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Abstract

In this paper, we first study the material stability of nanostructured materials via the continuum linearized stability analysis technique
with the temperature-related Cauchy–Born (TCB) rule. As a temperature-related homogenization technique, the TCB rule considers the
free energy instead of the potential so that temperature effects on material stability can be investigated. In addition, we develop a thermo-
mechanical coupling model through implementing the thermal diffusion equation into nanoscale continuum approximation. Crack prop-
agation at a nanoplate is studied as an example. Since the nanoscale phenomenon of bond breaking is involved when crack propagates,
temperature increasing around the crack tip due to the released potential is considered in our thermo-mechanical coupling model.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Although molecular dynamics [1–3] has been widely
used to elucidate complex physical phenomena, it has lim-
itations on both length and time scales. The recently deve-
loped multiscale methods [4–7] provide an alternative
solution. Most multiscale methods at least contain a con-
tinuum model, in which the material properties are derived
from the subscale, such as the nanoscale, via the homoge-
nization technique. Consequently, the continuum approxi-
mation is used to approach a large group of atoms.
However, most multiscale methods assume that there is
zero temperature in the continuum model so that the stress
is calculated from the nanoscale potential. Such an
assumption results in difficultly studying temperature-
0927-0256/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.commatsci.2007.04.023

* Corresponding author. Tel.: +1 319 3356009; fax: +1 319 3355669.
E-mail address: shaoping-xiao@uiowa.edu (S. Xiao).
related physical phenomena, including material failure, at
the nanoscale via the continuum approximation. A temper-
ature-related homogenization technique [8,9] proposed by
Xiao and Yang provides one solution for the above issue.
In addition, it is possible to conduct temperature-depen-
dent material stability analysis and to develop a thermo-
mechanical coupling model for nanoscale continuum
approximation.

Material instability is always attractive to scientists and
researchers in the domains of materials science and solid
mechanics. Material instabilities usually occur in nonasso-
ciative plasticity and softening materials where stress
decreases with increasing strain. In the early work of
Hadamard [10], he identified the conditions for a vanishing
propagation speed of an acceleration wave as a material
instability when the tangent modulus is negative. Hill [11]
considered an infinite body of the material in a homoge-
neous state of stress and deformation and then applied a
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small perturbation to the body and obtained an expression
for its response. He concluded that if the perturbation
grew, the material was considered unstable; otherwise, it
was stable. Ogden [12] further showed that material insta-
bility in equilibrium problems was associated with loss of
ellipticity of the incremental equations of equilibrium. In
general, loss of ellipticity will always occur when the
tangent modulus loses positive-definiteness, although it is
possible to lose the ellipticity condition when the tangent
modulus is positive-defined.

Elliott and co-workers [13,14] have discussed the stabil-
ity theories of crystalline solids using multilattice kinemat-
ics. They classified three different stability criteria: the
phonon stability, the homogenized continuum (HC) stabil-
ity, and the Cauchy–Born (CB) stability. The phonon sta-
bility is defined in terms of the normal modes of atomic
vibration (phonons) in a crystal solid. It considers the larg-
est set of perturbations and indicates stability with respect
to bounded perturbations of all wavelengths at the atomic
scale. Therefore, the phonon stability is based on the nano-
scale point of view. As a difference from the phonon stabil-
ity, both the HC stability and the CB stability consider
material stability when the crystal solid is subject to a con-
tinuum-level deformation gradient. If a crystalline solid
containing a complex lattice, such as a Bravais multilattice,
is subject to a deformation gradient, its deformed configu-
ration cannot be represented by one basic nucleus and two
simple Bravais lattice vectors. Therefore, a shift vector,
called the inner displacement, must be introduced. The role
of the inner displacement in analyzing material stability
determines whether using the HC stability or the CB
stability.

