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Abstract

It is considered that asymmetrical material layout design solutions are caused by numerical roundo� and the
convexity characteristics of alternative topology design formulations. Emphasis is placed here not on analyzing
potential instabilities that lead to asymmetrical designs, but on a method to stabilize topology design formulations.

A novel symmetry reduction method is proposed, implemented and studied. While enforcing symmetry and
signi®cantly reducing the size of the optimization problem, the symmetry reduction method is shown to have the
added bene®t of greatly simpli®ed design sensitivity analysis of non-simple repeated vibrational eigenvalues which

occur in many symmetrical structures. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction and motivation

Continuum structural topology optimization is an

increasingly powerful design tool which can be used to

optimize the material arrangements in structural sys-

tems to achieve a wide variety of performance objec-

tives, including as examples: minimal compliance [1±4];

optimal strength [5, 6]; viscoelastic damping [7]; and

compliant mechanisms [8±10]. For all of these struc-

tural or material topology design optimization appli-

cations, if the design domain, the boundary conditions

and the loading are all symmetrical, then the optimum

design solution is also expected to be symmetrical. In

practice, however, the design solutions obtained may

not feature the expected symmetries: (1) due to numeri-

cal roundo� errors in the design sensitivity analysis

and optimization procedures; and (2) if the optimiz-

ation problem formulation is not strictly convex giving

rise to the existence of locally optimal asymmetrical

design solutions. Since numerical roundo� is always

present irrespective of the problem formulation, the

issue of whether or not symmetrical design solutions

are obtained is highly dependent upon the problem

formulation. In this paper, the term `problem formu-

lation' refers to the manner in which the continuous

topology optimization problem is posed and devel-

oped.

In continuum structural topology optimization, var-

ious problem formulations exist, and they can be

broadly categorized into two general classes of

methods: (1) relaxed formulations involving mixtures

of assumed parameterized micro-morphologies; and (2)

continuous formulations which use mixing rules that

assume and involve no microstructure. Characteristic

of the problem formulations which assume micro-mor-

phologies of the mixture, are the homogenization-

based porous solid formulation [1, 11] and the rank-2

plane stress laminate formulation [2]. From the
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examples presented in the literature, these problem for-

mulations appear to be somewhat, although not com-
pletely, stable with respect to symmetry of the designs
at least for compliance minimization problems. For

other classes of design objectives such as viscoelastic
damping and compliant mechanisms, these formu-
lations have not yet been shown to be convex and

could thus be prone to achieving spatially asymmetri-
cal designs.

On the other hand, continuum structural topology
optimization formulations which assume no micro-
structure, including the simple density based power law

mixing rule [3, 12±14] and the classical hybrid Voigt±
Reuss mixing rule [4, 5], can show a wide range of

di�erent characteristics. For elastic compliance mini-
mization problems, topology optimization formu-
lations that use the very sti� Voigt mixing rule have

been shown to be convex [4] and thus very stable with
respect to symmetry, but generally realize solutions
that are neither interpretable nor manufacturable. For

the design of structures for such performance objec-
tives as high viscoelastic damping [7], or development

of e�cient compliant mechanisms [10], however, even
topology formulations based on sti� mixing rules have
been found to be lacking strict convexity so that a

wide variety of locally optimal solutions exist, some of
which are typically asymmetrical. On the other hand,
topology formulations that use very compliant mixing

rules, such as the Reuss formulation or highly pena-
lized density formulations, generally achieve designs

which are highly interpretable and manufacturable, but
have been shown to be potentially nonconvex for elas-
tic compliance minimization and other classes of pro-

blems. Topology formulations based on compliant
mixing rules are therefore prone to achieving asymme-
trical material layout designs.

The motivation here is, therefore, to brie¯y present
a design space reduction method for stabilization of

topology design formulations with respect to symmetry
so that undesirable asymmetrical local optimum sol-
utions can be avoided. The proposed method will be

shown to achieve meaningful spatially symmetrical de-
signs even for asymmetrical loadings and even when
mesh discretizations themselves are not themselves pre-

cisely symmetrical. In Ref. [15] the design space re-
duction method was compared with the multiple

loading condition symmetry enforcement method
investigated in [16]. While both methods should in the
absence of numerical roundo� produce identical sol-

utions, the design space reduction method developed
here is more e�ective and e�cient.

Another favorable attribute of the proposed sym-
metry reduction method is that it facilitates design sen-
sitivity analysis of vibrational eigenvalues. Repeated

eigenvalues often occur in optimized, symmetrical
structures, and computational di�culties arise when

computing their design sensitivities due to the fact that

they are not generally di�erentiable but only direction-

ally di�erentiable [17]. Methods for solving optimiz-

ation problems involving nondi�erentiable repeated

eigenvalues have been investigated in Ref. [18±20].

Sizing optimization problems to maximize the buckling

capacity of structures have also been found to fre-

quently encounter repeated buckling load eigenvalues

and modes that are not simply associated with the

symmetry of structures [21]. In [22] the physical origin

and ambiguity of repeated eigenvalues were discussed,

and a treatment was presented to obtain partial deriva-

tives of repeated eigenvalues. In Ref. [23] it was shown

that, under special circumstances, the treatment of

Ref. [22] is not necessary to obtain the partial deriva-

tives of repeated eigenvalues.

