A Generalized Polynomial Chaos Expansion for High-Dimensional Design Optimization under Dependent Random Variables

Dongjin Lee¹, Sharif Rahman²

¹Department of Automotive Engineering, Hanyang University ²Department of Mechanical Engineering, The University of Iowa

May 28-31, 2024 EMI/PMC 2024, Chicago, IL, USA Acknowledgment: DOE (P116S210005); NSF (CMMI-2317172)

<ロ><日><日><日><日><日><日><日><日><日><日><1/17

INTRODUCTI	ON

SENSITIVITY & DESIGN

EXAMPL 0000 CLOSURE o

2 SENSITIVITY & DESIGN

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

EXAMPLE 0000

Design under uncertainty

Inputs
$$\mathbf{X} = (X_1, \dots, X_N) \in \mathbb{R}^N \to \begin{vmatrix} \mathbf{COMPLEX} \\ \mathbf{SYSTEM} \end{vmatrix}$$

$$\rightarrow$$
 Output $y(\mathbf{X})$

 $\mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}; \mathbf{d}) d\mathbf{x}$: Input random variables $\mathbf{d} \in \mathcal{D} \subseteq \mathbb{R}^{M}$: Design parameters

RDO: Robust design opt. RBDO: Reliability-based design opt.

EXAMPLI 0000

Stochastic design optimization

• RDO

$$\min_{\mathbf{d}\in\mathcal{D}\subseteq\mathbb{R}^{M}} \quad c_{0}(\mathbf{d}) := w_{1} \underbrace{\frac{\mathbb{E}_{\mathbf{d}}\left[y_{0}(\mathbf{X})\right]}{\mu_{0}^{*}}}_{p_{0}^{*}} + w_{2} \underbrace{\frac{\sqrt{\operatorname{var}_{\mathbf{d}}\left[y_{0}(\mathbf{X})\right]}}{\sigma_{0}^{*}}}_{\sigma_{0}^{*}},$$
subject to
$$c_{l}(\mathbf{d}) := \alpha_{l} \sqrt{\operatorname{var}_{\mathbf{d}}\left[y_{l}(\mathbf{X})\right]} - \mathbb{E}_{\mathbf{d}}\left[y_{l}(\mathbf{X})\right] \le 0, \ l = 1, \cdots, K,$$

$$d_{k,L} \le d_{k} \le d_{k,U}, \ k = 1, \cdots, M$$

Needs: Statistical moments, design sensitivities of moments • **RBDO**

$$\min_{\mathbf{d}\in\mathcal{D}\subseteq\mathbb{R}^{M}} c_{0}(\mathbf{d}),$$
subject to
$$c_{l}(\mathbf{d}) := \mathbf{P}_{\mathbf{d}} [\mathbf{X}\in\Omega_{\mathbf{d},F,l}] - p_{l} \leq 0, \ l = 1, \cdots, K,$$

$$d_{k,L} \leq d_{k} \leq d_{k,U}, \ k = 1, \cdots, M,$$

Existing methods & limitations

Existing methods

- Statistical moment analysis
 - PEM, TSE, TPQ, PCE, PDD, etc.
- Reliability analysis
 - $\bullet~$ FOSM, FORM/SORM, Saddlepoint approx., etc.

Limitations

- Curse of dimensionality: PEM, TPQ, PCE, GPCE
- Low non-linearity of output: PEM, TSE, FOSM, FORM/SORM
- Transformed input from depen. to indepen. (high non-linearity): PEM, TSE, TPQ, PCE, PDD, FOSM, FORM/SORM, Saddlepoint approx.
- Select dependent probability measures: GPCE, GPDD

(Goal) To create robust methods for high-dimensional design opt. under arbitrary, dependent random variables

High-dimensional stochastic design opt.

Transforming input ${\bf X}$ to ${\bf Z}$ to sidestep update of ${\bf X}$ during opt.