If the inner displacement has insignificant effect on
material stability, the HC stability should be employed.
Indeed, the HC stability criterion indicates stability with
respect to all internally equilibrated ‘‘uniform’’ perturba-
tions at the macroscopic continuum scale. A ‘‘homogenized
continuum’’ energy density is defined as a function only of
the deformation gradient by eliminating the inner displace-
ments using energy minimization. The CB stability
provides an intermediate criterion by considering
perturbations at both the atomistic and continuum scales.
It indicates stability with respect to all ‘‘quasi-uniform’’
perturbations and includes HC stability as a special case.
In the CB stability, both the uniform deformation gradient
and the inner displacements are allowed to vary indepen-
dently. In this paper, we mainly consider the HC stability.
According to the HC stability, the crystal’s equilibrium
configuration is considered stable if the resulting elastic
moduli are positive definite with respect to all deformation
gradients. The HC stability criterion is identical to the
strong ellipticity condition and hyperbolicity condition
for the time-dependent PDE.

In numerical modeling and simulation, the temperature-
related homogenization technique can help to evaluate
stress at a local material point if the temperature profile
is prescribed. However, material failure is always related
to bond breaking at the nanoscale, in which the released
energy results in temperature increase in the surrounding
material during formation and propagation of cracks.
Therefore, a thermo-mechanical model must be developed
via coupling the energy equation with the momentum
equations in the nanoscale continuum approximation. In
this paper, we couple the thermal diffusion equation in
the nanoscale meshfree particle method [9,15]. The temper-
ature profile is updated via solving discrete equations of
thermal flow. Since locally thermal dynamic equilibrium
is assumed, the TCB rule is still valid for calculating stres-
ses for solving equations of motion. If crack nucleates and
propagates, the released energy due to bond breaking at the
nanoscale will be used to calculate the temperature incre-
ment in the continuum approximation.

This paper is outlined as follows. A new homogenization
technique, the TCB rule, is described in Section 2. Temper-
ature-related material stability analysis is performed in
Section 3 to demonstrate temperature effects on material
instability. In Section 4 a thermo-mechanical coupling
model is introduced in the nanoscale meshfree particle
method. Crack propagation in a nanoplate will be exam-
ined, followed by the conclusions.

2. Temperature-related Cauchy–Born rule

In order to investigate physical phenomena of the nano-
structured materials via the continuum approach, homoge-
nization techniques are expected to accurately extract the
intrinsic mechanical properties of the material from the
subscale, i.e., the nanoscale. The Cauchy–Born (CB) rule
[16,17] is a widely used homogenization technique for mod-
eling and simulating nanostructured materials. Using the
CB rule, the strain energy density is computed from the
potential at the nanoscale via the assumption of locally
homogeneous deformation. Then, a constitutive relation
can be derived and implemented into the continuum mod-
els in either hierarchical or concurrent multiscale methods.
The main drawback of the CB rule is that it does not con-
sider the temperature effects because the strain energy is
calculated at 0 K. It has been shown that if the temperature
effects on the mechanics of nanostructured materials are
not significant, the continuum approaches are fairly good
models compared with molecular mechanics simulations
[6]. However, some molecular dynamics simulations indi-
cated that temperature could reduce the strength of nano-
structured materials [3] and introduce damping in
nanodevices [2]. Therefore, a temperature-related homoge-
nization technique is needed in physical-based nanoscale
continuum approximations or multiscale modeling and
simulations.

Xiao and Yang [8] have developed the temperature-
related Cauchy–Born (TCB) rule, in which they considered
the Helmholtz free energy instead of the strain energy so
that the mechanics of nanostructured materials at finite
temperatures could be investigated. Using the TCB rule,
a temperature-dependent constitutive relation is derived as
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PðF; T Þ ¼ owH ðF; T Þ
oF

; ð1Þ

where wH is the free energy density, and P is the contin-
uum-level first Piola–Kirchhoff stress, which is a function
of the deformation gradient, F, and the temperature, T.
Eq. (1) can serve as the stress–strain relation that can be
implemented in most hierarchical and concurrent multi-
scale methods to investigate temperature-related physical
behaviors of nanostructured materials.

