI (t)).

Note that the nodal coordinate in the Eulerian kernel depends on time, whereas in
a Lagrangian kernel it is fixed. The time dependence of this coordinate is almost always
ignored in the development of the discrete particle equations, and we also ignore it.

We will consider two approaches to discretizing the equations:

• Nodal integration, where the set of quadrature points consists of only the nodes (or
particles). This is equivalent to collocation with integration by parts as commonly
used in SPH [4,9,17].

• Stress point quadrature, in which additional quadrature points are added at the cen-
ters of the Delaunay triangulation of the particles. The idea was proposed by Dyka
et al. [10,11] and it has been applied and modified by Randles et al. [24]. Note that
Randles et al. only integrate on the stress points, whereas in the method we analyze
the set of quadrature points includes both the particles and the stress points.

In particle methods, the dependent variables are approximated by

uh
i (X, t) =

∑
J

wJ (X)uJ i, (33)

where the function

wJ (X) = w(X − XJ ) = W(X − XJ )∑
K W(X − XK)

(34)

is called the kernel function. In our analysis, we use a quartic spline weight function:

W(R) =



1 − 6

(
R

R0

)2

+ 8

(
R

R0

)3

− 3

(
R

R0

)4

, R � R0,

0, R > R0,

(35)

where R = ‖X − XJ ‖ and R0 is the support radius.
We will develop the equations by a Galerkin method. Particle methods often use

collocation discretizations, but the SPH methods use an integration by parts that makes
it almost equivalent to a Galerkin method. For a Lagrangian kernel, the weak form of
the linear momentum conservation equation is

∫
�0

δuiρ0üi d�0 =
∫

�0

δuiρ0bi d�0 −
∫

�0

∂(δui)

∂Xj

Pji d�0 +
∫

�0

δui t̄i d�0, (36)

where δui is the test function and t̄i is the boundary traction. By using the particle
approximation (33), the following discrete equations are obtained

mI üiI = f ext
iI − f int

iI , mI = ρ0V
0
I , (37)
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Figure 3. Square and hexagonal particle arrangements with the associated virtual elements.

where f ext
iI and f int

iI are the external and internal nodal forces, respectively, given by

f ext
iI =

∫
�0

ρ0wIbi d�0 +
∫

�t
0

wI t̄i d�0, (38)

f int
iI =

∫
�0

∂wI

∂Xj

(X)Pji d�0. (39)

Equation (39) can also be expressed in terms of the current domain and Cauchy stress σ

f int
iI =

∫
�

wI,xj
σ ji d�. (40)

Equation (40) is easily obtained from (39) by letting the reference domain be the current
domain; see [5].

For the purpose of making an analysis of the discrete equations for the particle
method feasible, a periodic arrangement of particles is selected. Figure 3 shows the two
particle arrangements that are studied here. One is a square arrangement and the other is
a hexagonal arrangement. When stress points are considered, they are inserted into the
center of virtual squares or triangles shown in figure 3. We call these elements “virtual”
since they are not explicitly needed in the discretization.

When nodal integration is used, the internal nodal forces, given by (39), are eval-
uated by taking the product of the integrand at the nodes with an associate volume V 0

I .
This gives

f int
iI =

∑
J

V 0
J

∂wI (XJ )

∂Xj

Pji(XJ ). (41)

Stress points are used only for the integration (39); the resulting internal forces for a
discretization with stress point are

f int
iI =

∑
J∈NM

V 0M
J

∂wI (XM
J )

∂Xj

Pji

(
XM

J

) +
∑
J∈NS

V 0S
J

∂wI (XS
J )

∂Xj

Pji

(
XS

J

)
, (42)
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where NM is the set of master particles and NS is the set of slave particles which con-
tribute to the master particle at XM

I . NS corresponds to the set of all slave particles for
which ‖XS

J − XM
I ‖ � R0, i.e. the slave particles that are within the domain of influence

of XM
I , and NM is defined similarly. The volumes V 0M

J and V 0S
J are computed from a

Voronoi diagram; we note that
nM∑
J

V 0M
J +

nS∑
J

V 0S
J = V 0. (43)

In the above, V 0 is the total initial volume and nM and nS are the number of master
particles and stress points in the model, respectively. Note that the volume for the master
particle I, V 0M

I , differs from the volume associated with its mass, V 0
I .

