▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A Spline Chaos Expansion for Uncertainty Quantification in Linear Dynamical Systems

Sharif Rahman The University of Iowa, Iowa City, IA 52242

EMI/PMC 2024 Chicago, IL May 2024

Acknowledgment: DoE (P116S210005); NSF (CMMI-2317172)

INTRODUCTION	SCE	EXAMPLES	$_{\circ}^{\rm CLOSURE}$
00	000000	0000	
Outline			

UQ in Frequency Response Analysis

• A linear, M-DOF, stochastic dynamic system satisfies

$$\mathbf{M}(\mathbf{X})\ddot{\mathbf{z}}(t;\mathbf{X}) + \mathbf{C}(\mathbf{X})\dot{\mathbf{z}}(t;\mathbf{X}) + \mathbf{K}(\mathbf{X})\mathbf{z}(t;\mathbf{X}) = \mathbf{f}(t).$$

• For $\mathbf{f}(t) = \mathbf{F}(\omega) \exp(i\omega t)$, the steady-state displ. response is $\mathbf{z}(t) = \mathbf{Z}(\omega; \mathbf{X}) \exp(i\omega t)$, where the displ. ampl. $\mathbf{Z}(\omega; \mathbf{X})$ satisfies

$$\begin{bmatrix} -\omega^2 \mathbf{M}(\mathbf{X}) + \mathrm{i}\omega \mathbf{C}(\mathbf{X}) + \mathbf{K}(\mathbf{X}) \end{bmatrix} \mathbf{Z}(\omega; \mathbf{X}) = \mathbf{F}(\omega),$$
$$\mathbf{Z}(\omega; \mathbf{X}) = \underbrace{\begin{bmatrix} -\omega^2 \mathbf{M}(\mathbf{X}) + \mathrm{i}\omega \mathbf{C}(\mathbf{X}) + \mathbf{K}(\mathbf{X}) \end{bmatrix}^{-1}}_{:=\mathbf{H}(\omega; \mathbf{X})} \mathbf{F}(\omega) = \underbrace{\mathbf{H}(\omega; \mathbf{X})}_{\mathrm{FRF}} \mathbf{F}(\omega).$$

- $\mathbf{X} = (X_1, \dots, X_N)^{\intercal} \to N$ -dim. input random vector representing uncertainties in mass, damping, and stiffness matrices.
- Given the probability law of **X**, what are the statistical properties (mean, variance, *etc.*) of random FRFs or displ. amplitudes?

INTRODUCTION	SCE	EXAMPLES	CLOSURE
0•	000000	0000	
UO Challenges &	z Methods		

Input
$$\mathbf{X} = (X_1, \dots, X_N) \rightarrow$$

$$\begin{array}{c} \mathbf{DYNAMIC} \\ \mathbf{SYSTEM} \end{array} \rightarrow \text{Output } Y = y(\mathbf{X}) \end{array}$$

・コン ・ 一 ・ ・ ヨン ・ ヨン ・ ヨ

 $Y = g(\mathbf{Z}(\omega; \mathbf{X})) =: y(\mathbf{X}) \quad (\text{Frequency Response Analysis})$

• Challenges (Works at Iowa)

- Locally prominent (nonsmoothness, discontinuity) responses
- High-dimensional random input $(N \ge 10)$
- Popular (Existing) Methods
 - PCE, PDD, stochastic collocation, sparse grids, and others
 - Most methods break down for non-smooth/discontinuous responses

Explore orthogonal splines with local support

Assumptions			
00	00000	0000	
INTRODUCTION	SCE	EXAMPLES	CLOSURE

The random vector $\mathbf{X} := (X_1, \ldots, X_N)^{\mathsf{T}} : (\Omega, \mathcal{F}) \to (\mathbb{A}^N, \mathcal{B}^N)$ satisfies the following conditions:

- All component random variables X_k , k = 1, ..., N, are statistically independent, but not necessarily identical.
- **②** Each input random variable X_k has absolute continuous marginal CDF and continuous marginal PDF.
- Each input random variable X_k is defined on a closed bounded interval [a_k, b_k] ⊂ ℝ, b_k > a_k, so that all moments exist, *i.e.*, for l ∈ N₀,

$$\mathbb{E}\left[X_k^l
ight] := \int_\Omega X_k^l(\omega) d\mathbb{P}(\omega) = \int_{a_k}^{b_k} x_k^l f_{X_k}(x_k) dx_k < \infty.$$