In the TCB rule, besides the assumption of locally homo-
geneous deformation, which is the same as in the conven-
tional CB rule, there are other assumptions, as follows:
(1) atoms have the same local vibration modes, (2) the
vibration of an atom is harmonic, and (3) coupled vibration
of different atoms is negligible. Generally, if a nanostruc-
tured material contains N atoms at a temperature field of
T(X), the total free energy, WH, when the material is subject
to the gradient deformation F(X) can be calculated as

W HðF; T Þ ¼
Z

wCðFÞdXþ njB
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where wC is the strain energy density, i.e., the potential den-
sity at the nanoscale; n is the number of degrees of freedom
per atom; jB is the Boltzmann constant; qn is the number of
atoms per unit volume; Nq is the number of quadrature
points in the continuum model; Ai is the volume associated
with one quadrature point, X q

i , which represents nq
i atoms;

and �h = h/2p, where h is Planck’s constant. D is the deter-
minant of the local dynamic matrix:

DIaJb ¼
1ffiffiffiffiffiffiffiffiffiffiffi

mImJ
p

o
2u

oxIaoxJb

� �
; ð3Þ

where u(x) is the potential energy of the atoms in their
equilibrium positions, xIa is the vibrational coordinate in
direction a for atom I, and mI is the mass of atom I. With
the assumption in which atoms have local harmonic vibra-
tions, the determinant of the local dynamic matrix can be
calculated via diagonalization as

DI ¼
Yn

j

xIj

 !2

; ð4Þ

where xj represents the principal frequencies of atom I and
eigenvalues of the dynamic matrix.

It should be noted that the first term on the RHS of Eq.
(2) was the continuum-level strain energy when tempera-
ture equaled zero. In the continuum model, the deforma-
tion gradient and the temperature are evaluated at each
quadrature point. With the TCB technique, all the bonds
and atoms in Ai are assumed to be at the same deformation
and the same temperature. Consequently, the strain energy
density, wC, and the dynamic matrix can be calculated
using the unit cell model for each quadrature point. The
verification of the TCB rule has been conducted by Xiao
and Yang [8,9].

3. Temperature-related stability analysis

With the implementation of the TCB rule, we study tem-
perature effects on material stability using a linearized
stability analysis technique [18]. This technique is equiva-
lent to what is often called a von Neumann stability
analysis, which is viewed as a standard stability analysis
of the continuum. Note that only the momentum equation
needs to be considered under a Lagrangian description, in
which the material coordinates X are employed. To derive
the linearized equation, we first assume that the perturba-
tion of displacements is in the form of a plane wave

~u ¼ geixtþijn0�X; ð5Þ

where the superposed � denotes the perturbation, u repre-
sents displacements, g is polarization of the wave, j is wave
number, x is frequency, t is time, and n0 is the normal
direction of the wave front with respect to the initial config-
uration. Consequently, the perturbation of deformation
gradients is written as

eF kl ¼
o~uk

oX l
¼ ijgkn0

l eixtþijn0�X: ð6Þ

Then, the perturbed governing equations are written as

q0
€~u ¼ rX � ePT; ð7Þ

where q0 is the initial density, the superposed dots denote
material time derivatives, and $X is the gradient with re-
spect to the material coordinate X. eP is the perturbed first
Piola–Kirchhoff stress tensor and it is calculated via the
TCB rule:

eP ¼ o
2wH ðF; T Þ

oFoF
� eF ¼ CðF; T Þ � eF or ~P ij ¼ Cijkl

~F kl; ð8Þ

where Cijkl ¼ o2wH ðF; T Þ=oF ijoF kl is the first tangential
stiffness tensor and the second derivative of the free energy
density with respect to the deformation gradient. Substitut-
ing Eqs. (5), (6) and (8) into Eq. (7) yields

�q0x
2gi þ j2Cjikln0

j n0
l gk ¼ 0: ð9Þ

The condition for a nontrivial solution of the above equa-
tions is

det x2dik �
j2

q0

Aik

� �
¼ 0; ð10Þ

where Aik ¼ Cjikln0
j n0

l is the acoustic tensor. Eq. (10) is also
taken as the characteristic equation for the continuum
medium, and the stability of the material depends on the
roots of this equation.

Generally, with a complex frequency, x = xR + ixI, the
perturbation of displacements can be rewritten as

~u ¼ geixtþijn0�X ¼ ge�xI teiðxRtþjn0�XÞ: ð11Þ
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The above perturbed solution consists of two parts: one is
the amplitude ðge�xI tÞ and the other is a constant wave
ðeiðxRtþjn0�XÞÞ. Obviously, the imaginary part of the complex
frequency, xI, governs the growth or decay of the perturba-
tion. If xI is negative at any direction of propagation, i.e.,
"n0, the amplitude of the perturbation grows with time and
the material becomes unstable. Otherwise, the material is
stable.

