53/58:153 Lecture 6 Fundamental of Vibration

Lecture 6: Modal Superposition

Reading materials: Section 2.3

1. Introduction
«i Exact solution of the free vibration problems is
y(t) = 3, (A; cos w; t + B; sin w; 1) o

where coefficients can be determined from the initial conditions.

<) The method is not practical for large systems since two unknown coefficients
must be introduced for each mode shape.

«£) Modal superposition is a powerful idea of obtaining solutions. It is applicable to
both free vibration and forced vibration problems.

<> The basic idea

To use free vibrations mode shapes to uncouple equations of motion.

The uncoupled equations are in terms of new variables called the modal
coordinates.

Solution for the modal coordinates can be obtained by solving each equation
independently.

A superposition of modal coordinates then gives solution of the original
equations.

< Notices

It is not necessary to use all mode shapes for most practical problems.

Good approximate solutions can be obtained via superposition with only
first few mode shapes.
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2. Orthogonality of undamped free vibration mode shapes

<) An n degree of freedom system has n natural frequencies and n corresponding
mode shapes.

[k —4;m]¢" =0

k¢, =\meg: 1=1.2....n

«£) Mass orthogonality:

¢§Iﬂ¢i=01 i+ J

Proof:

Mass nomalization:

¢r‘ = b &'!’

.'qf._,"'r 5
y & mé;
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<= Stiffness orthogonality:

P k=0 i%]

Proof:

3. Modal superposition for undamped systems — Uncoupling of the
Equations of motion

<&@ Equations of motion of an undamped multi-degree of freedom system

mF(0)+ k(@)= £ y(0) = u®and j(0) =»°

« The displacement vector can be written as a linear combination of the mode
shape vectors.

yt)=z1(0) @y +2(t)py + ... + 2, (D) D,

or in matrix form,

y()=oz(1)
P=(¢ ¢ .. ¢,)

:(.—l =32 :?’I}

&
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<= Then, the equations of motion

m®dzZ(r)+k®z(r)= f(1)

T main+d kv =3 (v

First term becomes a modal mass matrix using mass orthogonalitys

(47 ) grme, gime, .. gimg,
oTmo<| P s 6 . g)=| B B pimd,

L4, ) gpme, g mé, .. ¢ mg,

(gimg, 0 .. 0 ) (M, O .. 0
T md — 0 .;bgrf:qbz 0 _ 0 ﬁ»?’z {}

. 0 0 . ¢Tme,) VO 0 .M,

Second term becomes a stiffness matrix using stiffness orthogonality

(pik¢y 0 . 0 Ky 0 .. 0

T -
o kd — 0 o ko, ... 0 _ 0 K ... 0
L0 0 ... ¢k, 0 0 .. Ky

Here is the modal load vector
T f(=F() — F=¢ fii=1 ..n
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The equations of motion are uncoupled and known as the modal equations

Mi 0 . 0N\(H0DY (Ki 0 ... 0\/=(y (Fid
0 ﬂr’fg 0 Eg(f} 0 Kg 0 (1) Fg(f)
. . . . +1 . . . . = .

o o .. mizn) Lo o . ok N=a0) LE®

or

-

M ZAt) + K; z(t) = Fi(f), i=1.2....

M=¢"me: K=¢"ko: Fi=¢l [

o Recall natural frequencies

k¢, =A\im¢, = ﬁﬁ';kﬁbi = A ‘iﬁ';r me,

- ;) 7
— ﬂi = :\lfﬂjﬂ' — .rl]-' = LJ? = A

Then

3 1.2, ..

(1) + w? z(0) = % Fit) i=

Obviously, each modal equation represents an equivalent single degree of freedom

system.

