
1

© 2005 Pearson Education, Inc. All rights reserved.

44
Control Statements:

Part 1

2

© 2005 Pearson Education, Inc. All rights reserved.

4.2 Algorithms

• Algorithms
– The actions to execute
– The order in which these actions execute

• Program control
– Specifies the order in which actions execute in a

program

3

© 2005 Pearson Education, Inc. All rights reserved.

4.3 Pseudocode

• Pseudocode
– An informal language similar to English
– Helps programmers develop algorithms
– Does not run on computers
– Should contain input, output and calculation actions
– Should not contain variable declarations

4

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures

• Sequential execution
– Statements are normally executed one after the other in

the order in which they are written

• Transfer of control
– Specifying the next statement to execute that is not

necessarily the next one in order
– Can be performed by the goto statement

• Structured programming eliminated goto statements

5

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures – No GOTOs

• Bohm and Jacopini’s research
– Demonstrated that goto statements were unnecessary
– Demonstrated that all programs could be written with

three control structures
• The sequence structure,
• The selection structure and
• The repetition structure

6

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• UML activity diagram (www.uml.org)
– Models the workflow (or activity) of a part of a software

system
– Action-state symbols (rectangles with their sides replaced

with outward-curving arcs)
• represent action expressions specifying actions to perform

– Diamonds
• Decision symbols (explained in section 4.5)
• Merge symbols (explained in section 4.7)

http://www.uml.org/

7

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

– Small circles
• Solid circle represents the activity’s initial state
• Solid circle surrounded by a hollow circle represents the

activity’s final state
– Transition arrows

• Indicate the order in which actions are performed
– Notes (rectangles with the upper-right corners folded over)

• Explain the purposes of symbols (like comments in Java)
• Are connected to the symbols they describe by dotted lines

8

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.1 | Sequence structure activity diagram.

9

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• Selection Statements
– if statement

• Single-selection statement
– if…else statement

• Double-selection statement
– switch statement

• Multiple-selection statement

10

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• Repetition statements
– Also known as looping statements
– Repeatedly performs an action while its loop-continuation

condition remains true
– while statement

• Performs the actions in its body zero or more times
– do…while statement

• Performs the actions in its body one or more times
– for statement

• Performs the actions in its body zero or more times

11

© 2005 Pearson Education, Inc. All rights reserved.

4.4 Control Structures (Cont.)

• Java has three kinds of control structures
– Sequence statement,
– Selection statements (three types) and
– Repetition statements (three types)
– All programs are composed of these control statements

• Control-statement stacking
– All control statements are single-entry/single-exit

• Control-statement nesting

12

© 2005 Pearson Education, Inc. All rights reserved.

4.5 if Single-Selection Statement

•if statements
– Execute an action if the specified condition is true
– Can be represented by a decision symbol (diamond) in a

UML activity diagram
• Transition arrows out of a decision symbol have guard

conditions
– Workflow follows the transition arrow whose guard

condition is true

13

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.2 | if single-selection statement UML activity diagram.

14

© 2005 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement

•if…else statement
– Executes one action if the specified condition is true or a

different action if the specified condition is false

• Conditional Operator (? :)
– Java’s only ternary operator (takes three operands)
– ? : and its three operands form a conditional expression

• Entire conditional expression evaluates to the second operand
if the first operand is true

• Entire conditional expression evaluates to the third operand
if the first operand is false

15

© 2005 Pearson Education, Inc. All rights reserved.

4.6 if…else Double-Selection Statement

if (grade >= 60) {

System.out.println(“Passed”);

} else {

System.out.println(“Failed”);

}

same behavior as

System.out.println(grade>=60 ? “Passwd” : “Failed”)

16

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.3 | if else double-selection statement UML activity diagram.

17

© 2005 Pearson Education, Inc. All rights reserved.

4.7 while Repetition Statement

•while statement
– Repeats an action while its loop-continuation condition

remains true
– Uses a merge symbol in its UML activity diagram

• Merges two or more workflows
• Represented by a diamond (like decision symbols) but has:

– Multiple incoming transition arrows,
– Only one outgoing transition arrow and
– No guard conditions on any transition arrows

18

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.4 | while repetition statement UML activity diagram.