Therefore, the material stability criterion can be written
as

Cjikln0
j n0

l hihk > 0 8h and n0: ð12Þ

In other words, the positive-definiteness of the acoustic ten-
sor for all n0 is sufficient for material stability (the imagi-
nary part of the frequency x vanishes, i.e., xI = 0). Eq.
(12) is the strong ellipticity condition, which is identical
to the hyperbolicity condition for the time-dependent
PDE and the HC stability criterion.

We first investigate the stability of a 1D molecule chain
as an example. The Lennard-Jones 6–12 potential function
is employed to describe the interatomic interaction between
the nearest neighbored atoms:

uðlÞ ¼ 4e
1

4

l0

l

� �12

� 1

2

l0

l

� �6
" #

; ð13Þ

where l is the deformed bond length, l0 = 1 nm is the unde-
formed bond length, and e = 82.5 aJ is the depth of the
energy well. Each atom has a mass of 12 amu. Solving
the characteristic equation in Eq. (10) or employing
Eq. (12) results in the following stability criterion for the
considered molecule chain:

u00ðF Þ þ jBT
2

uð4ÞðF Þ
u00ðF Þ �

jBT
2

u000ðF Þ
u00ðF Þ

� �2

> 0: ð14Þ

The criterion of Eq. (14) is graphically demonstrated in
Fig. 1 when the molecule chain is subject to tension. We
consider various temperatures up to 3000 K. It can be seen
that when the temperature increases, the stable domain gets
smaller. For instance, if the molecular chain is subject to
Fig. 1. Stable domain of 1-D molecule chain.
9.5% strain, it becomes unstable when the temperature is
larger than 750 K. We also conduct molecular dynamics
simulations to verify the nanoscale continuum material sta-
bility analysis. A molecule chain containing 200 atoms is
simulated. We simulate a number of cases at various tensile
strains and temperatures. The Hoover thermostat [19] is
used to maintain the molecule chain at the prescribed tem-
perature. In each simulation, if the length of one bond is
larger than the cutoff distance, 2.0 nm here, of the
Lennard-Jones potential function, the molecule chain
becomes unstable and broken. At this point, the potential
of the molecule chain will be dramatically reduced.
Otherwise, the molecule chain is at the thermodynamic
equilibrium state, and it is stable. We use dots to represent
stable cases for the molecule chain subject to a certain
tensile strain at a given temperature in Fig. 1. We can see
that the molecular dynamics results support the linearized
stability analysis.

We next study the stability of 1-D molecular chains with
different spring rates. The same Lennard-Jones potential
function is employed as in Eq. (13). However, we vary
the depth of the energy well so that molecular chains have
different spring rates, i.e., stiffnesses. We consider three dif-
ferent depths of the energy well: 82.5 aJ, 41.25 aJ, and
8.25 aJ. It is evident that the potential function with a
larger energy well depth results in a stiffer molecule chain.
We first investigate stable domains of three molecule chains
without considering temperature effects. In other words,
the temperature is set as zero. In this case, the criterion
of Eq. (14) is simplified as

u00ðF Þ > 0: ð15Þ

We find that those three molecule chains have the same
stable domains, as shown in Fig. 2. To consider tempera-
ture effects, Eq. (14) is resolved to illustrate stable domains
of three molecule chains in Fig. 2. It is evident that a stiffer
molecule chain has a larger stable domain. We can also
conclude that the temperature effect is less significant for
a stiffer molecule chain.

We next consider a two-dimensional nanostructured
material with a square lattice. The Lennard-Jones potential
Fig. 2. Stability of 1-D molecule chains with different spring rates.
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in Eq. (13) is still used here to describe bonded interatomic
interactions. Using the TCB rule, the first tangential stiff-
ness tensor is calculated as

C ¼ o
2wC

oFoF
þ 1

A0

jBT

2D

o
2D

oFoF
� jBT

2D2

oD
oF
� oD

oF

� �
; ð16Þ
Fig. 4. The unit cell of a graphene sheet.
where wC and D are the potential density and the determi-
nant of the dynamical matrix calculated from a unit cell of
the square lattice, respectively. A0 is the area of this unit
cell. In the criterion of Eq. (12), n0

1 ¼ cos a, n0
2 ¼ sin a,

h1 = cosb, and h2 = sinb, where a and b are arbitrary an-
gles. If Eq. (12) is invalid for any angle, the material is
unstable. Here, we only consider the diagonal deformation

gradient, F ¼ k1 0
0 k2

� �
. The stable domains at various

temperatures are shown in Fig. 3. We can see that the entire
compressive domain (0 < ki < 1) is stable. However, for
sufficiently large extensional deformations, the material is
unstable. It is also evident that the stable domain is smaller
at a higher temperature, the same conclusion as in the
example of 1D molecule chains.