うして ふゆ く 山 マ ふ し マ う く し マ

For a knot sequence $\boldsymbol{\xi}_k = \{a_k = \xi_{k,1}, \dots, \xi_{k,n_k+p_k+1} = b_k\},\$ where $\xi_{k,1} \leq \dots \leq \xi_{k,n_k+p_k+1}, n_k > p_k \geq 0$, the B-splines are

$$B_{i_k,p_k,\boldsymbol{\xi}_k}^k(x_k) := \frac{(x_k - \xi_{k,i_k})B_{i_k,p_k-1,\boldsymbol{\xi}_k}^k(x_k)}{\xi_{k,i_k+p_k} - \xi_{k,i_k}} + \frac{(\xi_{k,i_k+p_k+1} - x_k)B_{i_k+1,p_k-1,\boldsymbol{\xi}_k}^k(x_k)}{\xi_{k,i_k+p_k+1} - \xi_{k,i_k+1}},$$
$$1 \le k \le N, 1 \le i_k \le n_k, 1 \le p_k < \infty.$$

Outhonormalis	ad Universita	D Calinor	
INTRODUCTION	SCE	EXAMPLES	CLOSURE

For k = 1, ..., N, let $B_{i_k, p_k, \boldsymbol{\xi}_k}^k(x_k)$ & $\psi_{i_k, p_k, \boldsymbol{\xi}_k}^k(x_k)$ be real-valued B-splines and ON B-splines in x_k of degree $p_k \in \mathbb{N}_0$ and knot sequence $\boldsymbol{\xi}_k = \{a_k = \xi_{k,1}, ..., \xi_{k, n_k+p_k+1} = b_k\}, n_k > p_k \ge 0.$

Example: $p_k = 2, \boldsymbol{\xi}_k = \{-1, -1, -1, -0.5, 0, 0.5, 1, 1, 1\}.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 ののの

For $\mathbf{i} := (i_1, \ldots, i_N)$, $\mathbf{p} := (p_1, \ldots, p_N)$, $\mathbf{\Xi} := (\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_N)$, the tensor-product ON B-splines in $\mathbf{x} = (x_1, \ldots, x_N)$ are

$$\Psi_{\mathbf{i},\mathbf{p},\mathbf{\Xi}}(\mathbf{x}) = \prod_{k=1}^{N} \psi_{i_{k},p_{k},\boldsymbol{\xi}_{k}}^{k}(x_{k}), \ \mathcal{S}_{\mathbf{p},\mathbf{\Xi}} = \operatorname{span} \left\{ \Psi_{\mathbf{i},\mathbf{p},\mathbf{\Xi}}(\mathbf{x}) \right\}_{\mathbf{i}\in\mathcal{I}_{\mathbf{n}}}.$$

$$\mathcal{I}_{\mathbf{n}} := \{ \mathbf{i} = (i_1, \dots, i_N) : 1 \le i_k \le n_k, k = 1, \dots, N \}$$

The second-moment properties are

$$\mathbb{E}\left[\Psi_{\mathbf{i},\mathbf{p},\Xi}(\mathbf{X})\right] = \begin{cases} 1, & \mathbf{i} = \mathbf{1} := (1, \dots, 1), \\ 0, & \mathbf{i} \neq \mathbf{1}. \end{cases}$$
$$\mathbb{E}\left[\Psi_{\mathbf{i},\mathbf{p},\Xi}(\mathbf{X}_u)\Psi_{\mathbf{j},\mathbf{p},\Xi}(\mathbf{X}_v)\right] = \begin{cases} 1, & \mathbf{i} = \mathbf{j}, \\ 0, & \mathbf{i} \neq \mathbf{j}. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

INTRODUCTION	SCE	EXAMPLES	CLOSURE
oo	000000	0000	o
Spline Chaos Exp	ansion (SCE)		