19

© 2005 Pearson Education, Inc. All rights reserved.

4.8 Formulating Algorithms: Counter-
Controlled Repetition

• Counter-controlled repetition
– Use a counter variable to count the number of times a loop

is iterated

20

© 2005 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition

• Sentinel-controlled repetition
– Also known as indefinite repetition
– Use a sentinel value (also known as a signal, dummy or flag

value)
• A sentinel value cannot also be a valid input value

21

© 2005 Pearson Education, Inc. All rights reserved.

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (Cont.)

• Top-down, stepwise refinement
– Top step: a single statement that conveys the overall

function of the program
– First refinement: multiple statements using only the

sequence structure
– Second refinement: commit to specific variables, use

specific control structures

22

© 2005 Pearson Education, Inc. All rights reserved.

4.10 Formulating Algorithms: Nested
Control Statements

• Control statements can be nested within one
another

– Place one control statement inside the body of the other

23

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.11 | Pseudocode for examination-results problem.

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed
10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Raise tuition”

24

© 2005 Pearson Education, Inc. All rights reserved.

4.11 Compound Assignment Operators

• Compound assignment operators
– An assignment statement of the form:

variable = variable operator expression;
where operator is +, -, *, / or % can be written as:
variable operator= expression;

– example: c = c + 3; can be written as c += 3;
• This statement adds 3 to the value in variable c and stores

the result in variable c

25

© 2005 Pearson Education, Inc. All rights reserved.

4.12 Increment and Decrement
Operators

• Unary increment and decrement operators
– Unary increment operator (++) adds one to its operand
– Unary decrement operator (--) subtracts one from its

operand
– Prefix increment (and decrement) operator

• Changes the value of its operand, then uses the new value of
the operand in the expression in which the operation appears

– Postfix increment (and decrement) operator
• Uses the current value of its operand in the expression in

which the operation appears, then changes the value of the
operand

26

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.15 | Increment and decrement operators.

Operator Called Sample
expression Explanation

++ prefix
increment ++a Increment a by 1, then use the new value of a in the

expression in which a resides.

++ postfix
increment a++ Use the current value of a in the expression in which a resides,

then increment a by 1.

-- prefix
decrement --b Decrement b by 1, then use the new value of b in the

expression in which b resides.

-- postfix
decrement b-- Use the current value of b in the expression in which b resides,

then decrement b by 1.

27

© 2005 Pearson Education, Inc. All rights reserved.

4.13 Primitive Types

• Java is a strongly typed language
– All variables have a type

• Primitive types in Java are portable across all
platforms that support Java

28

© 2005 Pearson Education, Inc. All rights reserved.

4.14 GUI and Graphics Case Study:
Creating Simple Drawings

• Java’s coordinate system
– Defined by x-coordinates and y-coordinates

• Also known as horizontal and vertical coordinates
• Are measured along the x-axis and y-axis

– Coordinate units are measured in pixels

•Graphics class from the java.awt package
– Provides methods for drawing text and shapes

•JPanel class from the javax.swing package
– Provides an area on which to draw

29

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 4.18 | Java coordinate system. Units are measured in pixels.

30

© 2005 Pearson Education, Inc. All rights reserved.

4.14 GUI and Graphics Case Study:
Creating Simple Drawings (Cont.)

• Inheriting
– extends keyword
– The subclass inherits from the superclass

• The subclass has the data and methods that the superclass
has as well as any it defines for itself

31

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•DrawPa
nel.java

 1 // Fig. 4.19: DrawPanel.java

 2 // Draws two crossing lines on a panel.