As a more practical example, we consider temperature
effects on the material stability of a graphene sheet. A
graphene sheet has a honeycomb multilattice, and the unit
cell is shown in Fig. 4. It should be noted that the honey-
comb multilattice is a Bravais multilattice, which has two
types of basic nuclei shown as black and white dots in
Fig. 4. Obviously, one basic nucleus and two simple Brav-
ais lattice vectors cannot represent the entire lattice when
the graphene sheet is subject to a homogeneous deforma-
tion. Therefore, the inner displacement, g, as a shift vector
must be introduced to define the relative displacement
between the two types of basic nuclei. Consequently, the
strain energy density is a function of inner displacements
and deformation gradients. In this paper, we neglect the
temperature effects on inner displacements since they are
in the internal equilibrium. Similar to the work by Tadmor
et al. [20], the inner displacement is calculated via the min-
imization of the strain energy density with respect to g for a
given deformation of the lattice, i.e.,
Fig. 3. Stable domains at various temperatures.
gðFÞ ¼ argðmin
g

wCðF; gÞÞ )
owCðF; gÞ

og

����
F

¼ 0: ð17Þ

In this example, we employ the modified Morse potential
function [1] to describe the interatomic interaction. The first
tangential stiffness tensor is calculated via the TCB rule as
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oFog

og
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2D2
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� jBT

2D2
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oF
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� ��1
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ogoF
;

ð18Þ

where A0 is the area of the unit cell. Then, the stability of a
graphene sheet can be determined via Eq. (12). During our
analyses, we find that if the graphene sheet is subject to
deformation on the direction of k1, shown in Fig. 4, the in-
ner displacement plays a significant role in the stability of
the graphene sheet. In this case, the CB criterion [13,14]
has to be applied. In this paper, we only conduct stability
analysis when the graphene sheet is subject to elongation
on the direction of k2, i.e., k1 = 1, because the effect of
the inner displacement can be neglected. It should be noted
that the k2 direction coincides to the axial direction of an
armchair carbon nanotube. Since size effects of large arm-
chair carbon nanotubes can be negligible [21], stability
analysis performed here can assist in the prediction of fail-
ure strains of armchair nanotubes, as shown in Fig. 5. It
can be seen that at the room temperature of 300 K, the fail-
ure strain is 13.5%. Taking the average secant Young’s
modulus [21] of 800 GPa for carbon nanotubes, the failure
stress of armchair tubes at room temperature is 108 GPa,
which is in good agreement with molecular dynamics sim-
ulation, 110 GPa [3].
4. Thermo-mechanical coupling model

To develop a thermo-mechanical coupling model in
nanoscale continuum simulations, the energy equation
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should be considered as well as the temperature-related
homogenization techniques. When assuming Fourier’s
law for heat conduction, the energy equation is

q�c _T ¼ rijvi;j þ kr2T þ S; ð19Þ

where q is the density, �c is the specific heat, T is the temper-
ature, r is the stress, v is the velocity, and k is the conduc-
tivity. If no internal heat source, S, exists and all
deformations are reversible, the energy equation is rewrit-
ten as the macroscopic diffusion model for temperature
profile.

