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The flow of an incompressible viscous fluid past a sphere is investigated numerically
and experimentally over flow regimes including steady and unsteady laminar flow at
Reynolds numbers of up to 300. Flow-visualization experiments are used to validate
the numerical results and to provide additional insight into the behaviour of the flow.
Near-wake visualizations are presented for both steady and unsteady flows.
Calculations for Reynolds numbers of up to 200 show steady axisymmetric flow and
compare well with previous experimental and numerical observations. For Reynolds
numbers of 210 to 270, a steady non-axisymmetric regime is found, also in agreement
with previous work. To advance the basic understanding of this transition, a symmetry
breaking mechanism is proposed based on a detailed analysis of the calculated flow
field.

Unsteady flow is calculated at Reynolds numbers greater than 270. The results at a
Reynolds number of 300 show a highly organized periodic flow dominated by vortex
shedding. An analysis of the calculated vortical structure of the wake reveals a
sequence of shed hairpin vortices in combination with a sequence of previously
unidentified induced hairpin vortices. The numerical results compare favourably with
experimental flow visualizations which, interestingly, fail to reveal the induced vortices.
Based on the deduced symmetry-breaking mechanism, an analysis of the unsteady
kinematics, and the experimental results, a mechanism driving the transition to
unsteady flow is proposed.

1. Introduction

The flow of a viscous fluid past a stationary isolated sphere may be considered a
simplified case of a general family of immersed bluff-body flows with widespread
applications. Like its two-dimensional counterpart, the flow past a cylinder, instabilities
are known to generate fully three-dimensional unsteady flow fields in spite of the
symmetry of the body. Unlike two-dimensional flows, however, such three-dimensional
flows are capable of admitting even more complicated kinematic and vortical
interactions and have, therefore, remained less well understood.

The behaviour of the flow past a sphere at varying Reynolds numbers has been
studied by a number of researchers. Taneda (1956) used flow visualization methods to
study the wake of a sting-mounted sphere for 5!Re! 300, where Re is the Reynolds
number based on the sphere diameter D and velocity U¢. He determined that
separation from the rear of a sphere occurs at ReE 24 and results in the generation of
an axisymmetric vortex ring. With regard to the stability of the resultant wake, he
observed a faint periodic motion, ‘with a very long period’ at the rear of the vortex ring
beginning at Re¯ 130.
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20 T. A. Johnson and V. C. Patel

Magarvey & Bishop (1961) used dye visualization to reveal the wakes of free-falling
drops of an immiscible liquid in water. A qualitative comparison to standard solid
sphere wakes is possible, as pointed out by Natarajan & Acrivos (1993), due to the
presence of surface-active impurities at the liquid–liquid interface, which hold the
drops in a semi-rigid spherical shape, a presumption supported by Winnikow & Chao
(1966). The wakes of the liquid spheres exhibited the same vortex ring structure
observed by Taneda. However, the rings remained stable and axisymmetric up to Re
¯ 210. In the range 210!Re! 270, the flow became non-axisymmetric as the ring
vortex shifted off-axis and dye was released from the wake in two parallel threads. In
contrast to the flow past a circular cylinder, which becomes unsteady upon the loss of
symmetry, this double-thread wake was observed to remain steady. By Re¯ 270 the
double-thread wake was itself observed to become unstable and eventually vortex
loops began shedding from the sphere as so-called hairpin vortices.

The steady non-axisymmetric wake seen behind Magarvey & Bishop’s liquid drops
for 210!Re! 270 has also been observed behind free-falling, fluid-filled spherical
shells by Nakamura (1976). It should be noted that the mass of fluid within
Nakamura’s spherical shells was free to move around, potentially affecting the sphere’s
motion and the wake development. His wakes remained stable and axisymmetric up to
Re¯ 190 at which point he too noted the steady, non-axisymmetric double-thread
wake.

Tomboulides (1993) presents numerical results from a spectral element solution of
the flow over a sphere for 25!Re! 10$ and with large-eddy simulation at Re¯
2¬10%. He shows steady axisymmetric flow for Re! 212 with initial separation at Re
¯ 20. He found a regular bifurcation, i.e. a transition to steady flow, at Re¯ 212. The
vorticity of the resulting steady flow field resembled the double-thread wake observed
by Magarvey & Bishop at 210!Re! 270 and Nakamura at Re¯ 190.

Natarajan & Acrivos (1993) investigated the stability of the axisymmetric sphere
flow using a finite-element method. Consistent with the above results, they too found
a regular bifurcation at Re¯ 210 and they naturally suggest that this corresponds to
the transition from the steady axisymmetric wake to the steady, non-axisymmetric,
double-thread wake.

The regime of unsteady vortex shedding from a sphere has received the most
attention in the literature. The observed onset of the shedding regime covers the range
290!Re! 400. A number of researchers, including Achenbach (1974), Kim &
Durbin (1988), and Sakamoto & Haniu (1990), present measurements of the
frequencies present in the unsteady wake. At, and in a small range above, the onset of
unsteadiness, i.e. up to ReE 420, a strongly periodic process is indicated by the
observation of a single frequency in the wake at a Strouhal number St in the range 0±15
!St! 0±17. In addition to providing frequency measurements, Achenbach, Sakamoto
& Haniu, and Perry & Lim (1978) have shown, with varying detail, visualizations of
hairpin vortices shedding from spheres. Sakamoto & Haniu (1990, 1995), in particular,
provide fascinating pictures of the hairpin vortices as they form in both uniform and
shear flows.

Recent numerical solutions of the unsteady flow past a sphere include that by
Shirayama (1992), who solved for the case of flow accelerating from rest to Re¯ 500;
Gebing (1994), who solved the unsteady compressible-flow equations at Reynolds
numbers of 20 to 1000 and a Mach number of 0±4; and as mentioned above,
Tomboulides (1993). Gebing found a loss of axial symmetry by Re¯ 300 and
computed unsteady flow at Re& 400. His particle traces at Re¯ 400 show vortex
structures resembling the visualization results of Sakamoto & Haniu. Tomboulides
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Uz

Ux

F 1. Achenbach’s (1974) sketch of the wake vortex configuration at Re¯ 10$.

records the unsteady transition in the range 270!Re! 285, which corresponds with
the onset of unsteadiness seen by Magarvey & Bishop at Re¯ 270. His isocontours of
streamwise vorticity for Re¯ 300 resemble structures visualized in previous expe-
rimental studies. Unfortunately, particle traces are not provided for a more appropriate
comparison with experiments.

Particularly interesting throughout the literature is that within a small range of the
onset of shedding, corresponding to the single frequency range, the visualized hairpin
vortices are all shed with the same orientation, forming a ladder-like chain of
overlapping loops as sketched by Achenbach and reproduced here in figure 1.
Although the presence of a double-sided shedding regime is also observed (see Perry,
Lim & Chong 1980) the current work focuses solely on single-sided shedding of the
type represented in figure 1. A close examination of figure 1 raises some basic questions
that have yet to be addressed. First, and most fundamentally, by what mechanism are
the vortices formed and shed? There is a definite difference between this three-
dimensional structure and the alternately shed vortices behind a two-dimensional
body. Experimental visualizations have provided some insight into the geometry of the
process but finer details and the actual dynamics remain unclear. In addition, the few
computational solutions available have not been satisfactorily applied to clearly reveal
these details. Secondly, if the hairpin vortices are continually shed into the wake with
the same orientation, how is the associated transverse circulation in the wake
bounded? Clearly, the total circulation of the field is not indicated by the visualized
vortices. Finally, in what way are the successive hairpins connected? As depicted in
figure 1, with the legs of one vortex merging with the head of the next, there would be
problems with the topology of the flow vectors.

The current work attempts to answer these questions by numerically solving the flow
in a three-dimensional, time-dependent fashion and analysing the flow dynamics and
structure for each of the aforementioned regimes. Section 2 of this paper describes the
numerical method used to solve the Navier–Stokes equations. Section 3 gives an
overview of the experimental set-up used to obtain flow-visualization pictures, which
are used to corroborate the numerical results. The numerical results for the first regime,
that of steady axisymmetric flow, are presented in §4. The results for the second regime,
steady non-axisymmetric flow, are presented in §5 along with a comparison to some
experimental results. Also, a description of the mechanism driving the shift from the
first to the second regime is proposed. In §6 the results for unsteady flow are considered
and a mechanism driving the unsteady transition and shedding process is presented. In
addition, a new vortical feature present in the sphere wake is identified.
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22 T. A. Johnson and V. C. Patel

2. Numerical method

The numerical method used in this study is presented in detail in Johnson (1996). The
method incorporates a dual time-stepping formulation with local pseudo-time stepping.
A four-stage Runge–Kutta method is used to integrate the momentum equations in
pseudo-time, while a pressure Poisson equation is formulated to satisfy the continuity
equation.