 3 import java.awt.Graphics;

 4 import javax.swing.JPanel;

 5
 6 public class DrawPanel extends JPanel

 7 {

 8 // draws an X from the corners of the panel

 9 public void paintComponent(Graphics g)

10 {
11 // call paintComponent to ensure the panel displays correctly
12 super.paintComponent(g);
13
14 int width = getWidth(); // total width
15 int height = getHeight(); // total height
16
17 // draw a line from the upper-left to the lower-right
18 g.drawLine(0, 0, width, height);
19
20 // draw a line from the lower-left to the upper-right
21 g.drawLine(0, height, width, 0);
22 } // end method paintComponent
23 } // end class DrawPanel

Import the java.awt.Graphics and
the javax.swing.JPanel classes

The DrawPanel class extends
the JPanel class

Declare the paintComponent method

Draw the two lines

Retrieve the JPanel’s
width and height

32

© 2005 Pearson Education, Inc. All rights reserved.

4.14 GUI and Graphics Case Study:
Creating Simple Drawings (Cont.)

• The JPanel class
– Every JPanel has a paintComponent method

• paintComponent is called whenever the system needs to
display the JPanel

– getWidth and getHeight methods
• Return the width and height of the JPanel, respectively

– drawLine method
• Draws a line from the coordinates defined by its first two

arguments to the coordinates defined by its second two
arguments

33

© 2005 Pearson Education, Inc. All rights reserved.

4.14 GUI and Graphics Case Study:
Creating Simple Drawings (Cont.)

•JFrame class from the javax.swing package
– Allows the programmer to create a window
– setDefaultCloseOperation method

• Pass JFrame.EXIT_ON_CLOSE as its argument to set the
application to terminate when the user closes the window

– add method
• Attaches a JPanel to the JFrame

– setSize method
• Sets the width (first argument) and height (second argument)

of the JFrame

34

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•DrawPanel
Test.java

 1 // Fig. 4.20: DrawPanelTest.java

 2 // Application to display a DrawPanel.

 3 import javax.swing.JFrame;

 4
 5 public class DrawPanelTest

 6 {

 7 public static void main(String args[])

 8 {

 9 // create a panel that contains our drawing

10 DrawPanel panel = new DrawPanel();
11
12 // create a new frame to hold the panel
13 JFrame application = new JFrame();
14
15 // set the frame to exit when it is closed
16 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17
18 application.add(panel); // add the panel to the frame
19 application.setSize(250, 250); // set the size of the frame
20 application.setVisible(true); // make the frame visible
21 } // end main
22 } // end class DrawPanelTest

Import the JFrame class from
the javax.swing class

Create DrawPanel and
JFrame objects

Set the application to
terminate when the
user closes the window

Add the DrawPanel to the JFrame

Set the size of and display the JFrame

	4
	4.2 Algorithms
	4.3 Pseudocode
	4.4 Control Structures
	4.4 Control Structures – No GOTOs
	4.4 Control Structures (Cont.)
	4.4 Control Structures (Cont.)
	Fig. 4.1 | Sequence structure activity diagram.
	4.4 Control Structures (Cont.)
	4.4 Control Structures (Cont.)
	4.4 Control Structures (Cont.)
	4.5 if Single-Selection Statement
	Fig. 4.2 | if single-selection statement UML activity diagram.
	4.6 if…else Double-Selection Statement
	4.6 if…else Double-Selection Statement
	Fig. 4.3 | if else double-selection statement UML activity diagram.
	4.7 while Repetition Statement
	Fig. 4.4 | while repetition statement UML activity diagram.
	4.8 Formulating Algorithms: Counter-Controlled Repetition
	4.9 Formulating Algorithms: Sentinel-Controlled Repetition
	4.9 Formulating Algorithms: Sentinel-Controlled Repetition (Cont.)
	4.10 Formulating Algorithms: Nested Control Statements
	Fig. 4.11 | Pseudocode for examination-results problem.
	4.11 Compound Assignment Operators
	4.12 Increment and Decrement Operators
	Fig. 4.15 | Increment and decrement operators.
	4.13 Primitive Types
	4.14 GUI and Graphics Case Study: Creating Simple Drawings
	Fig. 4.18 | Java coordinate system. Units are measured in pixels.
	4.14 GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	Outline
	4.14 GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	4.14 GUI and Graphics Case Study: Creating Simple Drawings (Cont.)
	Outline