With reference to these preceding works, it will be

shown that with the proposed symmetry reduction

methods, those repeated eigenvalues strictly associated

with the symmetry of the structure are indeed di�eren-

tiable, and thus the special treatments suggested in

Refs [19, 20] are not always necessary. Therefore, the

proposed symmetry reduction method is potentially

attractive for solving vibrational eigenvalue optimiz-

ation problems since it permits usage of identical de-

sign sensitivity expressions for both simple and some

non-simple eigenvalues, while reducing the size of the

optimization problem and maintaining symmetrical

structures.

In this paper, the proposed symmetry reduction al-

gorithm is implemented and studied in the context of

microstructure free topology formulations. The sym-

metry reduction method can also be extended to

relaxed topology formulations based on parameterized

micro-morphologies, although the implementation

would be more involved. The remainder of this paper

is organized as follows: in Section 2, a Voigt±Reuss

continuum structural topology optimization framework

is brie¯y reviewed. The proposed symmetry reduction

method is then presented and its characteristics are dis-

cussed in Section 3 in the context of two representative

structural topology optimization problems. In Section

4, it is further demonstrated that the proposed sym-

metry reduction method has the additional bene®t of

eliminating the computational di�culties that can arise

computing design sensitivities of repeated eigenvalues

which are frequently encountered in symmetrical struc-

tural systems being optimized. Then, an example top-

ology design optimization problem is solved for a

square, ¯at plate whose ®rst ®ve vibrational eigen-

values, which include a non-simple repeated root, are

maximized. In concluding, brief remarks on the pro-

posed method are made in Section 5.
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2. Voigt±Reuss continuum structural topology

formulation

2.1. Distribution of materials

The complete undeformed spatial domain of the

structure being designed is denoted by OS; its design-
able subset by OD; and its non-designable subset, in
which the spatial/topological arrangement of materials
is taken to be ®xed, by ON. The arrangement of two

pre-selected candidate materials A and B in OD

remains to be determined and so this region is called
designable. A set of single or multiple loading/bound-

ary conditions to which OS will be subjected are speci-
®ed and a starting design b(0) which speci®es the initial
material layout in OD is selected. For each set of load-

ing/boundary conditions, the structure is analyzed as a
boundary value problem and/or an eigenvalue pro-
blem. The objective of the variable topology material

layout design process is to iteratively improve upon
the initial design of the structure (that is the spatial
arrangement of the two candidate materials in OD)
until an optimal design is achieved. Accordingly, an

objective functional which measures the desired beha-
vior of the structure must be speci®ed, along with con-
straint functionals which place restrictions on the

design, and side constraints which place explicit
bounds on the values that can be taken by the individ-
ual design variables.

Preference is given to discrete ®nal material distri-
butions that satisfy OA \ OB � ; and OA [ OB =OS,
where OA is the spatial domain occupied by material
A and OB is the spatial domain occupied by material

B. These distributions are achieved, however, through
continuous formulations which permit mixtures to
exist throughout the design domain OD, at least in in-

termediate design states. By permitting mixtures, the
material phases A and B are allowed to simul-
taneously and partially occupy an in®nitesimal neigh-

borhood about each spatial point X in OD. Such
mixtures can be described using volume fraction or
density ideas. For example, the volume fraction of ma-

terial phase A at a ®xed spatial point X in the design
domain OD is denoted by fA(X) and represents the
fraction of an in®nitesimal volume element surrounding
point X occupied by material A. The volume fraction

de®nition for material phase B is similar. Natural con-
straints upon the spatial volume fractions for the two-
material problem are:

0 � fA�X� � 1; 0 � fB�X� � 1;

fA�X� � fB�X� � 1:
�1�

Since the material volume fractions at X are not inde-
pendent, in the two-material problems one need only

be concerned with the layout of phase A since that of
phase B follows directly from Eq. (1).

In the proposed topology design optimization frame-
work, the design domain OD will be discretized into
NEL low-order ®nite elements such as bilinear conti-

nuum degenerated shell elements; bilinear planar
continuum elements; or trilinear three-dimensional
continuum elements. For these low-order elements, the

independent material volume fraction fA is taken as
piecewise constant over the spatial domain occupied
by individual ®nite elements. The designable spatial/

topological distribution of material phase A in OD can
thus be described by a vector of design variables b

with contributions from each element comprising OD.
Speci®cally, the design vector b has the de®nition:

b :� ffA1
;fA2

; . . . ;fANEL
g: �2�

That is, the full vector of design variables b is com-
prised of NEL scalar-valued element level contri-

butions fAi
, each of which represents the volume

fraction of phase A in the ith element. This system
allows the two candidate materials to be arbitrarily dis-
tributed throughout the NEL ®nite elements compris-

ing the design domain OD, subject only to natural
constraints of Eq. (1).
Global material cost constraints are generally

imposed upon the designed structure by specifying
appropriate upper or lower limits on the global volume
fraction of the independent material phase. A typical

upper bound for a solid phase is represented as
hfAi ÿ CA � 0, where CA is a designer speci®ed upper
bound value on the global volume fraction of material

phase A in the structural domain OS. The global
volume fraction of phase A over the structural domain
OS is calculated as:

hfAi �

�
s

fA�X� dOS�
s

dOS:
�3�

Remark 2.1. It is recognized that topology optimization
formulations that use low-order C 0 ®nite elements and

design variables that are uniform on element domains
are potentially unstable and prone to achieve `checker-
boarding solutions' [24, 25]. This di�culty can easily be

solved, however, by utilizing the ®ltering methods
proposed in Ref. [3, 4].

