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UQ in Frequency Response Analysis

A linear, M -DOF, stochastic dynamic system satisfies

M(X)z̈(t ; X) + C(X)ż(t ; X) + K(X)z(t ; X) = f(t).

For f(t) = F(ω) exp(iωt), the steady-state displ. response is
z(t) = Z(ω; X) exp(iωt), where the displ. ampl. Z(ω; X) satisfies[

−ω2M(X) + iωC(X) + K(X)
]
Z(ω; X) = F(ω),

Z(ω; X)=
[
−ω2M(X)+iωC(X)+K(X)

]−1︸ ︷︷ ︸
:=H(ω;X)

F(ω)=H(ω; X)︸ ︷︷ ︸
FRF

F(ω).

X = (X1, . . . ,XN )ᵀ → N -dim. input random vector representing
uncertainties in mass, damping, and stiffness matrices.

Given the probability law of X, what are the statistical properties
(mean, variance, etc.) of random FRFs or displ. amplitudes?
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UQ Challenges & Methods

Input X = (X1, . . . ,XN )→ DYNAMIC
SYSTEM → Output Y = y(X)

Y = g(Z(ω; X)) =: y(X) (Frequency Response Analysis)

Challenges (Works at Iowa)
Locally prominent (nonsmoothness, discontinuity) responses

High-dimensional random input (N ≥ 10)

Popular (Existing) Methods
PCE, PDD, stochastic collocation, sparse grids, and others

Most methods break down for non-smooth/discontinuous responses

Explore orthogonal splines with local support
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Assumptions

The random vector X := (X1, . . . ,XN )ᵀ : (Ω,F)→ (AN ,BN )
satisfies the following conditions:

1 All component random variables Xk , k = 1, . . . ,N , are
statistically independent, but not necessarily identical.

2 Each input random variable Xk has absolute continuous
marginal CDF and continuous marginal PDF.

3 Each input random variable Xk is defined on a closed
bounded interval [ak , bk ] ⊂ R, bk > ak , so that all moments
exist, i.e., for l ∈ N0,

E
[
X l

k

]
:=

∫
Ω
X l

k (ω)dP(ω) =

∫ bk

ak

x l
k fXk

(xk )dxk <∞.



INTRODUCTION SCE EXAMPLES CLOSURE

Univariate B-Splines (Cox & de Boor, 1972)

For a knot sequence ξk = {ak = ξk ,1, . . . , ξk ,nk+pk+1 = bk},
where ξk ,1 ≤ · · · ≤ ξk ,nk+pk+1, nk > pk ≥ 0, the B-splines are

Bk
ik ,pk ,ξk

(xk ) :=
(xk − ξk,ik )Bk

ik ,pk−1,ξk
(xk )

ξk,ik+pk − ξk,ik
+

(ξk,ik+pk+1 − xk )Bk
ik+1,pk−1,ξk

(xk )

ξk,ik+pk+1 − ξk,ik+1
,

1 ≤ k ≤ N , 1 ≤ ik ≤ nk , 1 ≤ pk <∞.
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Orthonormalized Univariate B-Splines

For k = 1, . . . ,N , let Bk
ik ,pk ,ξk

(xk ) & ψk
ik ,pk ,ξk

(xk ) be real-valued
B-splines and ON B-splines in xk of degree pk ∈ N0 and knot
sequence ξk = {ak = ξk ,1, . . . , ξk ,nk+pk+1 = bk}, nk > pk ≥ 0.

Example: pk = 2, ξk = {−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1}.

Uniform T-Gaussian
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Multivariate ON B-Splines (Full Tensor-Product)

For i := (i1, . . . , iN ), p := (p1, . . . , pN ), Ξ := (ξ1, . . . , ξN ), the
tensor-product ON B-splines in x = (x1, . . . , xN ) are

Ψi,p,Ξ(x) =

N∏
k=1

ψk
ik ,pk ,ξk

(xk ), Sp,Ξ = span {Ψi,p,Ξ(x)}i∈In .

In := {i = (i1, . . . , iN ) : 1 ≤ ik ≤ nk , k = 1, . . . ,N }

The second-moment properties are

E [Ψi,p,Ξ(X)] =

{
1, i = 1 := (1, . . . , 1),

0, i 6= 1.

E [Ψi,p,Ξ(Xu)Ψj,p,Ξ(Xv )] =

{
1, i = j,

0, i 6= j.
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Spline Chaos Expansion (SCE)

Theorem

Under Assumptions 1-3, a random variable y(X) ∈ L2(Ω,F ,P)
admits an orthogonal expansion in multivariate ON spline basis
{Ψi,p,Ξ(X)}, referred to as the SCE of

yp,Ξ(X) :=
∑
i∈In

Ci,p,ΞΨi,p,Ξ(X),

where

Ci,p,Ξ :=

∫
AN

y(x)Ψi,p,Ξ(x)fX(x)dx.

E
[
|y(X)− yp,Ξ(X)|2

]
≤ Cωp+1(y ; h)L2(AN )

lim
h→0

E
[
|y(X)− yp,Ξ(X)|2

]
= 0
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Output Statistics

Mean and Variance

E [yp,Ξ(X)] = C1,p,Ξ = E [y(X)]

var [yp,Ξ(X)] =
∑
i∈In

C 2
i,p,Ξ − C 2

1,p,Ξ ≤ var [y(X)]

No. of Basis Functions

Lp,Ξ = |In| =
N∏

k=1

nk

SCE suffers from the curse of dimensionality.
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A 2-DOF System with Random Spring Constants

M1 = M2 = 1 kg, C1 = C2 = 1 N/(ms),

K1 = K2 = 15000(1 + 0.05XK ) N/m, XK ∼ N (0, 1)

Natural Freq. at Mean Input: 12.05 Hz; 31.54 Hz

M1 M2 

K1 K2 

C1 C2 

z1(t;X) 

f1(t) f2(t) 

z2(t;X) 

(
−ω2

[
M1 0
0 M2

]
+ iω

[
C1 + C2 −C2
−C2 C2

]
+
[
K1 + K2 −K2
−K2 K2

])(
Z1(ω;XK )
Z2(ω;XK )

)
=
(

1
0

)
What are the probabilistic characteristics of Zi(ω;XK ), i = 1, 2?
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St. Dev. of FRF

~ 51 bases
~ 9 bases
~ 17 bases

~ 11 bases
~ 19 bases
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PDF & CDF of FRF
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Non-Smooth Function
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Conclusion

A novel SCE for probabilistic freq. response analysis of
dynamic systems

SCE tackles non-smooth functions better than PCE

SCE provides more accurate estimates of output statistics
and PDF/CDF than PCE

SCE suffers from the curse of dimensionality
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