In this paper, we mainly focus on nanoscale continuum
simulation via the nanoscale meshfree particle method
[9,15] to demonstrate the application of the proposed
thermo-mechanical coupling model. In a two-dimensional
problem subject to the Lagrangian description, the govern-
ing equations include the thermal diffusion equation and
the momentum conservation equation

q0cv
_T ¼ k

o
2T

oX 2
þ o

2T

oY 2

� �
; ð20Þ

q0€ui ¼
oP ji

oX j
þ q0bi; ð21Þ

where q0 is the initial density, cv is the specific heat capa-
city, k is the thermal conductivity, X is the material
(Lagrangian) coordinates, u is the displacement, P is the
first Piola–Kirchhoff stress tensor, b is the body force per
unit mass, and the superposed dots denote material time
derivatives. The weak forms in the reference configura-
tions, X0, are written as follows via the Galerkin method:Z

X0

dTq0
_T dX0 ¼ �

k
cv

Z
X0

oðdT Þ
oX

oT
oX
þ oðdT Þ

oY
oT
oY

� �
dX0;

ð22ÞZ
X0

duiq0€uidX0 ¼
Z

X0

duiq0bidX0 �
Z

X0

oðduiÞ
oX j

P ijdX0

þ
Z

C0

dui�tidC0; ð23Þ

where dT and du are the test functions, and �t is the pre-
scribed boundary traction along the boundary, C0. It
should be noted that the boundary term in Eq. (22) van-
ished due to the essential boundary condition requirement.

We employ the nanoscale meshfree particle method in
this paper to conduct nanoscale continuum simulations.
In meshfree particle methods [22], the fields of temperature
and displacements can be approximated as

T hðX; tÞ ¼
X

I

wIðXÞT IðtÞ; uhðX; tÞ ¼
X

I

wIðXÞuIðtÞ;

ð24Þ

where wI(X) are called Lagrangian kernels since they are
functions of the material (Lagrangian) coordinates. The
Lagrangian kernel functions can be obtained from the
weight function, i.e.,

wIðXÞ ¼ wðX� XIÞ ¼
W ðX� XIÞP
KW ðX� XKÞ

ð25Þ

in which a quartic spline weight function is used:

W ðRÞ ¼ 1� 6 R
R0

� 	2

þ 8 R
R0

� 	3

� 3 R
R0

� 	4

R 6 R0;

0 R > R0;

8<: ð26Þ

where R = kX � XJk and R0 is the support radius of the
influence domain.

Substituting Eq. (24) into the weak forms of Eqs. (22)
and (23), the following discrete equations of thermal flow
and motion can be obtained:

mI
_T I ¼ KIJ T J ; mI ¼ q0V 0

I ; ð27Þ
mI€uiI ¼ f ext

iI � f int
iI ; ð28Þ

where V 0
I is the volume associated with particle I, KIJ is the

conductivity tensor as

KIJ ¼ �
k
cv

Z
X0

owIðXÞ
oX

owJ ðXÞ
oX

þ owIðXÞ
oY

owJ ðXÞ
oY

� �
dX0;

ð29Þ

and f ext
iI and f int

iI are the external and internal nodal forces,
respectively, given by

f ext
iI ¼

Z
X0

q0wIbidX0 þ
Z

Ct
0

wI�tidC0; ð30Þ

f int
iI ¼

Z
X0

owIðX Þ
oX j

P jidX0: ð31Þ

In the above integrals of Eqs. (29)–(31), we utilize the stress
point integration scheme because the meshfree particle
method with Lagrangian kernels and stress points is a sta-
ble numerical method [22,23]. It should be noted that tem-
peratures might vary at different particles within thermal
flow. However, a locally thermodynamic equilibrium is as-
sumed so that the TCB rule is still valid to calculate stres-
ses. Since the calculated first Piola–Kirchhoff stress is
temperature-dependent, the internal forces computed in
Eq. (31) are also temperature-dependent.
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The flow chart of our simulation is as follows:

(a) Initialize the problem, including particle generation,
boundary/initial condition definition, and material
property identification.

(b) Solve the equations of thermal flow (Eq. (27)) and
update particle temperatures.

(c) Calculate stresses at the positions of particles via the
TCB rule, i.e., Eq. (1).

(d) Solve the equations of motion (Eq. (28)) and update
particle displacements.

(e) Go to step (b) if the target time is not reached.
(f) Output.