<& Rewrite the initial conditions for the modal equations

z(0) = o (@] mu®)

=,

z(0) = % (@7 m1°)
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« Finally, the modal equations are

5(0) + wF 5 = 3 Filn) i=1.2
=(0) = % (@7 m ul)

2(0) = % (@] m°)

Mi=¢;m¢;. Ki=¢ k¢ Fi=¢] f: wi=+K/M
4. Modal superposition for undamped systems — Solution of the modal

equations

< For free vibrations, the modal equations are:

For each equation, the solution is

0y .
zi(f) = z;(0) cos w; 1 + — - sSlw;f

T

or

(1) = Z; si(w; t + 6;) = Z; cos(w; 1 — ;)
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where

Zi = \/[-';"[0}]2 + ( jfj

)2

o=t (200) /(2 v = () 00)

! i/ i

< Then, the solution for the original equations of motion is
YO =@z =51 (N + (D by + ... + (D) B,

Indeed, the above solution is the exact solution. The approximate solution can be
obtained via using the first few mode shapes.

Y=z + D)+ ...+ 20 @, m<<n

The above equations are general expressions for both free vibration and forced
vibration.

« For forced vibration, Zi(t) could be obtained from the solution of one DOF
forced vibration.

5. Examples
40 00 10 -5 0 0 0
0400 -5 10 -5 0 0
m = : k= _ f=
00 40 0 -5 10 -5 0
00 0 4 0 0 -5 5 0

u’ = {0.025, 0.02. 0.01. 0.001)
w0 = {0.0.0.0)
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Eigenvalues, frequencies, and mode shapes

Eigenvalue Frequency (rad/s) Mode shape
1 10.150768  0.388289 0.114007 0214263 0288675 0328269
21125 1.11803 0.28867> 0288675 0. -0.288675
31293412 1.71293 0328269 -0.114007 -0.28867> 0214263
4 | 441511 2.10122 —0.214263 0328269 —-0288675 0.114007

a. Uncoupling equations of motion

O+ wiz(t)= 5  Fi(n) i=1.2. ...

M, =& m g (1.1.1. 1}

Ki=d! k&, (0.150768. 1.25. 2.93412., 4.41511)

F,=d! [: {0..0..0..0.)
I.C.s:
(#T m )M {0.0414018. 0.0508068. 0.0130164. —0.00625569)
(&7 mv°)M;: {0..0..0..0)

Modal equations:

z, + 0.150768 2, = 0: z,(0) = 0.0414018: ,(0) = 0.
z, + 1.252, = 0: z,(0) = 0.0508068: 2,(0) = 0.

z3 +2.934127; = 0; z;(0) = 0.0130164: z3(0) = 0.

z, + 441511z, = 0; z,(0) = —0.00625569: 24(0) = 0.
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b. solution

Z1(t) = 0.0414018 cos(0.388289 1)
Z,(t) = 0.0508068 cos(1.11803 1)
Z3(t) = 0.0130164 cos(1.71293 1)

Z,(t) = —0.00625569 cos(2.10122 1)

Y; = 2Z; ﬁéi

0.02
0.01F | P [/

/s o\ do \ as
_0.01F ‘U N A

~0.02 W

0.02 F
0.01

—-0.01F
—-0.02F

6. Rayleigh damping

o The undamped free vibration mode shapes

mass and stiffness matrices.

¥a
0.02 k. A
0.01F \ A\ N
1 |I-'I :I'I 1 t
s\ 10 N\ J5 \20
—0.01F . N A
—0.02} \J/
¥y
Fay
0.02F '\ A
001} / R
1 1 ] 1 ..\ 1 t
oot 5 oo /15T 20
p— : \ /.'
-0.02f i

are orthogonal with respect to the

« Generally, the undamped free vibration mode shapes are not orthogonal with

respect to the damping matrix.

o Generally, equations of motion for damped systems cannot be uncoupled.
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<< However, we can choose damping matrix to be a linear combination of the
mass and stiffness matrices. Then, the mode shapes are orthogonal with respect to
the damping matrix, and the equations of motion can be uncoupled.

Damping matrix
c=am+fk
Equations of motion

my(t)+ (am+ ﬁk}j'(r) +ky(t)=f(r): »0)= u° and j'((]) =0

Displacement vector

d=(¢;, ¢ .. &, ]’ z=(21 =2 ... IZn)
Uncoupling equations of motion

M:Z(t)+(@M;+ BK; ) (1) + K; z; (1) = Fi(¢): i=1.2, ...
z(0) = % (¢ mu®): z,(0) = % (@] m0):

where

My=¢Ime¢: K,=¢ k¢, and F,=¢! f
Rewrite the equations of motion
Fi(f): i=1.2. ...