2.1. Numerical formulation

The Runge–Kutta integration of the momentum equations in pseudo-time may be
written as

ul
i
¯ un

i
®α

l
∆τ(USl−"

i
­Cl−"

i
®Vl

i
­~

i
pn+"), (1)

where i¯ 1, 2 and 3 denote the three components of velocity, and US, C, V and ¡p
represent the temporal acceleration, convective, viscous, and pressure gradient terms,
respectively. The superscripts n and n­1 represent, respectively, the beginning and end
of one complete pseudo-time step. The superscirpt l represents the Runge–Kutta stage:
1–4 for the four-stage method, where l¯ 4 corresponds to n­1. The parameters α

l
are

the Runge–Kutta coefficients ; 1}4, 1}3, 1}2 and 1 for a four-stage scheme, and ∆τ is
the pseudo-time step. On the right-hand side the unsteady term USl−"

i
is given by

USl−"
i

¯
3ul−"

i
®4um

i
­um−"

i

2∆t
(2)

which is simply a second-order backward difference for the time derivative of u
i

calculated explicitly at the previous Runge–Kutta stage l®1. The superscript m in (2)
represents the last converged physical time step and ∆t is the physical time increment.
Both the viscous terms and the pressure gradient terms are discretized using second-
order central differences while the convective terms are discretized using second-order
upwind differences. The convective terms, just like the unsteady terms, are computed
explicitly at the previous integration stage. The viscous terms are handled implicitly
through the application of an implicit smoothing operator to ease the stability
restrictions associated with an explicit formulation. The implicit smoothing procedure
is given as

01®
α
l
∆τ

Re
~#®ε~#1RHS$

i
¯®α

l
∆τ(USl−"

i
­Cl−"

i
®Vn

i
­~

i
pn+")3RHS, (3)

where RHS is defined as the unsmoothed forcing function and RHS$
i

is the smoothed
right-hand side. The integration of the momentum equations is then given by

ul
i
¯ un

i
­RHS$

i
. (4)

The smoothing operator on the left-hand side of (3) contains the implicit viscous
operator, proportional to the inverse of the Reynolds number, plus an additional
smoothing term of strength ε for added control of the stability. As defined, RHS does
not contain an implicit viscous term (note the superscript n) and is used as shown below
in the pressure equation.

The pressure, which appears implicitly in (3), is obtained from a Poisson-like
equation for ∆p¯ pn+"®pn, arising from the enforcement of a divergence-free
condition on the advanced velocity field of (4). With the addition of a discrete pseudo-
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time derivative for iterative advancement and a dissipation term to control decoupling,
the equation for the pressure increment is given as

®β
∆pn

∆τ
­¡[[∆τ¡(∆pn)]¯

1

α
l

¡[[un­RHS]­DISS. (5)

The parameter β sets the ratio between the pressure equation’s pseudo-time step and
that of the momentum equations. An effective value for β was found to be 0±5, giving
the pressure equation a pseudo-time step of 2 times that of the momentum equation.
Note that RHS, instead of RHS*, is used on the right-hand side of (5) and contains the
explicit form of the viscous term since the pressure equation is solved prior to implicit
smoothing. Also notice that the divergence of un is retained on ther right-hand side in
order to dissipate any errors in continuity from previous iteration levels. The
dissipation term DISS is added to eliminate odd–even decoupling of the pressure field
and is given by

DISS¯ ε(~4 #
&pt

®~4 #
$pt

) p, (6)

where ε is some small multiplier and the ~4 # operators are given by

~4 #¯¡[[∆τ¡p] (7)

with second-order divergence and gradient operators applied directly at the nodes for
~4 #

&pt
and at the half-nodes for ~4 #

$pt
. The dissipation therefore effectively replaces a

portion of the five-point pressure gradient term, which allows decoupling, with a three-
point pressure gradient term, which eliminates decoupling but is inconsistent with a
nodal solution of the momentum equations. It is important to notice that at
convergence, as RHS and the left-hand side of (5) go to zero, the divergence of the
velocity is driven not to zero but rather to ®DISS. However, keeping ε on the order
of ∆τ ensures that the error in continuity is at most second order. For the case of a
driven cavity, Sotiropoulos & Abdallah (1991) show that ε¯ 0±1 is sufficient to
eliminate decoupling while keeping the error incurred in the continuity equation on the
order of 10−$.

In the solution of (3) and (5) the approximate factorization method of Beam &
Warming (1978) is used to reduce the left-hand sides to three one-dimensional
operators, which are easily inverted with the Thomas algorithm.

The physical time step in (2) is selected on the basis of the desired temporal accuracy.
To efficiently obtain steady-state solutions in flow regimes where they are meaningful
∆t was set to infinity. The pseudo-time step ∆τ is limited by stability considerations and
was selected according to

∆τ¯min 9CFL∆x

U¢

, VNRe∆x#,∆t: , (8)

where CFL and VN are the Courant–Friedrichs–Lewy and von Neumann numbers
and ∆x is the discrete spatial increment of the numerical grid. Optimum values for both
the CFL and VN numbers were obtained through numerical experimentation.
Equation (8) simply ensures that the numerical solution does not try to overstep any
convective, viscous, or temporal disturbances.

Converged solutions were obtained by integrating (4) and (5) in pseudo-time until
both RHS* in (4) and the right-hand side of (5) were less than 10−&. This criterion
ensures that the momentum equation terms and the continuity}dissipation terms are
balanced to within the method’s second-order accurate design.
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F 2. Computational grid topology: (a) physical space; (b) computational space.

2.2. Numerical grid

The sphere lends itself naturally to the generation of a numerical grid following a
spherical coordinate system. Figure 2 shows the grid topology in both physical and
computational space. The grid is an O-O type where the numerical coordinates (ξ, η,
ζ ), lie along the standard spherical coordinates (Θ, , r). The coordinate transformation
is given as follows:

Θ¯π
(ξ®1)

(ξ
max

®1)
, ¯ 2π

(η®1)

(η
max

®2)
, r¯ 0±5 exp ²k

"
(ζ®1)­k

#
(ζ®1)#´ (9)

with the Cartesian coordinates (x, y, z) given as

x¯®r cosΘ, y¯ r sinΘ cos , z¯ r sinΘ sin , (10)

where (1, 1, 1)% (ξ, η, ζ )% (ξ
max

, η
max

, ζ
max

). The grid dimensions (ξ
max

, η
max

, ζ
max

)
were (101, 42, 101). The polar coordinate Θ spans linearly from 0 at ξ¯ 1, on the
upstream negative-x-axis, to π at ξ¯ ξ

max
, on the downstream positive-x-axis. The

azimuthal coordinate encircles the axis spanning linearly from 0 to 2π­∆ . The ∆
overlap is indicated in figure 2(a) with a shaded arc and allows for periodic boundary
conditions in the η-direction. In this way, no boundary conditions in the η-direction
have to be prescribed.

In the radial direction, r goes from the surface of the sphere at r¯ 0±5, to 15
diameters from the sphere’s centre. Early tests with grid size showed little change in the
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flow solution at Reynolds numbers less than 100 from extending the grid beyond 15
diameters, i.e. the rear stagnation point pressure coefficient differed by less than 1±2%
with an increase in maximum grid radius to 20 sphere diameters. At a grid radius of
15 diameters the effective blockage ratio, defined as the sphere’s frontal area divided
by the computational grid’s frontal area, is about 0±11%. The coefficients k

"
and k

#
are

used to fix the maximum radial dimension, r¯ 15, and to stretch the grid toward the
body surface. The amount of stretching was chosen to place at least ten grid points
within the boundary layer at the front stagnation point. The approximate boundary
layer thickness at the sphere’s stagnation point is given in Schlichting (1979) as δ¯
1±13}Re"/#, where δ is the boundary layer thickness non-dimensionalized by the
diameter of the sphere. The minimum grid spacing, adjacent to the sphere, was 0±005
with a stretching ratio of less than 1±06.

Grid dependency checks and Richardson extrapolation techniques were used to
provide an indication as to the required grid size and the approximate order of
accuracy of the method. The results, which are provided in Johnson (1996), indicate an
order of accuracy of approximately 1±7 and show that reasonable grid independence is
achieved on a (101, 42, 101) grid.

2.3. Boundary conditions

On the surface of the sphere, the no-slip condition is applied:

u¯ �¯w¯ 0.

At ζ¯ ζ
max

, the grid surface is a combination inflow and outflow boundary. In figure
2(a) for values of ξ between points a and e, free-stream boundary conditions are
applied:

u¯ 1, �¯w¯ 0.

In the region e! ξ! d, the ζ
max

surface is defined as an outflow boundary to where
velocities must be extrapolated. All three velocities were extrapolated using a second-
order backward difference approximation for a zero second derivative in the ζ-
direction:

u
i,ζmax

¯
5u

i,ζ−"
®4u

i,ζ−#
­u

i,ζ−$

2
, i¯ 1, 2, 3. (11)

Point e was set at 70° off the downstream axis, well past the point at which the solution
was found to be sensitive to variations in the point’s location.