6. Stability analysis for nodal integration (standard particle method)

6.1. Lagrangian kernel

The discrete perturbed momentum equations for nodal integration with a La-
grangian kernel are obtained from (36) by considering perturbations in the displace-
ments. The perturbed momentum equation is given by

mI
¨̃ui(XI ) = −f̃ int

iI = −
∑
J∈N

V 0
J wI,j (XJ )P̃ji(XJ ), (44)

where P̃ij = CijklF̃kl and Cijkl is defined by (22). Substituting (22) into (44), we obtain

ω2
i = 1

mIgi

∑
J

[
V 0

J wI,j (XJ )Cjiklgk

∑
K

wK,l(XJ ) cos β

]
, (45)

where cos β = cos[κ(XK cos θ +YK sin θ)− κ(XI cos θ +YI sin θ)]. This is sometimes
called a dispersion equation since it gives the wave speed for a polarization g.

The material is stable if all frequencies are imaginary for any direction of the wave
front θ under a given deformation

F =
[
λ1 0
0 λ2

]
.

Due to the rank deficiency of the discretization, an instability, usually called a spurious
singular mode, occurs with nodal integration. For any given deformation, we always
can find a wave number for a specific angle θ so that the frequency vanishes. This corre-
sponds to the spurious singular mode. Even for a hexagonal arrangement of the particles,
nodal integration with a Lagrangian kernel still exhibits the spurious singular mode.

Figure 4 shows the displacement in a spurious singular mode for a hexagonal
arrangement of particles for θ = 0. The dashed line gives the hexagonal arrangement of
the particles; the solid line is the displacement along the line connecting the circles (par-
ticles); the triangles identify the displacements of the particles and the line marked by
these triangles is the Fourier mode. In a stable discretization, this mode would be associ-
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Figure 4. Spurious mode for the hexagonal arrangement on a single line of nodes; triangles identify the line
that corresponds to the values of u at the nodes marked by circles.

ated with a high frequency, usually the cutoff frequency in the model. However, because
of the rank deficiency, this mode is a zero-energy mode and its frequency vanishes.

6.2. Eulerian kernel

The Cauchy stress for the initial state is given by equation (13):

σ = 1

J
F · S · FT = 1

λ1λ2

[
S11λ

2
1 0

0 S22λ
2
2

]
(46)

and the governing equations are

ρüi = ∂σji

∂xj

. (47)

The discrete perturbed momentum equations are

mI
¨̃ui(xI ) = −f̃ int

iI = −
∑
J∈N

V 0
J

(
J̃wI,jσji + J w̃I,jσji + JwI,j σ̃ji

)
, (48)

where

J̃ (xJ ) = Jδst

∑
K

wK,i(xJ )ũs(xK),

w̃I,j (xJ ) = wI,ji(ũJ i − ũI i), (49)

σ̃ij (xJ ) = C
′
ijkl

∑
K

wK,l(xJ )ũk(xJ ).

The effective tangent modulus tensor C
′
ijkl is

C
′
ijkl = 1

2J

(
Cτ

ijkl + Cτ
ijlk

) − σij δkl + σilδjk + σjlδik, (50)

where Cτ
ijkl = FipFjqFksFltC

SE
pqst .
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Letting the current configuration be the reference configuration will give F = I,
σ = S and consequently that Cτ = CSE. Substituting (49) and (50) into (48) using the
perturbation of displacement given in (24), the dispersion equations for nodal integration
with an Eulerian kernel are

ω2
i = 1

mIgi

∑
J

VJ

{
wI,jC

′
jirlgr

∑
K

wK,l(xJ ) cos β

+ σjiwI,jgt

∑
K

wK,i(xJ ) cos β + σjiwI,j tgt [cos γ − 1]
}
, (51)

where

cos β = cos
[
κ(xK − xI ) cos θ + κ(yK − yI ) sin θ

]
,

cos γ = cos
[
κ(xJ − xI ) cos θ + κ(yJ − yI ) sin θ

]
.

(52)

With an Eulerian kernel, the spurious singular mode also occurs for any given de-
formation. In addition, another instability is present, for ω in some cases does not vanish
but has a negative imaginary part. This instability is related to the tensile instability. In
any case, there is no stable domain for a particle method with nodal integration and an
Eulerian kernel.

In summary, for nodal integration, both the Eulerian and Lagrangian kernels are
rank deficient for the nodal patterns in figure 3. Therefore, it is not possible to analyze
the onset of material instabilities. Similar results hold for SPH.

7. Stability analysis for stress point discretization

7.1. Lagrangian kernel

For stress point quadrature with a Lagrangian kernel, the discrete perturbed mo-
mentum equations are

mI
¨̃ui(Xm

I ) = −f̃ int
iI = −

∑
J∈NM

V 0M
J wI,j

(
XM

J

)
P̃ji

(
XM

J

) −
∑
J∈NS

V 0S
J wI,j

(
XS

J

)
P̃ji

(
XS

J

)
.