2.2. Constitutive mixing rules

Since each ®nite element of the design domain OD

generally contains a mixture of materials A and B, a

method is needed to prescribe the constitutive behavior
of such mixtures. In the proposed topology optimiz-
ation framework, the constitutive behaviors are
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assumed to be governed by the classical Voigt and
Reuss mixing rules, and hybrid combinations thereof
(Fig. 1).

For multi-dimensional mixtures, the Voigt rule
assumes that the material phases share the same local
strain tensor, whereas the Reuss rule assumes that the
materials share the same local stress tensor. The associ-

ated decomposition equations for the Voigt mixing of
two general phases at a given material point X are:

EEEVoigt � EEEA � EEEB �4a�

sssVoigt � fAsssA�E� � fBsssB�E�: �4b�
The corresponding decomposition equations for the

Reuss mixing of two general materials are:

EEEReuss � fAEEEA � fBEEEB �5a�

sssReuss � sssA�EA� � sssB�EB�: �5b�
For the hybrid Voigt±Reuss mixture (Fig. 1), the
assumption is that both branches of the mixture have
the same strain and that the volume fraction of the

total mixture in the Voigt branch is a and that in the
Reuss branch is 1ÿ a. Accordingly, the e�ective stres-
ses and strains of the partitioned mixture are:

EEE � EEEVoigt � EEEReuss �6a�

sss � asssVoigt � �1ÿ a�sssReuss: �6b�
Here, it is proposed that a $ [0, 1] be treated as a con-
stant, with a=1 yielding a pure Voigt mixture and
a=0 yielding a pure Reuss mixture.

2.3. Objective and constraint functionals

Numerous formulation options exist in structural

topology design optimization in terms of utilizing
assorted combinations of objective and constraint
functionals B. The design variables as speci®ed in

Eq. (2) are continuous and real-valued, and it is
assumed that dependent functionals, both objective
and constraints, will also be continuous, real-valued,

and piecewise di�erentiable.
It is useful to distinguish between those functionals

B which are structural response-independent (that is
B � B(b)), and those which are response-dependent

(that is B � B(b, u)), where the performance or state
of the structure being designed is described in terms of
u, the vector displacement ®eld. An example of a re-

sponse-independent functional for the structural top-
ology optimization problem is the global volume
fraction of one of the candidate material phases,

de®ned as:

FA � hfAi ÿBA �7�
in which hfAi represents the volume average of fA
over the entire analysis domain OS. Other response-
independent functionals are for example `perimeter'
metrics [26]; and intermediate volume measures [26],
among many others. In contrast, the elastic structural

compliance functional for speci®c loading conditions is
response-dependent functional, being de®ned as:

2P �
�
S

q � u dOS �
�
h

h � u dh ÿ
�
g

tn � g dg, �8�

where q, h and g are the body forces, boundary trac-

tions, and prescribed displacement vectors, respect-
ively, applied to OS. There are a wide variety of other
possible response-dependent functionals including:

eigenvalues [27]; ultimate strength [5, 6]; compliant
mechanisms [8±10]; and viscoelastic damping [7], to
name a few.

2.4. The analysis problem

In this study, topology design is used to ®nd the op-
timal layout of materials in structures to minimize elas-
tic compliance and to tailor vibrational eigenvalues.

Fig. 1. Schematic of e�ective sti�ness of the hybridized Voigt±Reuss mixtures. For the diagrams shown, material A is taken to be

sti�er than material B.
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These types of objectives require the solution of linear
elliptic boundary value problems and linear eigenvalue

problems which are brie¯y formulated below.

2.4.1. Linear quasi-static analysis of structures

The standard strong form of the linear elliptic
boundary value problems for structural analysis is:
®nd u :OS jj4<3 such that

sij;i � rqj � 0 on OS �9�
subject to the boundary conditions:

uj � gj on Ggj for j � 1, 2, 3 �10a�
nisij � hj on Ghj for j � 1, 2, 3: �10b�
For well-posedness, it is assumed that the surface O of
the structural domain OS admits the decomposition

G � Ggj
[ Ghj

and Ggj
\ Ghj

� ;, for j=1, 2, 3. The
constitutive behavior of the material (or mixture of
materials) occupying OS relates the local stress sss to
local strain EEE=1

2[(Hu)+(Hu)T] through a linear elastic

constitutive model of the general form

sss � C : EEE, �11�
where the C is the e�ective elastic constitutive tensor

of the local mixture and depends upon: the properties
of materials A and B; the local volume fractions (fA,
fB); and the mixing rule being employed.