The ξ¯ 1 and ξ¯ ξ
max

boundaries correspond to the axes of the spherical grid.
Along these axes the velocities were taken to be azimuthal averages of second-order
Adams–Bashforth extrapolations, i.e. for ξ¯ ξ

max

u
",

ξ
max

¯
1

η
max

®2 3
η
max−#

η="

04u
i,ξmax−"

®u
i,ξmax−#

3 1 . (12)

The analogous equation for ξ¯ 1 is obtained using forward differences. Note that the
summation is taken only for η from 1 to η

max−#
since these comprise the only unique

points in the η-direction. With the grid overlap in the η-direction, points at η
max

are
equivalent to points at η¯ 2, and points at η

max−"
to points at η¯ 1. Therefore, on the

η¯ 1 and η¯ η
max

boundaries, periodic conditions are imposed:

u
i,η="

¯ u
i,ηmax−#

, u
i,ηmax

¯ u
i,η=#

. (13)
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At the ξ and η boundaries, the pressure boundary conditions are exactly the same as
the velocity boundary conditions, i.e. (12) and (13) for p instead of u

i
. At the ζ¯ 1 and

ζ¯ ζ
max

boundaries the pressure is simply extrapolated from the interior points as
follows:

p
"(

ζ
max)

¯ pζ³
"
­

∆xa ζ³
"

∆xa ζ
(pζ³

"
®pζ³

#
), (14)

where the ³ refers to ­ for ζ¯ 1 and ® for ζ¯ ζ
max

and

∆xa ζ ¯²(xζ+"
®xζ)#­(yζ+"

®yζ)#­(zζ+"
®zζ)#´"/#. (15)

3. Experimental method

In order to provide some corroborating evidence for the simulation results, dye-
injection experiments were performed in the wake of a sphere towed through water.
The water tank used for the experiments is 3±66 m long, 61 cm wide and 76 cm deep.
The bottom, sides, and ends are made of 1±27 cm glass for optical access. Two rails are
mounted beneath the tank upon which a towing carriage rides powered by a screw
drive extending the length of the tank. The drive provides a velocity range of
0±5–5 cm s−". In all cases the acceleration of the carriage to a uniform velocity was
complete within 10 cm of travel, so no results were obtained before 60 cm of travel,
allowing transient effects to be ignored.

A second set of rails is mounted along the top sides of the tank to support a smaller
carriage which held the sphere model and support struts. The smaller carriage was used
in order to minimize any oscillations generated by the larger carriage. The small
carriage is linked to the large carriage via a rubberized connector designed to reduce
the transmission of vibrations. Two sets of struts, one front and one back, are mounted
on the small carriage 44 cm apart. Each set supports a 50 cm diameter anchoring ring
fitted with small holes located every 10° around its perimeter to anchor the support
wire for the model. This set-up allows the orientation of both the tow-tank models and
their support wires to be rotated as a unit relative to the tank reference system thereby
allowing variable viewing angles of the flow field. It was hoped that by changing the
azimuthal orientation of the sphere support wires, the orientation of the non-
axisymmetric wake could be controlled. Unfortunately, this degree of flow control was
not consistently realized: the small disturbances from the wires were either not
sufficient to affect the development of the wake or were overwhelmed by other outside
disturbances.

The degree of the disturbances produced by the struts and anchoring rings was
checked by injecting dye into the tank and traversing the empty support structure,
without the sphere or support wire. The shedding that occurred off the supports was
limited to less than 3 cm inside the ring radius. In addition, the dye across the
remaining area encircled by the ring was undisturbed by the passing of the supports.
Conservatively, from the centre axis of the model mounting volume, a 20 cm radius of
water was left undisturbed by the mounting struts and rings.

The model itself was a Plexiglas sphere with a 2±54 cm diameter with an accuracy of
³0±2%. With the velocity range of the drive mechanism, this size sphere allowed a
Reynolds number range of approximately 125–1250. For mounting the sphere, a
0±02 cm hole was pierced through the sphere’s centre using an industrial laser. The
sphere was then threaded and glued onto a 0±018 cm stainless steel support wire. The
ends of the support wire were attached to small turnbuckle hooks designed to mount
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on the anchoring rings in tension to limit spurious motion of the sphere. With the rings
separated by 44 cm, the support wire made an angle of 49° relative to the direction of
motion.

Propagation of the estimated accuracies of traverse velocity, sphere diameter, and
temperature-dependent viscosity give an estimated Reynolds number accuracy of
about 3%.

Standard dye injection was used to visualize the wake structure. Although specific
details of the wake’s structure can be obscured by this approach, the overall shape of
the near wake, as well as the downstream behaviour of the far wake, is clearly revealed.
Food colouring diluted in water was used as the dye. A very small amount of alcohol
was also added to the mixture to produce a neutrally buoyant solution. To visualize the
wake, a few millilitres of the dye mixture were injected into the water surrounding the
sphere which was then set into motion, passing through and entraining the cloud of dye
into its wake. With a camera mounted on the towing carriage, photographs of the wake
were taken as the sphere traversed the length of the tank.

4. Steady axisymmetric flow

At Reynolds numbers between 20 and approximately 210, the flow is separated,
steady, axisymmetric, and topologically similar. As mentioned in §2, the solutions in
this steady regime were obtained by setting ∆t in (2) to infinity in the interest of
numerical efficiency. The calculated upper and lower Reynolds number limits of this
regime compare well with experimental results of Magarvey & Bishop (1961) and the
numerical results of Natarajan & Acrivos (1993) and Tomboulides (1993). Differences
exist with the experimental results of Taneda (1956) and Nakamura (1976) who
reported waviness in the wake at Reynolds numbers above 130 and 190, respectively.

Streamlines for this regime are shown in figure 3(a–d ), which shows the (x, y)-planes
for Reynolds numbers 50, 100, 150 and 200. In these and all following figures, unless
otherwise noted, the flow direction is from left to right. As illustrated in figure 3(b), the
flow is seen to separate from the surface of the sphere at an angle Θ

s
from the front

stagnation point and rejoin at a point x
s

on the axis of the flow to form a closed
separation bubble and a toroidal vortex centred at (x

c
, y

c
), where the velocity is zero

in the sphere’s reference frame. For all Reynolds numbers between 20 and 210 the flow
structure remains topologically the same with changes only in the separation location,
the vortex’s position, and the separation bubble length. The numerical results of
Pruppacher, Le Clair & Hamiliec (1970), Tomboulides (1993), and Magnaudet, Rivero
& Fabre (1995) and the experimental measurements of Taneda (1956) provide data for
comparison with the present results. Figure 4 shows good agreement between the
current results for separation angle Θ

s
and length x

s
and vortex (x

c
, y

c
) position with

the aforementioned results. The only significant deviation in any of the results is in
figure 4(b), where Taneda’s separation length at the higher Reynolds numbers is almost
20% lower than the current results and those of Tomboulides.

Further comparison to experimental results can be made with the drag coefficient,
given as C

D
¯F

x
}("

#
ρU#¢ πD#}4), where F

x
is the force in the streamwise direction. Roos

& Willmarth (1971) provide detailed drag coefficient data which compare well with
results given by Allen (1900), Wieselsberger (1922), Schmiedel (1928), Liebster (1928)
and Schiller (1930). Figure 5 plots the present study’s computed drag coeffiients versus
Reynolds number and shows good agreement with the values of Roos & Willmarth.

Contours of the pressure coefficient, defined as C
P

¯ (P®P¢)}"

#
ρU#¢, are shown in

figure 6(a–d ), ordered with increasing Reynolds number. Contours are drawn for every
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F 3. Computed axisymmetric streamlines past the sphere:
(a) Re¯ 50; (b) Re¯ 100; (c) Re¯ 150; (d ) Re¯ 200.

0±04 increment with dashed lines used for negative values. Within the wake, in the
vicinity of the toroidal vortex shown in figure 3, it is interesting to note that there is
no pressure minimum in the symmetry plane until a Reynolds number of 200. In figure
6(d ) the closed circles in the wake indicate a pressure minimum located very near the
centre of rotation of the toroidal vortex. At Reynolds numbers less than 200 the
centrifugal force of the vortex’s rotation must be balanced by viscous forces as opposed
to a radial pressure gradient.

The evolution of the vorticity field, which for this first regime consists of only an
azimuthal component, is illustrated in figure 7(a–d ). Vorticity contours are drawn in
increments of 0±5 with negative values indicated by dotted lines. The thinning of the
vorticity layer on the surface of the sphere and the increase in the downstream
extension of vorticity with Reynolds number is immediately obvious. At Reynolds
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F 4. Flow geometry versus Reynolds number: (a) polar separation angle Θ
s
; (b) separation

length x
s
; (c) vortex position (x

c
, y

c
).

numbers of 100 and above, the change in sign of the vorticity across the separation
point is also obvious. What is not obvious from the vorticity contours, however, is the
vortex structure of the wake. Although the existence of the toroidal vortex is clear from
the streamline patterns of figure 3, neither the pressure nor the vorticity contours
indicate the presence of spiralling streamlines. It is important to understand the vortex
structure of the wake since it communicates information on the kinematics of the wake
which in turn highlight the dynamic influences governing the flow behaviour.

To address the issue of properly identifying vortical regions, a number of methods
have been proposed. Jeong & Hussain (1995) have reviewed these methods, including
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F 5. Drag coefficient versus Reynolds number.
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F 6. Flow field pressure coefficient contours for axisymmetric flow:
(a) Re¯ 50; (b) Re¯ 100; (c) Re¯ 150; (d ) Re¯ 200.

those put forth by Hunt, Wray & Moin (1988) and Chong, Perry & Cantwell (1990),
and have proposed a new method. They consider the role of the swirling motions in a
vortex in generating local pressure minima. The negative of the Hessian of the pressure
is given as

®9 ¥#p
¥x

i
¥x

j

:¯DS
ij

Dt
®ν

¥#S
ij

¥x
k
¥x

k

­S
ik

S
kj
­Ω

ik
Ω

kj
, (16)

where the rate of strain S
ij

and rate of rotation Ω
ij

tensors are

S
ij
¯

1
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F 7. Vorticity contours for axisymmetric flow:
(a) Re¯ 50; (b) Re¯ 100; (c) Re¯ 150; (d ) Re¯ 200.