(53)
Using the same procedure as before the dispersion equations are:

ω2
i = 1

mIgi

∑
J∈NM

[
V 0

J wI,j

(
XM

J

)
Cjiklgk

∑
K

wK,l

(
XM

J

)
cos β

]

+ 1

mIgi

∑
J∈NS

[
V 0

J wI,j

(
XS

J

)
Cjiklgk

∑
K

wK,l

(
XS

J

)
cos β

]
. (54)

For the square particle arrangement we get the same instability due to rank deficiency
as with nodal integration in the direction θ = π/4. So the use of stress points cannot
eliminate the instability due to the rank deficiency for a square particle arrangement.
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Figure 5. Stable domain for MLS particle method with stress point integration and Lagrangian kernel
compared to the stable domain for the PDE.

For the hexagonal particle arrangement, stress points eliminate the spurious mode
and the only instability mirrors the material instability of the continuum, as shown in
figure 5. We call the stable domain as calculated for the partial differential equation the
“exact” stable domain for the PDE, even though it is obtained numerically. In previous
papers [7], we called it the stable domain for the continuum to distinguish it from the
stable domain for the discretization. Note that the two curves, for the particle discretiza-
tion and the PDE, at the scale shown are almost indistinguishable. The error between
the two as measured by [∑(λnum

i − λexact
i )2]1/2 is a maximum of 0.1%. Therefore, the

particle discretization with stress points reproduces the stable domain of the material
almost exactly.

Note that all states of deformation outside the shaded area in figure 5 are unstable,
which means that for any state in the unshaded domain, perturbations grow unboundedly.
Generally, any state beyond the boundary of the shaded domain cannot be reached in a
stable process, so the boundary of the shaded domain is the line that corresponds to
the onset of the instability. Nevertheless, it is interesting to observe that the material
instability occurs only in part of the tensile region.

7.2. Eulerian kernel

For an Eulerian kernel, the dispersion equations for stress point integration are:

ω2
i = 1

mIgi

∑
J∈NM

V M
J

[
wI,jC

′
jirlgr

∑
K

wK,l

(
xM

J

)
cos β

+ σjiwI,jgt

∑
K

wK,i

(
xM

J

)
cos β + σjiwI,j tgt (cos γ − 1)

]
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Figure 6. Stable domains of MLS particle methods for stress point integration with Eulerian kernel com-
pared to the stable domain of the PDE.

+ 1

mIgi

∑
J∈NS

V S
J

[
wI,jC

′
jirlgr

∑
K

wK,l

(
xS

J

)
cos β

+ σjiwI,jgt

∑
K

wK,i

(
xS

J

)
cos β + σjiwI,j tgt (cos γ − 1)

]
. (55)

For the hexagonal arrangement, stress points eliminate the instability due to the
rank deficiency for the Eulerian kernel also. Therefore, any remaining instabilities are
manifestations of a discrete material instability. However, as can be see in figure 6, the
domain of material stability is distorted to such a degree that we can only find a stable
domain in compression. The state of compression is stable for both the continuum and
the Lagrangian kernel, as shown in figure 6. Figure 7 shows the distribution of the
squares of the maximum frequency ω. In the domain of (0 < λ1 < 1)∩ (0 < λ2 < 1) all
squares of the frequencies are positive so this domain is stable. Note that by definition,
λi > 0 for a valid deformation.

8. Stability analysis for Blatz–Ko material

Now we consider a linearized stability analysis method for a Blatz–Ko material [8].
This elastic material is compressible, homogeneous and isotropic. The potential function
is

ψ(I1, I2, I3) = µ

2

(
I2J

−2 + 2J − 5
)
, (56)

where J = √
I3 and µ is a constant; we will use µ = 32 psi. The second Piola–Kirchhoff

stress and the second elasticity tensor can be obtained from the potential energy by (56):

S = 2
∂ψ

∂C
= µ

[
I−1

3 I1I − I−1
3 C − (

I2I
−1
3 − I

1/2
3

)
C−1

]
, (57)
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Figure 7. Distribution of frequency ω2 for particle method with stress points and Eulerian kernel.