) _ 1
20+ 2& wi Z0) + wf 5(1) = f

-10 -
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where
U_il — K’j/‘j‘/.{;
aM+5k a B w;
2&wi= —3 §i=355 v 5
There are
- a .5'“":'
é’d‘f = 2 w; 2
. o .'Gu_r
éf- = 2w, T3
; 2
So that

o =

- . . - 27
2§ Wi wi—& wi 'L'JJ-J .

I'..'.JI.' —I'..'.J;

o) Free vibration solution of an undamped system

() +2& w; Zi(t) + w

() = g5 “r"(:f[{}] COS wgq, T+

p

(1) =0:

Therefore, the exact solution is

Y1) = 25z(0) ¢;

2 (_E: {“."II'_EJ [""’r_r}

‘|

2
Wy =t

£; wy Z(0)+z,(0)

g

i=1,2. ...

SN (wy, r)

Approximate solution can be obtained via using the first few mode shapes as usual.

-11 -
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<« Example 1:

In a four DOF system the damping in the first mode is 0.02 and in the fourth mode
Is 0.01. Determine the proportional damping matrix and calculate the damping in
the second and third modes.

5 0 0 0 30 -7 0 0

0 5 0 0 -7 20 —-10 0
m = k =

0 0 5 0 0 -10 10 -5

0 0 0 5 0 0 -5 15

Eigenvalue Frequency Mode shape

1 0.390064 0.624551 ( —0.0550491 -0.220587 -0359618 -0.137788)
2 3.06293 1.75012 ( —0.0882154 -0.185068 -0.0249605 0.396667)
3 46074 214648 (0243169 0.241884 -0.243678 0.151598)
4 6.93961 2.63431 (0360633 -024204 0103308 -0.0262229)

Damping in the first mode and fourth mode:

W £
1 0.624551 0.02
2 2.63431 0.01

The coefficients in the damping matrix can be determined as
a =0.0233321 5= 000422995

Damping in other modes:

- a .5‘-'1":'
$i= 34, T 2
1 2 3 4
0.624551 1.75012 214648 263431
£ 0.02 00103673 0.00997471 0.01

-12 -
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The damping matrix is

0243559 —-0.0296096 0 0
—0.0296096 0201259 -0.0422995 0
‘= 0 —0.0422995 0.15896 —0.0211497
0 0 —0.0211497 0.18011
«) Example 2:

Obtain a free vibration solution for a four DOF system using only two modes.
Assume 5% damping in the first two modes.

4 0 0 0 10 -5 0 0 0
0 4 0 0 -5 10 -5 0 0
m= . k= f=
00 4 0 -5 10 -5 0
0 0 0 4 0 -5 5 0
u’ = {0.025. 0.02. 0.01. 0.001} v = [0.0.0.0)
First two modes:
Frequency (rad/s) Frequency (Hz) Mode shape
1 0.388289 0.0617981 0.114007 0.214263 0.288675 0.328269
2 1.11803 0.177941 —0.288675 —0.288675 —2.35541x107!7 0.288675
& =1{0.05. 0.05); wy = {0.387803. 1.11664)
Uncoupling equations of motion
T — 4T :
M;=¢g mdg. {1. 1}
K, =d& kg {0.150768. 1.25)

-13 -
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F.=4! [ {0..0)

Modal equations:

7y + 0.03882897; + 0.150768 z; = O: z1(0) = 0.0414018; 7,(0) = 0.
z, +0.111803 2, + 1.252, = 0; z,(0) = —0.0508068: 7,(0) = 0.
Solutions:

z,(t) = 0.0414018 g 0019414957 ¢05(0.387803 1) + 0.00207268 e 0194143 1 4in(0.387803 1)
Z,(t) = —0.0508068 g~ 007990171 c05(1.11664 1) — 0.00254352 7009990177 5in(1.11664 1)

Final solutions:

:'frj = Ezi féi

0.02

0.01

-0.01

-14 -