Neglecting the influence of the first two terms on the right-hand side of (16), Jeong &
Hussain define a vortex core as a connected region containing two negative eigenvalues
of S #­Ω#, i.e. a local pressure minimum in a plane. Jeong & Hussain provide a
number of examples to illustrate the advantages of this method over others, indicating
a more robust and precise elucidation of the vortical regions. The results of their
method applied to the axisymmetric flow over a sphere are shown in figure 8 for
Reynolds numbers of 25, 100 and 200. There are two regions containing the two
negative eigenvalues of the S #­Ω# tensor; vortical structures are expected within these
areas.

At a Reynolds number of 25, in figure 8(a), small elliptical regions are located
immediately downstream of the rear stagnation point of the sphere. A comparison with
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F 8. Vortical regions as given by Jeong & Hussain’s method:
(a) Re¯ 25; (b) Re¯ 100; (c) Re¯ 200.

the streamline patterns of figure 3(a) confirms that these indicate the location of the
toroidal vortex in the wake. The large lobes of the contour located above and below
the sphere in figure 8(a) do not coincide with any vortical structure apparent in figure
3(a). However, in a reference frame moving with the local velocity, closed streamline
orbits do appear in that region, as shown in figure 9. The streamlines in figure 9 are
drawn in a reference frame moving to the right at about one-half the speed of the free
stream. Note that this reference frame velocity was arbitrarily selected to illustrate this
point and that the same effect is apparent for a number of reference velocities. The
recirculation patterns, or vortical structures, are a result of the boundary layer moving
over the convex surface of the sphere. The same phenomenon can be seen in Van
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F 9. Streamlines in a moving reference frame at Re¯ 25.

0

–0.06

–0.04

–0.02

210 220 230 240 250

Re

CL

F 10. Lateral force coefficient versus Reynolds number, showing loss of axial symmetry.

Dyke’s (1982) figure 9, where the photograph is taken in a frame moving with the free
stream. This illustrates the advantage of using a quantitative method to reveal vortical
structures rather than relying on streamlines, which are reference frame dependent. At
higher Reynolds numbers, figures 8(b) and 8(c) show the thinning of the region
adjacent to the sphere’s equator and the growth of the toroidal vortex region. The two
regions have, in fact, merged at these higher Reynolds numbers.

5. Steady non-axisymmetric flow

At a Reynolds number of 211 the calculated flow solution no longer exhibits axial
symmetry. The flow does, however, remain steady. The temporal stability of this
regime was checked by setting ∆t in (2) to some finite value and confirming the stability
of the resulting solution. Although non-axisymmetric, the flow does contain a plane of
symmetry. In the current calculations, the location of the symmetry plane was allowed
to arise naturally, forced only by the numerical biases resulting from such things as
sweep directions in the solver. Due mainly to the non-physical presence of numerical
boundaries in the azimuthal direction, the calculated symmetry plane coincides with
the η¯ η

max
plane. Because of the periodic grid overlap, as discussed in §2, the η

max

plane is located 9° off the (x, y)-plane. For the purposes of presenting the data,
however, the calculated flow field has been rotated such that the symmetry plane
coincides with the (x, y)-plane.
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F 11. Streamlines of projected velocity vectors at Re¯ 250 in (a) the (x, z)-plane;
(b) the (x, y)-plane.

The onset of the loss of axial symmetry is illustrated in figure 10, which plots the
lateral force coefficient C

L
against Reynolds number. With the (x, y)-plane defining the

symmetry plane, the lateral force lies along the y-axis and may be denoted as F
y
. Note

that the y-axis orientation is arbitrary and that F
y
may be positive or negative. For the

present orientation F
y

is negative. C
L

is then defined as C
L
¯F

y
}("

#
ρU#¢ πD#}4). For

axisymmetric flow, C
L

is naturally zero. At Re¯ 211, C
L

was found to be about
®3¬(10)−& and by Re¯ 212 it had jumped three orders of magnitude to ®2±4¬(10)−#.

As discussed in §1, the extent of this steady non-axisymmetric range has been
documented experimentally in earlier studies as approximately 210!Re! 270 by
Magarvey & Bishop (1961), and Nakamura (1976), and numerically by Tomboulides
(1993) ; at Re" 270 the flow has been observed to become unsteady. The present
results within this regime were found to be essentially self-similar, or topologically
identical, and only the solution at Re¯ 250 is considered here since the departure from
symmetry is quite pronounced.

The presence of a plane of symmetry in the flow, as mentioned previously, is most
obvious in figures 11(a) and 11(b), which show streamlines constructed from in-plane
velocity vectors in the (x, z)- and (x, y)-planes, respectively. It is clear from figure 11(a)
that the flow field is symmetric about the (x, y)-plane, which divides the figure across
the centre. Keep in mind that there are out-of-plane velocity components in figure
11(a) so that the lines constructed in this manner do not correspond to true three-
dimensional streamlines. However, since figure 11(b) corresponds to the (x, y)
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F 12. A three-dimensional particle path at Re¯ 250:
(a) x, y view; (b) x, z view; (c) y, z view.

symmetry plane, there are no out-of-plane components and the traces do, in this case,
represent true streamlines. Considering figure 11(b), it is apparent that the toroidal
vortex has tilted. It is also clear from the difference between the top and bottom of the
vortex ring, that its size is not constant in the azimuthal direction. Additionally, the
toroid is clearly no longer a closed separation bubble ; the upper spiral is actually fed
by fluid originating from upstream while the lower spiral releases fluid into the wake
after sending it up and around the upper spiral. Further inspection reveals that, as a
consequence of continuity, there must be fluid flowing out from the centre of the upper
part of the vortex, and fluid feeding into the centre of the lower part of the vortex. That
the flow is, in fact, directly from one to the other via the vortex centres of figure 11(a)
can be seen in figure 12.

Figure 12 shows (x, y), (x, z) and (y, z) views of the paths of a pair of particles which
originate from either side of, and just out of, the (x, y)-plane upstream of the sphere.
Note that in figure 12(a) only one of the two paths is shown for clarity. The traces in
these figures show three views of the actual three-dimensional particle path. In figure
12(a), the (x, y)-projection of the path, it is clear that upstream fluid is entrained into
the upper focus of the wake. The pathline spirals clockwise inward then emerges from
the centre of the focus and feeds into the centre of the lower focus, where it spirals
counterclockwise outward, eventually passing around the upper focus and joining the
downstream flow. The directions of rotation of both foci remain consistent with the
axisymmetric toroidal vortices at lower Reynolds numbers. In figures 12(b) and 12(c),
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F 13. Pressure coefficient contours at Re¯ 250: (a) (x, z)-plane; (b) (x, y)-plane.

the out-of-plane motion and structure of the flow can be seen. These figures show that
the flow from one focus centre to the other follows an azimuthal path that coincides
with the core of the toroidal vortex. It is also evident in these figures that near-wake
fluid is ejected into the downstream flow through two separate streams, one on either
side of the (x, y)-plane.

Pressure coefficient contours for the (x, z)- and (x, y)-planes are shown in figure 13.
As with figure 6, the contours are drawn in steps of 0±04. The pressure field in the (x,
z)-plane is completely symmetric and closely resembles the contours in figure 6(d ) for
a Reynolds number of 200, although the pressure in the core of the vortex is clearly
lower owing to the higher centrifugal acceleration of the vortex. Pressure contours in
the (x, y)-plane are not symmetric. The pressure minimum in the region of the lower
focus of figure 11(b) is lower than that in the region of the upper focus: C

P
¯®0±252

vs. C
P

¯®0±226. This azimuthal pressure gradient propagates through the core of the
toroidal vortex inducing flow along the vortex axis, as seen in figure 12. This
breakdown in axial symmetry, which begins at ReE 211, corresponds closely with the
occurrence of a global pressure minimum in the centre of the vortex. It appears,
therefore, that the instability of the axisymmetric flow is connected to the generation,
by radial acceleration around the vortex centre, of a ring of low pressure in the wake.
An azimuthal pressure disturbance to the ring with a wavenumber of 1 could generate
the observed flow through the vortex core. The resultant core flow causes, through
continuity, the high-pressure side of the vortex to spiral inward as it serves as the source
of the core flow. The low-pressure side of the vortex spirals outward as fluid is fed into
its focus. This is observed in figure 12. Furthermore, the radially inward motion of the
high-pressure side of the vortex serves as the means for entraining free-stream fluid into
the recirculating region and opening up the previously closed separated wake.
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F 14. Vorticity contours at Re¯ 250: (a) ω
x

in the (x, z)-plane; (b) ω
y

in the (x, z)-plane;
(c) ω

z
in the (x, y)-plane.
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F 15. Computed three-dimensional particle traces for Re¯ 250, viewed from
(a) the (x, y)-plane; (b) (x, z)-plane.
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(a)

(b)

F 16. Flow visualization results for Re¯ 250: (a) (x, y)-plane; (b) (x, z)-plane.

From figure 12(c), with the streamwise direction coming out of the page, it is clear
that the azimuthal flow will result in the generation of streamwise vorticity. Figure
14(a) shows contours of the streamwise vorticity ω

x
in the (x, z)-plane. The contours

show an antisymmetric distribution of vorticity about the symmetry plane with positive
values on the positive-z half of the plane. In figure 12(c) the azimuthal velocity in this
region is seen to be in a counterclockwise direction. Likewise, in the other half of the
plane, the streamwise vorticity is negative, consistent with the clockwise azimuthal flow
in figure 12(c). Figure 14(a) compares well with the isosurface of streamwise vorticity
calculated by Tomboulides (1993) at Re¯ 250. Although no mention is made of the
particular vorticity magnitude plotted, the form of the surface is the same as the cross-
section shown in figure 14(a). Contours of y-vorticity ω

y
are shown in figure 14(b), and

of z-vorticity ω
z

in figure 14(c), in the (x, z)- and (x, y)-planes, respectively. The
contours in the (x, z)-plane are symmetric, as expected, and closely resemble those of
figure 7(d ) at a Reynolds number of 200. In figure 14(c) the contours are not symmetric
and appear to be shifted to the positive-y side of the plane. In addition, the contours
on the positive-y side of the plane extend farther downstream than on the negative-y
side. Comparison with figure 12(a) indicates that fluid escaping the recirculation region
is apparently convecting vorticity downstream.