The weak or variational form of the problem is
obtained by restating the strong form (9), as�
S

�sij;iduj � rqjduj� dOS � 0, �12�

from which integration by parts, usage of the diver-
gence theorem and utilization of the natural boundary
conditions gives the virtual work equation�
S

sijdEij dOS ÿ
�
S

rqjduj dOS ÿ
�
Gh

hjduj dGh � 0: �13�

Discretization of the spatial domain OS into a ®nite

element mesh and usage of a Galerkin formulation in
which the real u and variational du kinematic ®elds are
expanded in terms of the same nodal basis functions
leads to the following force balance equations at each

unrestrained node A in the mesh:

rA � f intA ÿ f extA � o �14�
where

f intA �
�
S

BT
A : sss dOS � KAB � uB �15a�

f extA �
�
S

rNAqdOS �
�
Gh

NAh dGh: �15b�

For the class of problems being treated here, Eq. (14)

represents a set of linear algebraic equations which can
be solved in any number of ways. In Eq. (15), B and

NA represent the nodal strain±displacement operator
and the nodal shape function associated with isopara-
metric ®nite elements.

2.4.2. Weighted compliance functional
One method for obtaining optimal material layout

designs of minimal compliance for multiple loading
and/or restraint conditions on OS is to use objective
functions which are weighted averages of the compli-

ance for a number of independent loading cases. That
is, if N independent loading cases are to be considered,
the weighted compliance objective function would be

P�b; u�1�; u�2�; . . . ; u�N�� �
XN
n� 1

bnP
�n��b; u�n��; �16�

where the subscript or superscript (n) represents the

load case number; b (n) a constant weighting factor for
each load case; p (n) the nth compliance functional
value; and u(n) the displacement ®eld for the nth load-

ing/restraint case.
In gradient based [1st order] optimization algor-

ithms, it is essential that the total design gradient of

the objective and constraint functionals be accurately
and e�ciently computable. Thus for weighted compli-
ance functionals, we must be able to compute:

dP�b; u�1�; u�2�; . . . ; u�N��
db

�
XN
n� 1

bn

�
@P�n�

@b
� @P

�n�

@u�n�
du�n�

db

�
: �17�

Using adjoint sensitivity analysis methods [28] these
are directly computed as

dP
db
�
XN
n� 1

bn

�
@P�n�

@b
� ua�n� � @r

�n�

@b

�
�18�

where ua(n) is the `adjoint displacement ®eld' for the
nth loading case and is a solution of the nth `adjoint

problem'

K�n� � ua�n� � ÿ @P
�n�

@u�n�
: �19�

In those structural topology optimization problems,

where the objective is to minimize the compliance of a
structure subjected to a set of ®xed external load cases
f ext(n), n $ {1, . . . ,N}, the compliance functional (16)

reduces to:

P �
XN
n� 1

bn

�
1

2
f ext�n� � u�n�

�
; �20�
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and the corresponding design gradient of the weighted
compliance functional is simply

dP
db
� ÿ 1

2

XN
n� 1

bn

� �
S

E�n� :
@sss�n�

@b
dOS

�
; �21�

where EEE(n) and sss(n) are the respective strain and stress
®elds due to the nth loading case. The quantity @sss(n)/

@b in Eq. (21) is the `stress design gradient' and clearly
depends upon the mixing rule being employed. The
evaluation of this `stress design gradient' for the hybrid
Voigt±Reuss mixing rules was treated in Refs [4, 5].

2.4.3. Eigenmode analysis
Free vibrational modes of linear elastic structures

are characterized by the eigenvalue equation

0 � �Kÿ llM�yl; �22�

where K is the structural sti�ness matrix, M the mass
matrix, l l the lth vibrational eigenvalue, and yl the

corresponding eigenvector which describes the lth
mode of vibration. Since each element of OS generally
contains a mixture of materials, the elastic constitutive

tensor C at the element level used in computing K is
provided by the mixing rules in Section 2.2, while the
local density of the mixture in each element used in

computing M is given by the relation

r � fArA � fBrB: �23�

For solid-void applications as treated in this paper, the

density of the void phase r void is theoretically zero,
but a small density compared to that of the solid
phase r solid is maintained to avoid singularity of the

eigenvalue Eq. (22). The density of the void material B
is here taken as r void=10ÿ6r solid.

2.4.4. Eigenvalue functional
One method for optimizing the overall sti�ness of a

structure without reference to any speci®c loadings is
to maximize a functional L which is a linear combi-
nation of the ®rst J vibrational eigenvalues:

L �
XJ
k� 1

bklk �24�

where the ls are vibrational eigenvalues and the bs are
non-negative constant weighting factors. When L con-

tains only simple nonrepeated eigenvalues, ®rst order
design sensitivity analysis is quite straightforward since

dL
db
�
XK
k� 1

bk
dlk
db

�25�

where

dlk
db
�

yk �
�
@K

@b
ÿ lk

@M

@b

�
� yk

yk �M � yk
: �26�

When L contains nonsimple, repeated eigenvalues,

sensitivity analysis for the repeated roots can be some-
what more complicated. Unless other precautions are
taken, the procedures suggested in Refs [19, 20] for

repeated roots are usually required. However, for
those classes of problems where nonsimple vibrational
eigenvalues occur due strictly to the symmetry of the

structure, then the symmetry reduction methods of
Section 3 can be employed to alleviate the di�culty
and design sensitivity analysis of functionals containing

repeated eigenvalues can proceed along the lines of
Eqs. (25) and (26) without additional complications or
precautions. This is discussed in more detail in Section
4.