CSE = 2
∂S
∂C

= 2µ
[
I−1

3 I ⊗ I − I−1
3 I1C−1 ⊗ I − I−1

3 I + I−1
3 C−1 ⊗ C

]

−
(

I−1
3 I1I − I−1

3 C − I2I
−1
3 C−1 − 1

2
I

1/2
3 C−1

)
⊗ C−1

− (
I2I

−1
3 − I

1/2
2

)∂C−1

∂C
. (58)

Knowles and Sternberg [16] obtained the stable domain for the Blatz–Ko mate-
rial by an analysis of the associated issue of ellipticity (i.e. loss of ellipticity which
corresponds to material instability in static (equilibrium) processes). The displacement
equations of equilibrium were found to be locally elliptic when the following inequalities
are satisfied:

γ <
λi

λj

<
1

γ
, i 
= j, γ = 2 − √

3 ∼= 0.268. (59)

The stable domain obtained by taking Knowles and Sternberg’s results and setting
λ3 = 1 is shown in figure 8 and corresponds to

γ < λ1 <
1

γ
, γ < λ2 <

1

γ
, γ <

λ1

λ2
<

1

γ
. (60)

However, they are based on a three-dimensional perturbation

ũ = geiωt+iκn0·X = {gx gy gz}Teiωt+iκ(Xn0
1+Yn0

2+Zn0
3). (61)
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Figure 8. Stable domain of Blatz–Ko material.

Figure 9. Frequency ω2 for λ1 = λ2 = λ.

In our analysis, the perturbations are two-dimensional, which leads to a different domain
of stability. The result is shown in figure 8 and corresponds to

γ <
λ1

λ2
<

1

γ
. (62)

In examining the stability of particle methods with Lagrangian and Eulerian kernels
for the Blatz–Ko material, only the hexagonal arrangement of particles with stress points
is considered here since we expect the square arrangement to be rank deficient; rank
deficiency is independent of the material model. These studies are restricted to 2D as in
the previous example. The stable domain from the particle method with the Lagrangian
kernel is identical to the 2D stable domain of the PDE. However, we found that the
frequencies are close to zero for states of large deformation, i.e. large λi . Figure 9
shows that the system is close to unstable when the deformations are large even when
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Figure 10. Stable domains for MLS particle methods with stress points for Eulerian and Lagrangian kernels.

a Lagrangian kernel is used. Figure 9 shows that the frequencies are closer to zero for
larger support size, Dmx = 2.5. This was also mentioned in [7].

Figure 10 compares the stable domains of the particle method for Eulerian and
Lagrangian kernels. It clearly shows that the Eulerian kernel severely distorts the domain
of material stability, particularly for tensile deformations.

9. Conclusion

Material instability is an essential feature of a material model, for it enables the
simulation of phenomena such as fracture and shear bands. As shown in [1], material in-
stabilities in rate independent materials result in a localization of the deformation to a set
of measure zero; similar behavior has been observed in multi-dimensions. In dynamics,
it corresponds to the loss of hyperbolicity.

Particle methods with nodal integration have two sources of instabilities: (1) nu-
merical instability due to rank deficiency of the discretization; (2) instabilities that cor-
respond to the material instability.

For nodal integration, both Eulerian and Lagrangian kernels are unstable. This
instability is primarily due to the rank deficiency of the discrete equations. Since particle
methods have been widely used, and they are all essentially of the “nodal” integration
form, this result is quite surprising. Most likely, these instabilities are ameliorated by the
viscosities that are commonly used. Very few rigorous studies of the accuracy have been
made, and high frequency error in numerical solutions has probably gone undetected.
Furthermore, it is possible that the instability in SPH is a saddle-point in a valley, so that
the growing oscillations transition the solution to a stable neighborhood.

For stress point schemes, particle methods in two dimensions are not rank deficient
for triangular node arrangements. It is then possible to study how well the domain of
material instability is reproduced by the particle methods. Unfortunately, the generality
of such studies is limited because a stability analysis pertains a specific material. We
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considered a hyperelastic material similar to the Mooney–Rivlin material and a Blatz–Ko
material. In both materials, the Eulerian kernel severely distort the domain of material
stability. This implies standard SPH methods would be very erroneous in predictions of
shear bands, void formation and tearing (cracking). On the other hand, the Lagrangian
kernel reproduces the domain of material stability with exceptional fidelity. This implies
that it would be much more suitable for modeling material failure phenomena.

Unfortunately, the nature of Lagrangian kernels impairs an intrinsic advantage of
particles methods: the ability to model very large distortions. Lagrangian kernels are
not able to treat flows of fluids and would likely fail for very large deformations of
solids [22]. However, we have found that Lagrangian kernels are quite effective for the
deformations found in many solid mechanics problems involving failure.

The results obtained by Randles et al. [24] differ from ours in that they conclude
that a particle method is stable when it is linear complete. The difference in conclusions
may arise from their assumption of a linear isotropic material response; we have consid-
ered a material that possesses an unstable domain. It is worth noting that most (if not all)
objective material models will posses domains of instability. It is also puzzling that their
analysis did not over reveal the instability due to rank deficiency. This requires further
study.
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