Particle paths showing the escape of fluid from the near wake, as well as the overall
geometry of the recirculation region, are given in figure 15, which shows (x, y)- and
(x, z) views of the three-dimensional paths. Figure 15(a) shows the shift of the
recirculating fluid to the positive-y side as free-stream fluid is entrained from the
negative-y side. In figure 15(b) the release of fluid in two separate tails is clearly evident
and obviously corresponds to the double-thread wake observed by Magarvey & Bishop
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(a)
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y
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x

F 17. Vortical structure at Re¯ 250: (a) (x, y)-plane; (b) (x, z)-plane.

(1961) for 210!Re! 270. These particle traces may be compared with experimental
dye visualizations produced in the present study at the same Reynolds number. Figure
16 shows photographs of the dye-filled wake obtained using the method described in
§3. The sphere in both photographs is moving to the left, which is equivalent to the flow
moving to the right as in figure 15. The support wire lies in the (x, z)-plane in both
figure 16(a) and figure 16(b). The wire orientation in this case did appear to affect the
orientation of the wake. Both figures compare quite well with the particle traces
obtained from the numerical solution. The visualizations, just like the numerical
results, exhibit a symmetry plane about which are located two tails of dye extending
downstream. Furthermore, it is evident that the location and spacing of the dye tails
compare quite well with those from the simulations.

While figures 15 and 16 may give some idea as to the general distribution of vortical
flow in the wake, the method of Jeong & Hussain as discussed in the previous section
has been applied to the numerical results at Re¯ 250 for a more detailed picture. Near-
wake (x, y) and (x, z) views of the three-dimensional contour which defines the vortical
region are shown in figures 17(a) and 17(b). One quadrant has been cut away to reveal
the sphere surface and inner convolutions of the contour. These figures show that the
sphere is enveloped in a region similar to that shown in figure 8(c) for Re¯ 200,
though shifted with the loss of axial symmetry. Of particular interest are the two
trailing vortices extending downstream. These structures extend to the end of the
numerical domain. Note that the break in the lower vortical leg in figure 17(b) is due
to the removal of one quadrant of the contour. The actual swirling motion indicated
by the tails of the contour is evident in streamlines constructed from the (y, z) projected
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F 18. Streamlines of the y, z projected velocity vectors of Re¯ 250 at :
(a) x¯ 2; (b) x¯ 10.

velocity vectors, shown in figures 18(a) and 18(b) for constant-x planes at x¯ 2 and
x¯ 10, respectively. The extent of the sphere’s perimeter is indicated by the dashed
circle centred at (0, 0). It is important to remember that these traces ignore the out-of-
plane velocity component and therefore tend to exaggerate the spiralling motion of the
fluid. Nonetheless, they are useful to reveal the sense of rotation in the wake. Note also
that both the spreading and the separating of these trailing vortices are evident and
consistent with the contours of figure 17.

6. Unsteady flow

The onset of unsteadiness is known from previous studies, both experimental and
numerical, to occur at a Reynolds number in the range of 270 to 300. In this work a
steady solution was obtained using a finite value of ∆t in (2) at a Reynolds number of
270. At Re¯ 280, the next highest Reynolds number considered, the solution, which
was initialized with the steady non-axisymmetric solution at Re¯ 270, became clearly
periodic. No attempt was made to further narrow the range of the onset of
unsteadiness since in this transition regime a very large number of iterations was
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F 19. Time history of drag, lateral, and side force coefficients at Re¯ 300.

required to damp oscillations en route to a steady solution, when one existed. It should
be pointed out that while using the dual-time-stepping approach described in §2, the
number of pseudo-time subiterations was restricted for computational efficiency to an
allowable maximum of 200. Since the desired convergence may not have been achieved
within the maximum number of subiterations, some degree of time accuracy was
necessarily sacrificed. This was the case only in the early stages of the calculations, i.e.
when the flow from one Reynolds number was used to start the solution procedure at
another Reynolds number. Therefore, the transient solution during these impulsive
velocity changes was not captured. As discussed in §2, the convergence criterion was
to reduce the absolute values of the right-hand sides of (4) and (5), to less than 10−&.
In computing a periodic solution, this convergence criterion was typically satisfied
within 20 to 30 subiterations. Obtaining 1000 physical time steps required on the order
of 200 hours of Silicon Graphics Power Challenge c.p.u. time, or approximately eight
days.

A Reynolds number of 300 was selected as the flow of interest since, while it is solidly
in the unsteady regime, it is near enough to the steady flow regime to provide insight
into the transition mechanism. The calculation at Re¯ 300 was initialized with the
already periodic solution of Re¯ 280. A review of the literature shows measured
Strouhal numbers in the range 0±15–0±18 (Sakamoto & Haniu 1990). Based on this
expected frequency range, a non-dimensional physical time step of 0±05 was selected to
give approximately 120 time steps per period. Numerical experimentation showed this
time step to provide satisfactory temporal resolution.

6.1. Force coefficient history

Figure 19 shows a plot of force coefficients versus time and includes the drag C
D

and
the lateral and side force coefficients C

L
and C

S
at a Reynolds number of 300. Here,

with the same axis orientation as was used for the steady flows, the side force coefficient
C

S
is defined for the force normal to the mean flow symmetry plane, i.e. C

S
¯F

z
}("

#
ρU#¢

πD#}4). Computed average values of C
D

and C
L

are 0±656 and ®0±069, with respective
oscillation amplitudes of 3±5¬10−$ and 1±6¬10−#. The experimental data of Roos &
Willmarth (1971) gives an interpolated value for C

D
at Re¯ 300 of 0±629. Tomboulides

(1993) found C
D

¯ 0±671 with an oscillation amplitude of about 2±8¬10−$. Neither
reference reports a value for C

L
.
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F 20. Expanded view of the time history of the drag and lateral force coefficients.
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F 21. Phase-angle plot of the pressure and friction components of drag.

It is clear from the fact that C
S

is always zero that the same (x, y) symmetry that was
observed for steady flow is also present in the unsteady flow. In agreement with
experimental visualizations, such as those of Achenbach (1974) and Perry & Lim
(1978), this symmetry plane remained fixed in time. As was the case for steady non-
axisymmetric flow, the symmetry plane was aligned along the η¯ η

max
plane; 9° off the

(x, y)-plane. Again, for purposes of presenting the data, the flow field has been rotated
such that the symmetry plane coincides with the (x, y)-plane. The non-zero lateral force
coefficient C

L
, although now oscillatory, is always less than zero, as it was in the steady

non-axisymmetric case. This indicates that there is no symmetry, even in a time-
averaged sense, across the (x, z)-plane.

The frequency spectra for both C
D

and C
L

contained a dominant peak indicating a
Strouhal number of 0±137. This agrees well with the value of 0±136 found by
Tomboulides (1993). The experimental results of Sakamoto & Haniu (1990) give a
Strouhal number range of 0±15–0±165 at Re¯ 300. Results from the flow-visualization
experiments of the current study, obtained by timing shed vortices, gave a range of
0±148–0±165. From the spectra, as well as the plot of figure 19, the magnitude of the
lateral force fluctuation was found to be about four times that of the axial force
fluctuation. In addition to the Strouhal frequency, there was a second, though much
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F 22. Rear surface-limiting streamlines at Re¯ 300 at every quarter period.

smaller, peak in the spectra at twice the Strouhal frequency. This second frequency
exhibited a greater effect on C

D
than on C

L
. Figure 20 shows an expanded plot of the

force coefficients and, for clarity, covers slightly more than one period of oscillation.
Here it is clear that while C

L
appears to be a near-single-frequency sinusoid, C

D
does

not. In addition, C
D

appears to contain a small phase lead relative to C
L
. In figure 21

the drag coefficient is separated into components of pressure drag and friction drag,
denoted C

D,p
and C

D,τ
. Note that while the increments on both the C

D,p
- and C

D,τ
-axes

are the same magnitude to show relative amplitudes, the ranges are different so that the
waveforms are obvious. The pressure drag component is nearly 1±5 times the friction
component. This plot shows that the phase lead is due to the pressure component and
that the friction drag, like the lateral force coefficient, is more sinusoidal. For this
reason, a phase angle φ is defined based on the waveforms of the lateral force coefficient
and the friction drag. The abscissa in figure 21 shows how φ is defined relative to the
drag coefficient components. In figure 20, the 0–2π range for φ is equivalent to the
range 2±8! t! 9±9, which corresponds to the (arbitrarily) defined beginning and end
of one period of flow. The solution period analysed in this section corresponds to the
last complete period shown in figure 19, spanning the non-dimensional time range of
about 93 to 100. Naturally, the periodicity of the solution makes this point merely one
of passing interest since each period is ideally identical to every other one.