3. A symmetry reduction method

3.1. Motivation

There are two primary reasons for imposing geo-

metrical symmetry on material layout designs. First,
even when the design loads are asymmetrical the
designer may still seek a symmetric design so that

reversed loading cases can be accommodated equally
well. Second, even when both the design loads and
boundary conditions applied to OS are symmetrical,

the resulting material layout ®eld b as obtained
through standard optimization techniques, will not
necessarily feature the expected geometrical sym-
metries. While one may start with a symmetrical design

®eld b, small numerical perturbations from symmetry
will arise naturally due to roundo� errors in the optim-
ization and design sensitivity analysis procedures.

These asymmetry perturbations may continue to grow
resulting in a highly asymmetric design, or they may
remain relatively small. The intent here is not to ana-

lyze the stability of these perturbations, but to present
a robust strategy for imposing spatial symmetry on
material layout design b.
There are some special cases where symmetrical de-

sign solutions can be achieved simply by using sym-
metry (if it exists) in the analysis problem. If strict
symmetry is known to exist in the analysis problems

being considered for design optimization (i.e. loadings
and/or free vibrations), then one can work with a sub-
set of the physical design space as opposed to the full

domain, with considerable savings in computational
e�ort. However, such symmetries often times do not
exist, and the analyst/designer is forced to work with
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the entire structural domain. Since this is the more
general and common case, the method developed
below uses the full structural domain, and imposes

either gross or exact symmetry on the design, depend-
ing upon the symmetry of the mesh discretization.
To demonstrate the need for symmetry control

methods, the short cantilever topology design problem
is considered here. The cantilever beam design problem
(Fig. 2a) has been used extensively as a test problem

by a number of investigators, as for example in
Refs [1, 3, 4, 11, 29±31], with the mis-aligned version of
this problem considered to be especially challenging
problem. Here, we solve this as a compliance minimiz-

ation problem with a 25% global solid volume fraction
constraint for both an aligned mesh, and a mis-aligned
mesh consisting of (45�90) rectangular bilinear conti-

nuum ®nite elements each having an aspect ratio of
2:1. All calculations of this problem used ®ltering with
the default ®lter parameters as described in [4]. Fig. 2a

shows the pure Reuss solution (a=0) for the aligned
mesh problem without symmetry control. Even with-
out symmetry control, the design is roughly symmetric,
as one would expect, due to both the symmetry of the

mesh and the material response with respect to the
applied load. However, when the problem is solved so
that the load and restraints are not aligned with the mesh,

then the asymmetrical design obtained in Fig. 2b is ob-
tained. The procedure presented below e�ciently solves
this problem of asymmetrical material layout designs.

3.2. Symmetry by design space reduction

3.2.1. Basic procedure of the symmetry reduction method

One can imagine the structural domain OS as being
cut by one or more desired symmetry planes (a � Xÿ
c=0). Whereas the structural domain OS should be

grossly (but not necessarily exactly) symmetrical about

these planes, the loading/boundary conditions on OS

need not be at all symmetrical with respect to the

speci®ed plane(s). Furthermore, the mesh discretization

need not be precisely symmetrical with respect to the

symmetry planes. The proposed symmetry enforcement

method reduces the dimension of design vector b space

by taking design variables from the elements that lie

on one side of the plane (a � Xÿ c>0) and merging

them with the design variables in the corresponding el-

ements that lie on the other side of the symmetry

plane (a � Xÿ c<0). The typical ith ®nite element can

be characterized by its centroidal coordinates Xic. Two

elements, say the ith and j th elements, are correspond-

ing image element with respect to the symmetry plane

(Fig. 3a) if:

1. They are on opposite sides of the plane.

2. They have the same linear distances to the sym-

metry plane.

3. They project to the same point X*c on the symmetry

plane.

Since in reality, no two elements will have identical

projections or distances to the symmetry plane, ®nding

corresponding image elements on opposite sides of the

symmetry plane is not a matter of ®nding an exact cor-

responding image element, but rather of ®nding the

closest image element within certain tolerances. The al-

gorithm used by the authors to ®nd corresponding

image elements is shown in Box 1.

If a symmetry plane is not de®ned the volume frac-

tion of each element represents its own design variable

as shown in Fig. 3b, but if symmetry reduction is

employed, then design variables for corresponding

image elements are uni®ed and the design variable vec-

tor is condensed as shown in Fig. 3c. That is, volume

Fig. 2. The aligned cantilever design problem (a) and solutions obtained; the mis-aligned cantilever problem (b) with an asymmetri-

cal design solution.
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fractions of corresponding image elements fi and fj are

made to share the design variable brk in the reduced
design vector br, as shown in Fig. 3c. The vector br

here is thus de®ned as a reduced design vector since it

contains fewer design variables than b. The number of
elements (NEL), the number of design variables

(NDV), and the number of non-designable elements
(NELN), thus, have the following relations:

NDV � NELÿNELN; no symmetry reduction

NDV � NELÿNELN; symmetry reduction:

This geometrically based symmetry reduction pro-

cedure is extremely easy to program and can be

applied recursively with an arbitrary number of sym-

metry planes as is demonstrated in the solved problems

of Section 4. Each time an additional symmetry plane

is introduced, the dimension of the design vector b is

e�ectively halved. While this method is similar in spirit

to symmetry reduction methods like nodal enslave-

ments used in ®nite element analysis, it is geometrically

based therefore and works e�ectively with both regular

and irregular meshes which may or may not be sym-

Box 1. Algorithm for identifying corresponding image elements.
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metric about the symmetry planes. Before topology op-
timization begins, a mapping vector of length NEL is

generated which designates the relationship between

individual ®nite element volume fractions and design
variables in b. While enforcing symmetry and signi®-

cantly reducing the size of the optimization problem, it

has the added bene®t of facilitating design sensitivity
analysis in some pathological cases such as that of

repeated vibrational eigenvalues in symmetrical struc-

tures, which will be discussed in Section 4.

Using the sensitivity expression (21) for force-
controlled structures, the design sensitivity expression

with the proposed symmetry reduction method is

dPB

dbr
� ÿ 1

2

�
S

EEE :
@sss
@br

dOS

�
XNEL

n� 1

�
ÿ 1

2

�
n

�
EEE :

@sss
@fn

@fn
@br

�
dOn

�
: �27�

where @f n/@b
r is a design mapping term.

Attention is con®ned here to applying the symmetry

reduction method to micro-structure free topology for-
mulations which use scalar density or volume fraction

type design variables. Application of the symmetry re-

duction method to relaxed topology design formu-
lations that use microstructural design variables is also

possible, although somewhat more complicated.

To demonstrate the e�cacy of the proposed sym-

metry reduction method, the mis-aligned version of the

short cantilever beam design problem is solved here
again using a single symmetry plane. The solutions to

this problem without and with a symmetry plane are

shown in Fig. 4. Even though the ®nite element mesh

employed here is not itself symmetrical with respect to

the imposed symmetry plane, gross symmetry can still

be successfully imposed on the topology design using

the proposed symmetry reduction method.

The preceding example is one where a load was

applied to the structural domain OS, and due to the

symmetry of the load with respect to the material re-

sponse and the applied restraint conditions, one

expects to achieve a symmetrical design solution. There

are cases, however, where the loading system is not

symmetrical with respect to the applied restraint con-

ditions and yet symmetrical designs are desired to ac-

commodate reversed loading conditions. An example

of such a situation is the automotive deck lid problem

which has previously been presented in the research

literature [4, 32]. Fig. 5 shows the full structural

domain OS, the boundary and loading conditions, and

the design domain OD for the deck lid problem. The

white region in the structure represents the design

domain OD and the nondesignable black region ON

contains solid material. A thin shell structure such as

the deck lid uses both bending and membrane action

to carry the applied torsional loads. In the topology

optimization calculations performed for this problem,

continuum degenerated shell elements were employed

with reduced integration of both transverse shear and

membrane stresses to avoid numerical locking beha-

vior. For the ®xed loads and restraints shown in Fig. 5,

the topology design problem was formulated to mini-

mize the elastic compliance of the deck lid under the

applied loading with an upper bound on the global

Fig. 3. (a) Schematic of corresponding elements with respect to a symmetry plane; (b) design mapping between element volume

fractions and design variables without symmetry control; (c) design mapping between element volume fractions and design variables

with symmetry control.
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Fig. 4. The mis-aligned cantilever design problem and solutions obtained without (a) and with (b) symmetry control.

Fig. 5. Design domain and boundary/loading conditions for the deck lid problem along with solutions obtained (a) without and (b)

with symmetry control. Initial design state: f solid=1.0 on OD.
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solid volume fraction: hf solidiE0.35. The boundary
and loading conditions applied to the deck are

clearly asymmetrical and so one would expect an
unsymmetrical design such as that shown in Fig. 5a
if symmetry is not imposed on the layout. To obtain

the more desirable symmetric layout shown in Fig. 5b
which can accommodate a reversed loading equally
well (structure loaded at A and restrained at D), a

single symmetry plane was employed, which also
halved the size of the optimization problem.

4. Symmetry reduction and vibrational eigenvalues

4.1. Motivation

Many structures whose structural sti�nesses and
mass distributions are the same and symmetrical in two
or more orthogonal directions invariably encounter the
phenomenon of repeated, non-simple vibrational eigen-

values. It is recognized that the design sensitivity analy-
sis of repeated eigenvalues is di�cult due to the fact that
they are generally not continuously di�erentiable, but

are only directionally di�erentiable [17]. Accordingly,
design sensitivities for repeated vibrational eigenvalues
cannot be determined by expressions such as Eq. (26)

unless special precautions are taken. In this section it
will be shown that by applying symmetry reduction, the
design gradients of many non-simple repeated eigen-
values can in fact be evaluated by Eq. (26).