Scaling:
$$\mathbf{Z} = \operatorname{diag}[r_1, \dots, r_N] \mathbf{X}$$

 $\mathbb{E}_{\mathbf{d}}[Z_{i_k}] = \mathbb{E}_{\mathbf{d}}[X_{i_k}] r_{i_k} = \begin{bmatrix} \mathsf{fixed} \\ d_k \end{bmatrix} r_{i_k} = \begin{bmatrix} \mathsf{fixed} \\ g_k \end{bmatrix}$

Alternative formulation of RDO

$$\begin{array}{ll} \min_{\mathbf{d}\in\mathcal{D}\subseteq\mathbb{R}^{M}} & c_{0}(\mathbf{d}) & := w_{1}\frac{\mathbb{E}_{\mathbf{g}(\mathbf{d})}[h_{0}(\mathbf{Z};\mathbf{r})]}{\mu_{0}^{*}} + w_{2}\frac{\sqrt{\operatorname{var}_{\mathbf{g}(\mathbf{d})}[h_{0}(\mathbf{Z};\mathbf{r})]}}{\sigma_{0}^{*}}, \\ \text{subject to} & c_{l}(\mathbf{d}) & := \alpha_{l}\sqrt{\operatorname{var}_{\mathbf{g}(\mathbf{d})}[h_{l}(\mathbf{Z};\mathbf{r})]} - \mathbb{E}_{\mathbf{g}(\mathbf{d})}[h_{l}(\mathbf{Z};\mathbf{r})] \leq 0, \\ & l = 1, \dots, K, \ d_{k,L} \leq d_{k} \leq d_{k,U}, \ k = 1, \dots, M. \end{array}$$

Alternative formulation of RBDO

$$\min_{\mathbf{d}\in\mathcal{D}\subseteq\mathbb{R}^{M}} c_{0}(\mathbf{d}),$$
subject to $c_{l}(\mathbf{d}) := \mathbb{P}_{\mathbf{g}(\mathbf{d})} \left[\mathbf{Z}\in\bar{\Omega}_{F,l}(\mathbf{d}) \right] - p_{l} \leq 0, \ l = 1, \dots, K,$

$$d_{k,L} \leq d_{k} \leq d_{k,U}, \ k = 1, \dots, M.$$

High-dimensional UQ analysis

Dimensionally decomposed GPCE (Lee and Rahman 2023) $h(\mathbf{Z}; \mathbf{r}) \simeq h_{S,m}(\mathbf{Z}; \mathbf{r}) = \sum_{i=1}^{L_{N,S,m}} C_i(\mathbf{r}) \Psi_i(\mathbf{Z}; \mathbf{g}), \quad L_{N,S,m} := \sum_{s=1}^{S} {N \choose s} {m \choose s}$ $\Psi_i(\mathbf{Z}; \mathbf{g}) =$ Multivariate ON poly. basis (non-tensor products) $C_i(\mathbf{r}) =$ Expansion coefficients

- Dimension-wise decomposition
- Ability to select safely and effectively basis functions

Computational cost (DD-GPCE vs. regular GPCE)

<i>m</i> =3						
Ν	DD-GPCE	DD-GPCE	Regular			
	S=1	<i>S</i> =2	GPCE			
10	31	166	286			
20	61	631	1,771			
40	121	2,461	12,341			

Ex. if N = 40, S = 1, m = 3, (DD-GPCE) $L_{40,1,3} = 121$ (regular GPCE) $L_{40,3} = 12,341$

regular GPCE:
$$L_{N,m} := \frac{(N+m)!}{N!m!}$$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ < ○ < ?/17</p>

SENSITIVITY & DESIGN

EXAMPL 0000

High-dimensional UQ analysis

Three-step algorithm to generate multivariate ON

For $u \subseteq \{1, \ldots, N\}$, $0 \leq S \leq N$, consider **multi-index set** $\{\mathbf{j} = (\mathbf{j}_u, \mathbf{0}_{-u}) \in \mathbb{N}_0^N : \mathbf{j}_u \in \mathbb{N}^{|u|}, |u| \leq |\mathbf{j}_u| \leq m, 0 \leq |u| \leq S\}, |\mathbf{j}_u| := j_{i_1} + \cdots + j_{i_{|u|}}, \mathbf{j}^{(1)}, \ldots, \mathbf{j}^{(L_{N,S,m})}, \mathbf{j}^{(1)} = \mathbf{0}.$