6.2. Near-wake flow

The topology of the limiting streamlines over the back of the sphere is shown in figure
22. The near-stationary appearance of the limiting streamlines belies the variations
observed in the other flow properties. It is clear in this figure that the separation line
remains essentially fixed with time. The movement of the rear stagnation point is barely
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F 23. Wake axis distribution of streamwise velocity at every quarter period.
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F 24. Wake axis distribution of average streamwise velocity and r.m.s.

noticeable in this sequence, moving up by just 6° during φ¯ 0 to φ¯π}2 then moving
down 9° for φ¯π}2 to φ¯ 3π}2.

Figure 23 shows a plot of the streamwise velocity u along the axis of motion from
the rear of the sphere to the end of the solution domain. The distribution indicates the
presence of convecting structures in the wake. In particular, a travelling wave moving
at roughly uE 0±55 is indicated: the wave peak at x¯ 4±5 at φ¯ 0 moves to x¯ 8±5
at φ¯ 3π}2, a time span of 3}4 period, where the period is the inverse of the Strouhal
number 0±137. Also of interest is the variation in the reversed flow distance, or the
location of zero velocity. This is seen to vary in time from about x¯ 1±5 to x¯ 2, with
the largest variation between phase angles φ¯π and φ¯ 3π}2, where it drops from x
¯ 2 to x¯ 1±5. This is also the phase angle range when the origins of a wave appear
in the velocity profile at x¯ 3–4. Figure 24 shows the distribution of the time-averaged
velocity along with the r.m.s. distribution u

rms
. The most prominent peak in u

rms
occurs

between x¯ 1±5 and x¯ 2, in the region of flow reversal, with a value of approximately
7±5% of the free-stream velocity. For x" 4, u

rms
begins to decay, as is also apparent

in figure 23.
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A more global view of the flow may be obtained from pictures of instantaneous
streamlines with phase angle. Streamlines constructed from in-plane velocity vectors in
the (x, z)-plane and the (x, y)-symmetry plane are shown in figures 25(a) and 25(b) for
every quarter phase angle. Note that the region drawn in figure 25 concentrates on the
near wake, extending only to x¯ 5; the numerical domain itself extends to x¯ 15. The
lines in figure 25(a), like those in figure 11(a), are not true streamlines or projections
of streamlines, since there exist out-of-plane velocity components. Even more
importantly, neither figure represents particle paths since the flow is unsteady.
Nonetheless, these streamlines provide a good deal of information about the kinematics
of the flow field.

At this point it is important to point out that while the topological features of the
wake, the foci, are frequently described below in terms of upper and lower entities, they
are in fact just different sections of the same physical structure. The structures remain
connected in the azimuthal direction, which means that there are more complicated
interactions than the cross-sections in the figures imply. Of critical importance is the
fact that when one side of the vortex is said to separate, it remains in some way
connected to the lower side, since they are both part of the same vortex ring. The three-
dimensional interconnections of the structures in the azimuthal direction will be
elucidated in a later section.

Figure 25(a) shows that the (x, y)-plane remains a symmetry plane throughout the
period. The movement of the reversed flow region is also clearly evident here. Within
the separated flow region the spiral foci undergo interesting changes with time. In the
top two pictures, for φ¯ 0 and φ¯π}2, the foci are sinks or stable foci, that is, the
streamlines spiral in toward the centre. In the bottom two pictures, for φ¯π and φ
¯ 3π}2, the foci are sources or unstable foci, with the streamlines originating at the
centres and spiralling outward. Here the terms ‘stable ’ and ‘unstable ’ do not refer to
the stability of the flow, but rather to the topological character of the associated vector
velocity field (Tobak & Peake 1982). In stable foci the motion is toward the centre while
in the unstable foci the lines spiral outward, indicating a diverging, or unstable, orbit.
Keeping in mind that these foci are cross-sections of a three-dimensional vortical
structure, it is likely that the stable foci are present during vortex stretching, i.e. the
radial fkow is directed inward when there is a positive gradient of axial flow. Likewise,
in reverse fashion, the unstable foci could indicate compression, or negative stretching
of the vortex axis.

Figure 25(b) shows the instantaneous streamlines for the same phase angle sequence
in the (x, y)-symmetry plane. Topologically, at least, the streamlines all resemble those
of figure 11(b), the same cross-section for steady flow at Re¯ 250. At the beginning
of the period, in the top panel, there is an unstable focus in the lower half of the near
wake corresponding to the lower side of the toroidal vortex at about x¯ 0±8. The line
emanating from this focus crosses to the top half of the wake, encircles the top focus,
and heads downstream. The top focus, corresponding to the upper side of the toroidal
vortex, is located at x¯ 1±2, farther downstream than the lower side. It is also farther
from the streamwise axis of the sphere. At its centre, the upper side of the vortex
contains an unstable focus enclosed by a limit cycle onto which streamlines converge
from both sides. The limit cycle is fed from the outside by fluid entrained from the
lower side of the upstream flow. The appearance of this limit cycle in the streamline
pattern is most likely due to a shift of the focus from stable to unstable. At the next
quarter-phase, the focus on the upper side of the vortex is unstable and the limit cycle
is no longer present. The fluid previously entrained now passes around the upper side
and ejects into the downstream flow. The focus itself has moved farther downstream
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F 25(a). For caption see facing page.

to xE 1±5. The focus of the lower side of the vortex has changed from unstable to
stable, entraining fluid from the lower side of the upstream flow. By φ¯π, beginning
the third quarter of the period, the upper focus is much smaller in size and is located
much farther upstream at x¯ 0±9, in line with the lower focus. Indeed, this upper focus
is a new feature at this point in the cycle and the previous focus is now convecting
downstream having lost its spiral appearance in this reference frame. In other words,
the previous vortical structure has broken from the wake, i.e. shed. The new focus is
clearly stable and again entrains fluid from the lower side of the upstream flow. The
lower focus is unstable and ejects fluid around the upper focus and into the
downstream flow. In the final stage of figure 25(b) the upper focus has grown
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F 25. Streamlines of projected velocity vectors at Re¯ 300 for every quarter period:
(a) (x, z)-plane; (b) (x, y)-plane.

considerably, although it has not moved downstream and remains in line with the
lower focus at about x¯ 0±9. Fluid is no longer entrained from the lower side of the
sphere. Instead, the upper focus pulls in fluid from the upper side of the sphere as it
rapidly grows. To complete the period, the upper focus changes from a stable focus to
the unstable focus in the top of the figure. It is clear, then, that the limit cycle
surrounding the focus defines the interface of this transition.

Phase series of pressure coefficient contours corresponding to the streamline patterns
in figure 25 are shown in figures 26(a) and 26(b). Contours are drawn for every C

P

increment of 0±025 with dashed lines to indicate negative values. The contours of figure
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F 26(a). For caption see facing page.

26(a) in the (x, z)-plane show the symmetry of the flow about the (x, y)-plane. In the
near wake, the pressure minima at x¯ 0±8–1±0 are associated with the foci in figure
25(a) and are due to the centrifugal acceleration of the vortical motion. The most
noticeable change in the pressure distribution of the near wake is the increase in the
pressure at the foci centres at φ¯ 3π}2. Aside from that, the contours give little
indication of the periodicity of the flow. Figure 26(b) is much more interesting. This
shows the (x, y)-plane corresponding to figure 25(b). Again, the contours are drawn in
increments of 0±025. In the first panel of figure 25(b), the upper side of the vortex
generates a greater pressure minimum than the lower side. The locations of these
respective minima are coincident with the centres of rotation, i.e. the foci, seen at the
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F 26. Pressure coefficient contours at Re¯ 300 for every quarter period:
(a) (x, z)-plane; (b) (x, y)-plane.

top of figure 25(b). Just upstream of the upper focus (to the left) and just off the upper-
right shoulder of the sphere, at xE 0±5, is a teardrop-shaped local pressure maximum.
In the second panel, at φ¯π}2, it is now the lower side of the vortex which generates
a stronger pressure minimum, while the pressure on the upper side has increased. The
local pressure maximum, still upstream of the upper focus, has begun to spread and no
longer appears as a closed contour but rather a small region of increased pressure at
the top of the near wake. It appears as if this increased pressure is helping to push the
upper side of the vortex out of the near wake. In the third stage, the pressure drop
associated with the upper focus is no longer evident. The pressure minimum at the
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lower focus has intensified and the region of higher pressure has melded into the wake,
settling in at x¯ 0±8, corresponding to the location of the new focus in the third panel
of figure 25(b). The new upper focus, then, is formed with a higher core pressure than
the lower one. Interestingly, the contours of this phase most resemble those shown in
figure 11(b) for the steady non-axisymmetric case. At the final phase, the last panel in
figure 26(b), the relative strengths of the pressure minima of the opposite sides of the
vortex have switched. As opposed to the previous phase, the upper side is now
generating a greater pressure drop than the lower side.