As an example of a very simple and symmetrical
structure that will encounter repeated vibrational
eigenvalues, we consider a thin, solid ¯at rectangular

plate which is pin supported along its edges as shown
in Fig. 6. Such a plate is assumed to be governed by
Kircho�'s plate theory, and so its vibrational eigenfre-

quencies are given by the expression [33]

o�m;n� �
�
p4D
rha4

�1=2�
m2 � n2

�
a

b

�2�
�28�

where a, b and h are the dimensions of the plate in the
x, y and z directions; D= Eh 3/12(1ÿ n 2) is the ¯ex-
ural sti�ness of the plate, and m, n are integer indices.

The associated free vibrational spatial mode shapes of
the plate are given by

W�m;n��x; y� � C sin

�
mpx
a

�
sin

�
npy
b

�
: �29�

Clearly, when the dimensions a and b of the plate are
the same in the x and y directions, the plate will have
an in®nite sequence of repeated non-simple eigenvalues
(i.e. o (m,n)=o (n,m)8m$ n). None of these eigenvalues

will be di�erentiable by Eq. (26) since the repeated
eigenvalues do not have unique associated eigenmodes.
The objective here is to demonstrate, however, that if

the design space is su�ciently reduced using the pro-
posed symmetry enforcement methods, then all of
these repeated eigenvalues will indeed be fully di�eren-

tiable by Eq. (26). This issue is discussed here in the
context of this ¯at plate example, but the fundamental
idea extends to much more general classes of structures

as well.

4.2. Di�erentiability and directional derivative

A design sensitivity expression for simple, non-
repeated eigenvalues was shown in Eq. (26), but if the
eigenvectors are M-orthonormalized, this expression

can be re-written in simpli®ed form as

dlk
db
� yk �

�
@K

@b
ÿ lk

@M

@b

�
� yk �30�

where it is reasonably assumed that the sti�ness and

mass matrices are continuously di�erentiable with

Fig. 6. Square ¯at plate which is pin supported along its edge boundaries.
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respect to designs b. If the kth eigenvalue is a non-
simple, repeated root of Eq. (22), then the design gra-

dient given by Eq. (30) will have multiple vector-values
in accordance with the multiple eigenvectors used to
evaluate it. For this reason, non-simple, repeated

eigenvalues are not continuously di�erentiable and are
only directionally di�erentiable. In general, Eq. (30) is
thus valid only for simple, non-repeated eigenvalues.

This is discussed with simple examples in Ref. [34]
with additional di�erentiability and continuity
theorems for eigenvalue problems presented in

Refs [35, 36].
To further investigate the di�erentiability of

repeated eigenvalues, it is assumed that at a given de-
sign b there exists a non-simple eigenvalue l* with

multiplicity s>1. Following Ref. [34], the directional
derivatives �l*� 0k of l* with respect to the typical kth
design variable can be evaluated as the eigenvalues of

the following auxiliary s� s matrix:

Ak
ij �

�
yi �

�
@K

@bk
dbk ÿ l* @M

@bk
dbk

�
� yj
�

i, j � 1,2, . . . , s

�31�

where yi and yj (i, j=1, 2, . . . , s) are any M-orthonor-
mal basis of the eigenvectors associated with l*(b).

The eigenvalues of Ak
ij clearly depend on the direction

of dbk, as will the directional derivative l�*� 0k. To
observe how the directional derivatives are related to

design variations dbk the case of a non-simple eigen-
value l* of multiplicity s=2 can be considered. The
characteristic equation whose roots provide the eigen-

values of Ak, Eq. (31) is simply

Ak
11 ÿ l 0 Ak

12

Ak
21 Ak

22 ÿ l 0

�����
����� �Ak

11A
k
22 ÿ �Ak

12�2

ÿ �Ak
11 �Ak

22�l 0 � �l 0 �2 � 0,

�32�

where the fact that Ak
12 �Ak

21 has been employed. If
Ak

12 is zero, the eigenvalues of Ak which are the direc-
tional derivatives �l*� 0k can be trivially obtained as
�l*� 0k �Ak

11;A
k
22, and �l*� 0k is clearly linear in dbk.

However, if Ak
12 does not vanish, the quadratic formula

must be used to ®nd the roots of Eq. (31) as
follows:

Fig. 7. Square plate eigenvalue optimization problem. (a) Plate properties, restraint conditions, three design symmetry planes and

natural frequencies before topology optimization; (b) second eigenmode for solid plate; (c) third eigenmode for solid plate; and (d)

optimized plate topology (®rst eigenmode shown) with resulting ®rst ®ve eigenfrequencies.
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l 0i;k �
1

2

�
�Ak

11 �Ak
22�

2
���������������������������������������������������������������������������
�Ak

11 �Ak
22�2 ÿ 4�Ak

11A
k
22 ÿ �Ak

12�2�
q �

;

i � 1; 2: �33�
Due to the square root term, the roots as expressed by
Eq. (33) are generally not linear in dbk. Thus, unless Ak

12

vanishes, �l*� 0k is not linear in dbk and the non-simple,

repeated eigenvalues will not be fully di�erentiable but
only directionally di�erentiable.

4.3. Symmetry reduction and repeated eigenvalues

To address the di�culties in di�erentiating repeated
eigenvalues, the following useful proposition will be
considered in this section.