In this paper, we restudy the problem of crack propaga-
tion in a nanoplate with triangular lattices [8], as shown in
Fig. 6. As a difference from the one presented by Xiao and
Yang [8], the temperature field is not prescribed. We give
only an initial temperature, which is the room temperature
of 300 K. Then, the temperature profile will be determined
via solving Eq. (27) during the simulation. In this paper,
the simulated nanoplate consists of 513,922 atoms with
the following dimensions: the length of 1600 nm and the
width of 280 nm. Each atom has the mass of 60 amu. An
edge crack is initiated in the middle of the plate by taking
out a number of bonds, and the initial crack length is
20 nm. The nanoplate is subject to fracture mode I via pre-
scribed displacements with the strain rate of 1 · 10�8 per fs.
In the meshfree particle model, there are 27,200 particles.
The crack is modeled defining a line segment internal to
the domain. The domains of influence for particles near
the crack are truncated whenever they intersect the crack
surface so that a particle on one side of the crack will not
affect particles on the opposite side of the crack. This
technique is called the visibility criterion by Krysl and
Belytschko [24].

For simplification, the crack is restricted to propagate
along the weak interface by assuming that only weakened
bonds can be broken, as shown in Fig. 6. A Lennard-Jones
Fig. 6. A nanoplate with the triangular lattice containing an initial edge
crack.
potential, i.e., u(l ) in Eq. (13), with e = 2.47 aJ, l0 = 1 nm,
and lcutoff = 2 nm, is employed for weakened bonds. In the
nanoplate except the weak interface, we use a harmonic
potential function, uhðlÞ ¼ 1

2
kðl� l0Þ2, to describe inter-

atomic interactions between nearest neighboring atoms.
The spring constant in this harmonic potential function is
k = 594.0 nN/nm. Using the TCB rule, the first Piola–Kir-
chhoff stress, P, at a particle, where the deformation gradi-
ent is F and the temperature is T, is calculated as follows
based on a unit cell model [8,9]:

P ¼ owC

oF
þ 1

A0

jBT

2D

oD
oF

� �
¼ owC

oF
þ jBTffiffiffi

3
p

Dl2
0

oD
oF

: ð32Þ

It should be noted that both potential density, wC, and the
determinant of the dynamical matrix, D, could be calcu-
lated via the unit cell model.

The thermal coefficients in equations of thermal flow,
i.e., Eq. (27), are determined via molecular dynamics simu-
lations on a piece of nanoplate. The specific heat capacity,
cv, represents how the system internal energy responds to
an isometric change in temperature. We conduct two
isometric molecular dynamics simulations with periodic
boundary conditions on the testing nanoplate at various
temperatures. In each simulation, the internal energy is
computed as the time-averaged potential energy. Conse-
quently, the specific heat capacity can be computed as the
change of internal energy per unit temperature. The ther-
mal conductivity k is the intensive property of a material
that indicates its ability to conduct heat. It is defined as
the quantity of heat, Q, transmitted in time t through a
thickness L, in a direction normal to a surface of area A,
due to a temperature difference DT, under steady state con-
ditions and when the heat transfer is dependent only on the
temperature gradient. In our simulation, we set a high tem-
perature on one side of the testing nanoplate and a low
temperature on the opposite side via the Hoover thermo-
stat [19]. The periodic boundary condition is applied on
the other two sides. The heat will transfer from the side
with high temperature to the side with low temperature
due to the temperature gradient. The total internal energy
in the center part of the specimen is measured as a function
of time, so that we can calculate the thermal conductivity
via k = QL/tADT. For the simulated nanoplate, the follow-
ing thermal coefficients are obtained: cv = 0.141 J kg�1 K�1

and k = 0.76 W m�1 K�1.
The crack propagation criterion used in our study is

similar to the cohesive zone model [25]. Two crack tips
are monitored in the cohesive zone model: one is physical
tip, a ‘‘real’’ crack tip in physics, and the other is mathe-
matical tip, a fictitious tip ahead of the physical one. The
mathematical tip is used to determine the domain of influ-
ence in meshfree particle methods via the visibility crite-
rion. Between the mathematical tip and the physical tip
in the continuum model, there is a so-called cohesive zone,
where the cohesive traction is applied on the two facets of
the cohesive zone. The cohesive tractions, s, are taken as



Fig. 7. Evolution of the crack propagation speed.

Fig. 8. Temperature contour at 0.9 ns.
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external forces in meshfree particle simulation and are
derived via the TCB rule as

s ¼ oŵHðD; T Þ
oD

¼ u0ðDÞ þ 1

2
jBT

u000ðDÞ
u00ðDÞ ; ð33Þ

where u is the Lennard-Jones potential describing the weak
interface, D is the crack opening displacement vector, and
ŵH ðD; T Þ is the free energy per unit length along the cohe-
sive zone. In meshfree particle methods, the cohesive trac-
tions can be projected into consistent nodal forces [25]
without introducing additional degrees of freedom.