Create monomial basis

$$\mathbf{P}_{S,m}(\mathbf{z}) = (\mathbf{z}^{\mathbf{j}^{(1)}}, \dots, \mathbf{z}^{\mathbf{j}^{(L_{N,S,m})}})^{\mathsf{T}}$$

② Estimate monomial moment matrix

$$\mathbf{G}_{S,m} := \mathbb{E}_{\mathbf{g}}[\mathbf{P}_{S,m}(\mathbf{Z})\mathbf{P}_{S,m}^\intercal(\mathbf{Z})]$$

Onduct Whitening transformation

$$(\Psi_1(\mathbf{z},\mathbf{g}),\ldots,\Psi_{L_{N,S,m}}(\mathbf{z};\mathbf{g}))^{\intercal} = \mathbf{Q}_{S,m}^{-1}\mathbf{P}_{S,m}(\mathbf{z}), \ \mathbf{G}_{S,m} = \mathbf{Q}_{S,m}\mathbf{Q}_{S,m}^{\intercal}$$

<ロト < 部 > < 王 > < 王 > < 三 > の < で 8/17

INTRODUCTIONSENSITIVITY & DESIGNEXAMPLECLOSUFHigh-dimensional UQ analysis

DD-GPCE (Lee and Rahman 2021)

$$h(\mathbf{Z};\mathbf{r}) \simeq h_{S,m}(\mathbf{Z};\mathbf{r}) = \sum_{i=1}^{L_{N,S,m}} C_i(\mathbf{r})\Psi_i(\mathbf{Z};\mathbf{g}), \quad L_{N,S,m} := \sum_{s=1}^{S} \binom{N}{s}\binom{m}{s}$$

• First two moments

$$\mathbb{E}_{\mathbf{g}}\left[h_{S,m}(\mathbf{Z};\mathbf{r})\right] = C_{1}(\mathbf{r}) = \mathbb{E}_{\mathbf{g}}\left[h(\mathbf{Z})\right]$$
$$\operatorname{var}_{\mathbf{g}}[h_{S,m}(\mathbf{Z};\mathbf{r})] = \sum_{i=2}^{L_{N,S,m}} C_{i}^{2}(\mathbf{r})$$

• Failure probability

$$\begin{split} \mathbb{P}_{\mathbf{g}(\mathbf{d})}\left[\mathbf{Z}\in\bar{\Omega}_{F,S,m}\right] &:= \int_{\bar{\mathbb{A}}^N} I_{\bar{\Omega}_{F,S,m}}(\mathbf{z}) f_{\mathbf{Z}}(\mathbf{z};\mathbf{g}) d\mathbf{z} := \mathbb{E}_{\mathbf{g}}\left[I_{\bar{\Omega}_{F,S,m}}(\mathbf{Z})\right] \\ &= \lim_{\bar{L}\to\infty} \frac{1}{\bar{L}} \sum_{l=1}^{\bar{L}} I_{\bar{\Omega}_{F,S,m}}(\mathbf{z}^{(l)}), \quad \boxed{I_{\bar{\Omega}_{F,S,m}}(\mathbf{z}) = \begin{cases} 1, & \mathbf{z}\in\bar{\Omega}_{F,S,m}, \\ 0, & \mathbf{z}\notin\bar{\Omega}_{F,S,m}. \end{cases}} \end{split}$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の へ で 9/17