6.3. Shedding mechanism

With the above descriptive account of the instantaneous near-wake flow structures
complete, it is now possible to propose a physical mechanism driving the unsteady
shedding process. It appears in hindsight that the origin of the phase angle, defined by
figure 21, may have best been fixed at φ¯π, as that serves most naturally as the
beginning of the shedding cycle. Also, as the figures for φ¯π in figures 25(a), 25(b),
26(a) and 26(b) are similar to those for the non-axisymmetric steady case in figures
11(a), 11(b), 13(a) and 13(b), it is convenient to begin a discussion of the process from
an understanding of that flow, as described in §4. At this phase, there is an azimuthal
pressure gradient set up on the axis of the toroidal vortex in the near wake. This
pressure gradient, evidenced by the contours in the third panel of figure 26(b),
generates azimuthal flow from the centre of the upper side of the vortex to the lower
side. As was the case for the steady flow, this flow out of the centre of the upper side
generates radially inward flow, i.e. a stable focus, which entrains fluid into the wake.
In the case of the steady flow, Re! 270, this situation attains equilibrium, where the
azimuthal pressure-driven flow is sufficiently maintained by the entrainment of fluid
into the upper focus. In the current situation, however, the Reynolds number is high
enough that the upper focus does not reach an equilibrium state, but continues to
grow. As it grows, it begins to entrain fluid from its own side of the sphere, as seen in
figure 25(b). In addition, with the increased intensity of the upper side of the vortex,
its centrifugal acceleration sets up a greater radial pressure gradient as seen at the
bottom of figure 26(b).

The cycle continues at the top of figures 25 and 26, with φ¯ 0. By the time φ¯ 0,
the strength of circulation of the upper focus has increased to the point that it has
begun changing from a stable focus to an unstable focus and its radial motion is against
its own pressure gradient. As mentioned above, this transition is demarcated by the
limit cycle encircling the focus. The increased reversed flow impinging upon the
separating flow over the top of the sphere generates the teardrop-shaped local pressure
maximum in the top panel of figure 26(b). The pressure increase appears to push the
intensified upper side of the vortex away from the sphere. By φ¯π}2, the upper side
no longer entrains fluid as it continues to move downstream. It was here in the
discussion of the instantaneous streamlines that the vortex was said to be shed, though
not completely, into the wake. While the upper side of the vortex splits from the near-
wake shear layer, the movement of the lower side of the vortex is not clear from the
instantaneous streamlines. Finally, following the shedding and subsequent convection
of the upper side of the vortex, a strong shear layer is left at the interface of the
separated flow and the reversed flow passing through the centre of the wake. This shear
layer quickly rolls up to produce the new upper focus in the third panel of figure 25(b),
and with the subsequent growth of this focus the process starts over.

Critical features of the shedding process include the following. First, the unsteadiness
is driven by the overshoot of the upper focus past some equilibrium intensity where it
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can be balanced by the azimuthal pressure gradient. It can be expected then, that the
growth rate of this portion of the vortex dictates the shedding frequency of the wake.
Secondly, the shedding of the vortex is facilitated by the strength of the reversed flow
it generates and its interference with the separating shear layer. The interference of this
secondary cross-flow effectively cuts the vortex out of the wake.

6.4. Vorticity distribution

To begin further examination of the wake, contours of ω
z
are shown in figure 27 for

the (x, y)-plane. Contours are drawn for increments of 0±5 with the zero contour
omitted for clarity and negative values drawn with dashed lines. The pictures are
presented in the same phase angle sequence as earlier figures with φ¯ 0 at the top. In
this first panel, positive vorticity is clearly dominating the region immediately
downstream of the sphere. Interestingly, there are no vorticity contours obviously
corresponding to the vortical motions observed in the instantaneous streamline
patterns. The most notable feature is in the region 2!x! 3, where there is a finger of
positive vorticity bending upward into the upper half of the wake. In the second panel,
which corresponds to the initial shedding of a vortex, the positive vorticity, which was
encroaching on the upper half of the wake, has broken down and has, in the process,
dissipated some negative vorticity in the region of xE 4. By the third panel, the
negative vorticity looks ready to divide where it interacts with the positive vorticity. At
the same time, in the near wake, the positive vorticity has, again, begun encroaching
upward across the wake. In the last panel, a segment of negative vorticity has
completely broken away from the connected wake vorticity. The positive vorticity in
the near wake that had been moving upward is now organizing into what will become
the finger-like structure at the top of the figure, poised to split off another segment of
negative vorticity. The organized blob of positive vorticity in the lower part of the near
wake is clearly moving in reversed flow as it breaks from the rest of the like-signed
vorticity. It is apparent that as the upper side of the vortex ring is cut from the near
wake and convected downstream, the lower side tears from the wake shear layer and
moves deeper into the near wake. This ‘ tearing’ of the lower side of the vortex is similar
to the vortex tearing shown recently by Williamson (1996) to be integral in the
development of three-dimensional structures in the wake of a circular cylinder. It is
interesting that from the vorticity contours a vortex appears to be first shed in the third
panel and at a downstream distance of xE 7, whereas from the instantaneous
streamlines a vortex appears to be first shed in the second panel and much closer to the
sphere at xE 2.

Figure 28 shows contours of ω
y

in the (x, z)-plane and symmetry once again
simplifies the picture. Contours are drawn in the same increments and at the same
levels as in figure 27. In the top panel, a segment of vortical fluid has pinched off from
each side of the connected vortical fluid in the wake. In the second and third panels
additional contour levels have been added to help track the movement of the separated
vorticity as it dissipates. By the last panel the separated vorticity has moved out of
view. Meanwhile, two more segments are preparing to split away, revealed by another
additional contour level placed within the region of connected vorticity.

Figure 29 shows contours of streamwise vorticity ω
x

in the (x, z)-plane. These
contours are drawn in intervals of 0±05, and are an order magnitude smaller than the
ω
y

values of the previous figure. The distribution is antisymmetric across the (x, y)-
plane and alternates sign in the streamwise direction. It is easiest to follow the
evolution of the streamwise vorticity by starting at the third panel in the series for φ
¯π. In the near wake, adjacent to the rear of the sphere, the streamwise vorticity is
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F 27. Contours of ω
z
at Re¯ 300 for every quarter period in the (x, y)-plane.

positive for z" 0 and negative for z! 0. These signs of streamwise vorticity indicate
an induced velocity in the region between them directed into the page. Above the
positive vorticity and below the negative vorticity of the inner wake are, respectively,
regions of negative and positive vorticity between the wake flow and the generally
inviscid outer flow. Similar interactions are evident in figure 14(a) which shows
analogous contours of counter-rotating vorticity for the steady case. In the fourth
panel the inner-wake vorticity has stretched out considerably with the surrounding
counter-rotating vorticity following. Continuing the sequence to the top of the figure,
the inner-wake vorticity has split and enveloped the counter-rotating vorticity,
resulting in the necking down of the inner-wake vorticity in the region near x¯ 1±5 and
the formation of outward extended lobes of inner-wake vorticity near x¯ 1. In the
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F 28. Contours of ω
y

at Re¯ 300 for every quarter period in the (x, y)-plane.

second panel the enveloped counter-rotating vorticity has further stretched the inner-
wake vorticity and the extending lobes have grown considerably. To complete the
cycle, in the third panel, the enveloped vorticity has completely split what was the
inner-wake vorticity and the growing lobes of inner-wake vorticity are set to restart the
cycle. Notice that throughout the cycle, the sign of the streamwise vorticity immediately
adjacent to the rear surface of the sphere, the inner-wake vorticity, remains the same
and the alternating sign of the vorticity in the downstream wake is due to the
envelopment of the oppositely signed counter-rotating vorticity.

The streamwise contours in figure 29 can be compared to the isosurface of
streamwise vorticity shown by Tomboulides, Orszag & Karniadakis (1993) at Re¯ 300
in their figure 7. The vorticity magnitude of their isosurface is not known but the sign
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F 29. Contours of ω
x

at Re¯ 300 for every quarter period in the (x, z)-plane.

of the vorticity agrees with figure 29 and the overall form of the alternately shed
vorticity is quite similar. Indeed, the streamwise extent of the discrete vorticity sections
can be approximately measured as three diameters in both figures. This favourable
comparison is not surprising given the previously noted similarity in calculated
Strouhal numbers : 0±137 in the present case and 0±136 in Tomboulides (1993).

6.5. Vortical structure

As was the case with the steady flow results, the streamlines and vorticity contours fall
short of providing a clear picture of the vortical structure of the wake. Therefore, the
method of Jeong & Hussain (1995), briefly described in §4, has been employed to reveal
the regions of vortical motion. Recall that their method defines a vortex core as a
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connected region containing two negative eigenvalues of S #­Ω#, where S and Ω are
the rate of strain and the rate of rotation tensors, respectively. This approach
essentially demarcates regions in the flow field where swirling motions contribute to the
generation of local pressure minima. The results of the method applied to the current
flow are shown in figures 30(a) and 30(b) for the (x, z)-plane and the (x, y)-plane. In
addition, figure 31 shows an oblique view of the same contour for each of the four
phase angles. These oblique views help convey the three-dimensional form of the
vortical structures and clearly reveal the hairpin structure of the shed vortices.

The shedding process in figure 30, as with previous figures, begins in the third panels
of the figures at φ¯π. Here, a vortex has just been shed from the previous cycle,
though it is seen as still attached to the coherent structure enveloping the sphere. The
vortex is clearly in the process of breaking away, as indicated by the folds in the surface
of the structure. This phase is shown obliquely in figure 31(c), which provides a good
view of the folding occurring with the separating vortex. In the third panel of figure
30(b) the head of the nascent hairpin is visible and beginning to extend downstream.
At this point, it is known from the earlier analysis that a new vortex is just beginning
to form, embedded in the structure just upstream of the emerging hairpin. In the
bottom panel of figure 30(a) the head of the shed hairpin is now about three diameters
downstream of the sphere centre and its legs extend directly into the near wake. In
figure 31(d ) the extension of the legs into the near-wake region is even more apparent.
It is now evident from figures 30(a) and 30(b) that the streamwise vorticity contours
of figure 29 capture the (x, z)-cross-section of the legs of the hairpin vortices.
Furthermore, the ω

z
contours in figure 27 reveal the link between the legs within the

near wake. The segment of positive vorticity in the last panel of figure 27 located
immediately behind the sphere is the link connecting the ends of the vortex legs, i.e. the
upstream bight of the vortex ring.