Theorem

Under Assumptions 1-3, a random variable $y(\mathbf{X}) \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ admits an orthogonal expansion in multivariate ON spline basis $\{\Psi_{\mathbf{i},\mathbf{p},\Xi}(\mathbf{X})\}$, referred to as the SCE of

$$y_{\mathbf{p},\Xi}(\mathbf{X}) := \sum_{\mathbf{i}\in\mathcal{I}_{\mathbf{n}}} C_{\mathbf{i},\mathbf{p},\Xi} \Psi_{\mathbf{i},\mathbf{p},\Xi}(\mathbf{X}),$$

where

$$C_{\mathbf{i},\mathbf{p},\boldsymbol{\Xi}} := \int_{\mathbb{A}^N} y(\mathbf{x}) \Psi_{\mathbf{i},\mathbf{p},\boldsymbol{\Xi}}(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

$$\mathbb{E}\left[\left|y(\mathbf{X}) - y_{\mathbf{p}, \Xi}(\mathbf{X})\right|^{2}\right] \leq C\omega_{\mathbf{p}+1}(y; \mathbf{h})_{L^{2}(\mathbb{A}^{N})}$$
$$\lim_{\mathbf{h} \to \mathbf{0}} \mathbb{E}\left[\left|y(\mathbf{X}) - y_{\mathbf{p}, \Xi}(\mathbf{X})\right|^{2}\right] = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

INTRODUCTION	SCE	EXAMPLES	CLOSURE
	00000		
Output Statistics			

• Mean and Variance

$$\mathbb{E}\left[y_{\mathbf{p},\Xi}(\mathbf{X})\right] = C_{\mathbf{1},\mathbf{p},\Xi} = \mathbb{E}\left[y(\mathbf{X})\right]$$
$$\operatorname{var}\left[y_{\mathbf{p},\Xi}(\mathbf{X})\right] = \sum_{\mathbf{i}\in\mathcal{I}_{\mathbf{n}}} C_{\mathbf{i},\mathbf{p},\Xi}^2 - C_{\mathbf{1},\mathbf{p},\Xi}^2 \leq \operatorname{var}\left[y(\mathbf{X})\right]$$

• No. of Basis Functions

$$\boxed{L_{\mathbf{p},\mathbf{\Xi}} = |\mathcal{I}_{\mathbf{n}}| = \prod_{k=1}^{N} n_k}$$

SCE suffers from the curse of dimensionality.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

A 2-DOF System with Random Spring Constants

$$M_1 = M_2 = 1$$
 kg, $C_1 = C_2 = 1$ N/(ms),

$$K_1 = K_2 = 15000(1 + 0.05X_K) \text{ N/m}, X_K \sim N(0, 1)$$

Natural Freq. at Mean Input: 12.05 Hz; 31.54 Hz

$$\begin{pmatrix} -\omega^2 \begin{bmatrix} M_1 & 0\\ 0 & M_2 \end{bmatrix} + i\omega \begin{bmatrix} C_1 + C_2 & -C_2\\ -C_2 & C_2 \end{bmatrix} + \begin{bmatrix} K_1 + K_2 & -K_2\\ -K_2 & K_2 \end{bmatrix} \begin{pmatrix} Z_1(\omega; X_K)\\ Z_2(\omega; X_K) \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

What are the probabilistic characteristics of $Z_i(\omega; X_K)$, i = 1, 2?

INTRODUCTION	SCE	EXAMPLES	$_{\circ}^{\rm CLOSURE}$
00	000000	o●oo	
St. Dev. of FRF			

00	000000	0000	0
DDD 0 ODD			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

 x_K

◆□▶ ◆圖▶ ◆注▶ ◆注▶ ─注:

. . .

INTRODUCTION	SCE	EXAMPLES	CLOSURE
			•

Conclusion

- A novel SCE for probabilistic freq. response analysis of dynamic systems
- SCE tackles non-smooth functions better than PCE
- SCE provides more accurate estimates of output statistics and PDF/CDF than PCE
- SCE suffers from the curse of dimensionality

Reference

Rahman, S. and Jahanbin, R., "Orthogonal Spline Expansions for Uncertainty Quantification in Linear Dynamical Systems," *Journal of Sound and Vibration*, Vol. 512, Article 116366, pp. 1-25, 2021.

うして ふゆ く 山 マ ふ し マ う く し マ