INTRODUCTION	SENSITIVITY & DESIGN	EXAMPLE	CLOS
000	0000000	0000	o

High-dimensional design sensitivity analysis

Sensitivities of first two moments

$$\frac{\partial \mathbb{E}_{\mathbf{g}}[h_{S,m}(\mathbf{Z})]}{\partial d_{k}} = \frac{\partial g_{k}}{\partial d_{k}} \sum_{i=2}^{L_{\min}} C_{i}(\mathbf{r}) D_{k,j}(\mathbf{g}), \ L_{\min} = \min(L_{N,S,m}, L_{N,S',m'})$$
$$\frac{\partial \mathbb{E}_{\mathbf{d}}[h_{S,m}^{2}(\mathbf{Z})]}{\partial d_{k}} = \frac{\partial g_{k}}{\partial d_{k}} \sum_{i_{1}=1}^{L_{N,S,m}} \sum_{i_{2}=1}^{L_{N,S,m}} \sum_{i_{3}=2}^{L_{N,S',m'}} C_{i_{1}}(\mathbf{r}) C_{i_{2}}(\mathbf{r}) D_{k,i_{3}}(\mathbf{g}) T_{i_{1}i_{2}i_{3}}$$

$$T_{i_1 i_2 i_3} = \mathbb{E}_{\mathbf{g}} \left[\prod_{p=1}^3 \Psi_{i_p}(\mathbf{Z}; \mathbf{g}) \right], \ s_{k,S',m'}(\mathbf{Z}; \mathbf{g}) = \sum_{i=2}^{L_{N,S',m'}} D_{k,i}(\mathbf{g}) \Psi_i(\mathbf{Z}; \mathbf{g})$$

Design sensitivities of failure probability

$$\frac{\partial \mathbb{P}_{\mathbf{g}}\left[\mathbf{Z} \in \bar{\Omega}_{F,S,m}\right]}{\partial d_{k}} = \frac{\partial g_{k}}{\partial d_{k}} \lim_{\bar{L} \to \infty} \frac{1}{\bar{L}} \sum_{l=1}^{\bar{L}} \left[I_{\bar{\Omega}_{F,S,m}}(\mathbf{z}^{(l)}) s_{k}(\mathbf{z}^{(l)};\mathbf{g}) \right]$$

◆□ → ◆母 → ◆臣 → ◆臣 → ○ ● ● ● ●

High-dimensional design optimization

Single-step DD-GPCE

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

SENSITIVITY & DESIGN

EXAMPLE 0000 CLOSURE

High-dimensional design optimization

Local stochastic design optimization problem solved by single-step process

$$\begin{split} & \underset{\mathbf{d} \in \mathcal{D}^{(q')} \subseteq \mathbb{R}^{M}}{\min} \tilde{c}_{l,S,m}^{(q')}(\mathbf{d}) := w_{1} \frac{\mathbb{E}_{\mathbf{g}}[\tilde{h}_{0,S,m}^{(q')}(\mathbf{Z};\mathbf{r})]}{\mu_{0}^{*}} + w_{2} \frac{\sqrt{\operatorname{var}_{\mathbf{g}}[\tilde{h}_{0,S,m}^{(q')}(\mathbf{Z};\mathbf{r})]}}{\sigma_{0}^{*}}, \\ & \text{subject to } \tilde{c}_{l,S,m}^{(q')}(\mathbf{d}) := \alpha_{l} \sqrt{\operatorname{var}_{\mathbf{g}}[\tilde{h}_{l,S,m}^{(q)}(\mathbf{Z};\mathbf{r})]} - \mathbb{E}_{\mathbf{g}}[\tilde{h}_{l,S,m}^{(q)}(\mathbf{Z};\mathbf{r})] \leq 0, \\ & d_{k} \in \left[d_{k}^{(q)} - \beta_{k}^{(q')} - \mathbb{E}_{\mathbf{g}}[\tilde{h}_{l,S,m}^{(q)}(\mathbf{Z};\mathbf{r})], d_{k,0} + \beta_{k}^{(q')} \frac{(d_{k,U} - d_{k,L})}{2}\right], \\ & l = 1, \dots, K; \ k = 1, \dots, M. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めんで