Proposition. In a symmetric structure, which has
non-simple repeated eigenvalues as by Eq. (28), when
the design space is reduced by the proposed symmetry

reduction methods of Section 3, the auxiliary direc-
tional derivative matrix (31) is diagonal for all design
variations. [Speci®cally, Ak

ij � 0;8 k 2 f1; . . . ;NDVg
and 8 i 6� j; �i; j � 1; . . . ; s�:] Non-simple repeated eigen-

values are thus fully di�erentiable with respect to the
reduced design variables, and design sensitivities can thus
be computed directly by Eq. (30).

To show that this is true, consider that for a non-
simple repeated eigenvalue l* of multiplicity s, the
auxiliary matrix to solve for the directional design

derivatives can be written as

Ak
ij � y*

i �
� �

s

BT

�
@C

@brk
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B dOS

ÿ l*
�
s
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@fn
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dbrk
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NN dOn

�
� y*
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where k 2 f1; . . . ;NDVg, y*
i and y*

j (i, j=1, 2, . . . , s)
form the M-orthonormal basis of the eigenvectors as-

sociated with the non-simple eigenvalue l*, and y*
in

and y*
jn are localized eigenvectors of y*

i and y*
j for nth

element.
For simplicity and the sake of a speci®c example, it

will be assumed that we are dealing with the solid thin
square plate of Section 4.1 whose design space has

been reduced by employing three symmetry planes, as
shown in Fig. 7. The second vibrational eigenvalue for

this plate is non-simple and repeated, and has the
following eigenmodes:

y*
1 � sin

�
2px
a

�
sin

�
py
b

�
�35a�

y*
2 � sin

�
px
a

�
sin

�
2py
b

�
�35b�

These modes have both symmetrical and anti-sym-

metrical components about the center of the plate,
and furthermore are identical except for the fact that
they are rotated by 908 about the z-axis. When these
modes are inserted into Eq. (34), it can be shown that

the o�-diagonal terms Ak
12 of the auxiliary matrix

vanish and furthermore that Ak
11 �Ak

22.
2 Accordingly,

when the design space of symmetric structures is prop-

erly reduced, repeated vibrational eigenvalues of the
type considered here can in fact be straightforwardly
di�erentiated using Eq. (30). This greatly simpli®es the

problem of design sensitivity analysis of many
repeated eigenvalues and thus facilitates continuum
topology optimization of structures for maximal vi-

brational eigenvalues. In essence, with symmetry re-
duction, di�erent eigenmodes associated with non-
simple, repeated eigenvalues are projected into a
greatly reduced design space in which they appear

identical.

4.4. Demonstrative example

The topology design optimization of material layout
in a pin-supported square plate structural domain OS

(Fig. 7) is considered here. Similar problems have been
considered previously in Ref. [13] to minimize the elas-
tic compliance in square plates under static loading

conditions. Here, the Voigt-Reuss topology formu-
lation is applied with the proposed symmetry reduction
method to maximize a composite functional

L � S5
k� 1lkbk of the ®rst ®ve eigenvalues of the

square plate, in which the lk and bk are, respectively,
the kth eigenvalue and weighting factor. (Eigenvalues
are related to eigenfrequencies by the relation

lk=o2
k.) Since the structural domain OS is square and

symmetrically restrained, the second eigenvalue is
non-simple with multiplicity s=2 as shown in Fig. 7b

and c. This non-simple eigenvalue is thus treated in the
objective function L as the second and third eigen-
values. The eigenvalue maximization problem was

solved with material constraint hf solidiE0.50 using an
SLP optimization algorithm [37] with a move limit of
DM=0.05. Spatial ®ltering [4] with default ®lter

2 The details are omitted here but are presented at length in

Ref. [15].
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parameter values was also employed to preclude check-
erboarding solutions. Since the proposed symmetry re-

duction method was employed, design sensitivities of
the objective function were directly computed by
Eq. (30). Fig. 7d shows the material layout obtained

solution using a pure Reuss formulation (a=0) with
the ®rst eigenmode shown. The obtained material lay-
out is optimal, discrete, symmetric, and stable.

5. Summary and conclusions

It has been hypothesized that asymmetrical material
layout solutions are caused by the non-convexity of

highly penalized continuum topology design formu-
lations coupled with limited precision in numerical
computations. In this study, a novel symmetry re-
duction method to control and stabilize non-convex

topology design formulations has been investigated
and demonstrated on simple, representative examples.
Bene®ts of the proposed symmetry reduction method

are that it produces symmetrical material layout de-
signs while dramatically reducing the size of the optim-
ization problem that needs to be solved. In addition,

the symmetry reduction method has been found to
ease the di�culties in design sensitivity analysis of
some, but not all, repeated vibrational eigenvalues.

The symmetry reduction method is very simple and
easy to implement, and can be applied with topology
optimization of structures not just for linear elastic ap-
plications as considered here, but a wide variety of

other structural topology applications including com-
posite material design, strength optimization, compli-
ant mechanism design, and viscoelastic damping

optimization. In particular, for topology optimization
of inelastic structural systems, design sensitivity analy-
sis can be computationally intensive in proportion to

the number of design variables [5]. Since the reduction
techniques proposed here signi®cantly reduce the num-
ber of design variables, and in some cases the number
of analyses required as well, they can signi®cantly

reduce the computational e�ort required in topology
optimization of inelastic structural systems.
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