At the nanoscale, crack initiation and propagation
involve bond breakage. In this paper, we assume that the
whole released potential due to bond breaking turns out
to be the kinetic energy. We know that the kinetic energy
at the nanoscale relates to the temperature, which is a
macroscopic parameter. Consequently, the temperature
increases due to the released energy. Since a bond is treated
as broken when its deformed bond length exceeds the cutoff
distance, the released energy is calculated as the difference
between the potential when the bond length equals the cut-
off distance lcutoff and that when the bond length equals the
equilibrium length l0. In our simulation, the distance that
the physical crack tip propagates determines the number
of breaking bonds along the weak interface. Consequently,
the temperature increment is thereafter calculated as
follows:

DT ¼ 1

jB

Dutotal

N
; ð34Þ

where N is the number of atoms associated with the broken
bonds and Dutotal is the total released energy. In nanoscale
meshfree particle simulation, the increasing temperature is
distributed on the particles around the physical crack tip
based on the meshfree particle approximation. The temper-
atures on those particles will be treated as the discretized
essential boundary conditions while solving the equations
of thermal flow.

We simulate the crack propagation in the nanoplate
subject to fracture mode I. The initial temperature is set
as the room temperature of 300 K. The evolution of crack
propagation speed is shown in Fig. 7. We can see that the
crack starts to propagate at 0.42 ns. Once the crack propa-
gates, some bonds along the weak interface are broken.
The released energy results in a temperature increase in
the surrounding domain around the crack tip. Further-
more, a temperature increase results in the reduction of
cohesive traction in the cohesive zone along the weak inter-
face. Consequently, the crack propagation speed increases
gradually. Fig. 8 illustrates the temperature contour in
the nanoplate at the time of 0.9 ns. The temperature con-
centration occurs around the crack tip, and temperature
propagates from the crack tip to the remaining domain
of the nanoplate. It should be noted that we designed a
‘‘fictitious’’ crystalline material with triangular lattices in
this paper. This material can sustain high temperatures,
such as 3000 K around the crack tip in Fig. 8, although
3000 K is higher than the melt temperatures of almost all
existing single crystal materials.
5. Conclusions

We conducted stability analyses of nanostructured
materials using a linearized stability analysis technique
with a temperature-dependent homogenization technique,
the TCB rule. In our material stability analyses, the contin-
uum-level first tangential stiffness tensor was calculated
from the free energy density instead of the potential density
via the TCB rule so that the temperature effects were inves-
tigated. We concluded that nanostructured materials were
more stable at lower temperatures and that at the same
temperature stiffer materials could sustain larger deforma-
tion than softer materials. In particular, we predicted the
failure strain of armchair carbon nanotubes at various tem-
peratures via material stability analysis. The result at the
room temperature of 300 K agreed with that calculated
via molecular dynamics simulation. It should be noted that
we used the linearized stability analysis technique, which is
identical to the homogenized continuum stability criterion,
in our paper because the inner displacement played an
insignificant role in material instability. Otherwise, the
Cauchy–Born stability criterion must be employed.

We also proposed a thermo-mechanical coupling model
in which the thermal diffusion equation was discretized so
that equations of thermal flow were solved to update the
temperature profile during nanoscale continuum simula-
tions. As an example, we employed the nanoscale meshfree
particle method with the thermo-mechanical coupling
model to study crack propagation in a nanoplate. Since
bond breaking occurs at the nanoscale when crack propa-
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gates, the total released energy resulting in the temperature
increase around the crack tip was considered in our simu-
lation. We found that crack speed increased gradually
and high temperature concentration occurred around the
crack tip. It should be noted that the thermal wave equa-
tion is a better physical model than the thermal diffusion
equation to describe the temperature profile at the micro-
scale. The similar strategy can be conducted to implement
the thermal wave equation in the thermal–mechanical cou-
pling model. In addition, there are other issues when imple-
menting the thermo-mechanical coupling model in
multiscale simulations because inter-scale heat transfer
must be considered. Those issues will drive us to perform
further research in this area.
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