SENSITIVITY & DESIGN

EXAMPLE •000 CLOSURE

Example: Train bogie side frame

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

INTRODUCTION 000	SENSITIVITY & DESIGN 0000000	EXAMPLE o●oo	C: 0
Example: Pr	oblem statement		
	min $\mathbf{a}(\mathbf{d}) = \mathbb{E}_{\mathbf{d}}[y_0(\mathbf{X})]$		

$$\begin{array}{ll} \min_{\mathbf{d}\in\mathcal{D}} & c_0(\mathbf{d}) & \coloneqq \overline{\mathbb{E}_{\mathbf{d}_0}[y_0(\mathbf{X})]} \\ \text{subject to} & c_1(\mathbf{d}) & \coloneqq \mathbb{P}_{\mathbf{d}}[y_1(\mathbf{X}) < 0] - \Phi(-3) \le 0 \end{array}$$

$$y_0(\mathbf{X}) = \rho \int_{\mathcal{D}'(\mathbf{X})} d\mathcal{D}'$$

$$y_1(\mathbf{X}) = \log\left[\frac{N_1(\mathbf{X})}{1 \times 10^7}\right]$$

Cast steel

Density=7,800 kg/m³ Elastic molulus=203 GPa Poisson's ratio=0.3 Fatigue strength coefficient=1,332 MPa Fatigue strength exponent=-0.1085 Fatigue ductility coefficient=0.375 Fatigue ductility exponent=-0.6354

Vertical load F and boundary conditions

Example: Random input

		$ \begin{array}{c} $	321	0.23			ALE TY AL			-X ₃₉	13
		Randon	n variable	Mean	Stand	ard deviat	ion Prob	ability o	listribution	1	
			X_k	d_k	0.0	$2 d_k$		Logno	rmal	-	
					k = 1	$, \ldots, 41$					
			С	orrelation	coefficients	=0.4 amon	$X_1,, X_4$	1		-	
	1	,	1	1	,	1	,	,	1	1	1
k	$d_{l,0} \text{ mm}$	$d_{l,L} \text{ mm}$	$d_{l,U} \text{ mm}$	k	$d_{l,0} \text{ mm}$	$d_{l,L} \text{ mm}$	$d_{l,U} \text{ mm}$	k	$d_{l,0} \text{ mm}$	$d_{l,L} \text{ mm}$	$d_{l,U} \text{ mm}$
1	230	80	250	15	900	800	900	29	300	100	300
2	600	400	600	16	900	850	900	30	200	100	200
3	40	30	50	17	20	10	30	31	200	100	200
4	50	50	100	18	20	10	50	32	40	20	40
5	500	330	500	19	20	10	30	33	40	20	40
6	50	50	100	20	20	10	50	34	200	100	200
7	230	80	250	21	300	100	300	35	40	20	40
8	600	400	600	22	300	100	300	36	40	20	40
9	40	30	50	23	200	100	200	37	30	30	40
10	900	850	900	24	300	100	300	38	30	30	40
11	900	750	900	25	200	100	200	39	400	300	400
12	900	800	900	26	300	100	300	40	30	30	60
13	900	850	900	27	300	100	300	41	30	30	60
14	900	750	900	28	200	100	200				

SENSITIVITY & DESIGN

EXAMPLE

CLOSURE o

Example: Shape design results

MPSS-DD-GPCE leads to RBDO of the bogie side frame, reducing the mean of mass by 50.39 % via 4,980 FEA.

INTRODUCTION 000	SENSITIVITY & DESIGN	E: 00

Conclusion

- A novel design optimization method is based on DD-GPCE for statistical moment and reliability analyses of a high-dimensional complex response under dependent input random variables.
- A new sensitivity method yields the second-moments, failure probability, and design sensitivities simultaneously.
- MPSS-DD-GPCE can handle industrial-scale design problems with high-dimensions.

Lee, D. and Rahman, S. (2023) High-Dimensional Stochastic Design Optimization under Dependent Random Variables by a Dimensionally Decomposed Generalized Polynomial Chaos Expansion Int. J. Uncertainty Quantification, Vol. 13, pp.23-59

CLOSURE