In the top panels of figures 30(a) and 30(b), the hairpin vortex has continued
convecting downstream and a new vortical structure is developing around the legs of
the hairpin. Figure 31(a) corresponds to this phase and also shows the development of
this new vortical structure. Comparison with figure 29 suggests that this structure is a
result of the vorticity induced by the wake}outer flow interaction. From figure 31(a)
it is apparent that this structure is forming primarily along the sides of the sphere
immediately adjacent to the legs of the hairpin. The top panel of figure 27 shows that
the vorticity of the upstream bight is flattening out and beginning to dissipate. In the
second panels of figures 30(a) and 30(b), the induced outer-flow structure has extended
downstream, in agreement with figure 29, and now includes a free-floating structure on
the negative-y side of the hairpin vortex. The shape of this structure is particularly clear
in figure 31(b) where it is evidently the head of a developing hairpin. Obviously, this
is not a monopole of vorticity, but is most probably a previously unrevealed
continuation of the induced structure, which earlier in the shedding process had not
been intense enough to show up using Jeong & Hussain’s method. Also in the second
panel of figure 30(a) the sphere-enveloping structure has begun to show the folding
that preceded the total release of the shed vortex. In figure 30(b) the enveloping
structure shows a hole on the top. This hole is due to the non-vortical fluid which enters
the bottom of the wake region and passes out through the top in the third panel of
figure 25(b). This is the initial break in the shedding vortex’s connection to the near
wake. In the next panel, the hole has been filled in by the shear-layer-generated
vorticity and the brand new focus. This cycle repeats and figure 30 reveals the
alternating presence of wake-shed hairpin vortices, which are always oriented up in
figure 30(b), and the hairpin vortices induced by the interaction of the wake flow with
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F 30. Vortical structure at Re¯ 300 at every quarter period: (a) x, z view; (b) x, y view.
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(a)

(b)

(c)

(d)

y

z x

F 31. Oblique views of the vortical structure: (a) φ¯ 0; (b) φ¯π}2;
(c) φ¯π ; (d ) φ¯ 3π}2.

the outer flow, which always point down in figure 30(b). Recalling figure 29, it is seen
that the wake-shed hairpins, which have ω

x
" 0 above the x-axis and ω

x
! 0 below,

always originate from within the inner wake. The induced hairpins, which have the
opposite ω

x
sign, originate in an area surrounding the central wake and are folded into

the wake, perhaps by the induced velocity of the separating shear layer surrounding the
wake.

Since the surface of the sphere and the near-wake region are completely covered by
vortical flow, cross-sections of the structures are presented in figure 32(a–d ). These
figures are ordered beginning with φ¯π, since that was determined above as the most
logical starting point for the shedding process. These figures show cross-sections in the
(x, y)- and (x, z)-planes with the (x, y)-plane on the left side of the figure. The (x, y)-
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F 32. Slices of the vortical region at Re¯ 300 in the (x, y) (left) and (x, z) (right) planes :
(a) φ¯π ; (b) φ¯ 3π}2; (c) φ¯ 0; (d ) φ¯π}2.

plane of figure 32(a) shows that the vortical region is generated in a cylindrical sheath
surrounding the near wake. The separating vortex is located on the upper side of the
wake at x¯ 2 and the new shear-layer vortex is located at x¯ 0±8. Immediately
downstream of the sphere is a large region which makes up the lower portion of the
separating vortex. In the (x, z)-plane the inclined sides of the separating vortex can be
seen protruding from the rest of the region which constitutes the lower bight of the
separating vortex. In the (x, y)-plane at the top of figure 32(b), which corresponds to
φ¯ 3π}2, the head of the separated vortex has nearly moved out of the picture while
the other end of the ring has moved nearer to the sphere. Meanwhile the new vortex
has grown substantially. In the (x, z)-plane in the lower half of the figure, the legs of
the hairpin vortex are now even more distinct. The vortical region in the (x, y)-plane
of figure 32(c) has changed only slightly from the previous phase angle. The near-wake
bight of the separated vortex appears to have contracted and the upper region shows
a small protrusion on the downstream edge. With reference to figure 30(b), this
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F 33. Grid-overlaid view of the vortical structure at Re¯ 300 in the (x, y)-plane.

protrusion corresponds to the region of induced vortical motion just beginning to form
around the legs of the hairpin in the top panel of the figure. In the (x, z)-plane of figure
32(c), along with the legs of the hairpin, the induced vortical region is even more
pronounced than in the (x, y)-plane. Figure 32(d ) completes the cycle and shows, quite
clearly, the break of the vortex from the rest of the structure. At the lower right of the
(x, y)-plane, at about x¯ 3±5, the free floating head of the induced hairpin is visible.
Just above is the intersection of the legs of the previously separated vortex with the (x,
y)-plane. The breaks in the vortex legs in the (x, z)-plane in figure 32(d ) are due to
movement of the structures out of this plane. Close inspection of the second panels of
figure 30 shows that the legs of the induced hairpin remain intact. The legs of the
previously shed hairpin do, however, taper away.

This dissection of the near-wake vortical region shows that the structure remains
hollow throughout the cycle This is to be expected since interaction between opposing
vorticities across the centre of the wake results in their mutual dissipation. Also evident
from the cross-sections is that, for whatever reason (most likely the intensity of the
vortex), the upstream end of the vortex ring never appears to strongly interact with the
surface of the sphere, leaving the limiting streamline topology relatively unaffected as
shown in figure 22.

With the vortical regions, as defined by Jeong & Hussain’s method, thoroughly
analysed, it remains to translate the meaning of these structures into fundamental flow
properties. This is best accomplished by looking at cross-sections of the structures in
planes of constant x. Figure 33 shows the vortical region that was calculated at φ¯
0. It has been plotted over a numbered grid to help illustrate the positions of the cross-
flow planes being considered relative to the vortical structure. It is important to
remember that the structure does not strictly define the extent of the vortical region of
the flow. As indicated by the appearance of a free-floating structure in the second
panels of figures 30(a) and 30(b), the method merely sets a threshold for structure
definition. Clearly then, there is a limit to the details which can be extracted from these
structures and care is taken such that the following analysis does not exceed this limit.

In the region of xE 1±5 there is a structure developing around the legs of the hairpin
vortex. Previously it was concluded, from a comparison with figure 29, that this
structure is a result of the vorticity induced by the wake}outer flow interaction. To
clarify this, figure 34 shows a (y, z)-plane taken at x¯ 1±5. Exploiting the symmetry of
the flow field, the figure is split into two halves. The left half shows the cross-section
of the vortical structure. The right half shows cross-flow velocity vector traces, which
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F 34. Combination plot of the cross-section of the vortical structure and integrated traces
of cross-flow vectors at x¯ 1±5.

are simply streamlines constructed from the in-plane velocity vectors. The projected
perimeter of the sphere is shown as a dashed outline. The most prominent feature of
the streamlines is the clockwise rotating focus at y¯ 0, z¯ 0±2. On the left side of the
figure this structure is captured by a circular contour line. With reference to figures 31,
30(a), and 30(b) this focus is obviously one of the legs of the shedding hairpin vortex.
The other contour, somewhat banana shaped, and sitting above and to the left of the
hairpin leg, clearly corresponds to the induced vortical structure. Considering the
region of the streamlines that would be covered by reflecting the contour section about
the centreline, the mechanism behind the generation of this vortical region becomes
clear. As the far-field flow approaches the rotating vortex of the hairpin leg, it gets
turned sharply as it is dragged into the vortex. Unlike the hairpin leg, which is spinning
clockwise, the induced motion of the outer flow is counterclockwise. Note that even
though the curvature of the induced flow does not appear to indicate the presence of
a vortex, it is nevertheless sufficient to register as a structure using Jeong & Hussain’s
method.

Cross-flow velocity vector traces have been generated farther downstream in the
wake in order to reveal more about the hairpin vortex structures. One sequence of
planes has been taken for 4%x% 6 to provide information on the flow behaviour in
the region of the hairpin vortex’s head and the induced hairpin’s tails. Another
sequence has been taken for 7±5%x% 9 to reveal the behaviour in the opposite
situation, passing through the induced vortex’s head and into the next hairpin’s tails.

The first cross-flow sequence is shown in figure 35 and includes planes at x¯ 4, 5,
5±5 and 6. Note that the axis range has been changed relative to figure 34 and that the
profile of the sphere is still indicated by a dashed circle. With reference to figure 33, this
sequence spans from just upstream of the hairpin’s head to the legs of the downstream
induced hairpin. Figure 35 is organized in the same manner as figure 34, with vector
traces on the right and contours on the left. In figure 35(a), just as in figure 34 there
is a strong spiral focus corresponding to the leg of the hairpin and an essentially
circular contour capturing it. As can be confirmed in figure 33 there are no induced
vortex structures in this plane. Figure 35(b), taken at x¯ 5, is very near the centre of
the head of the hairpin vortex and close to the beginning of the induced vortex’s legs.
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F 35. Cross-section of the vortical structure and streamlines of projected cross-flow velocity
vectors : (a) x¯ 4; (b) x¯ 5; (c) x¯ 5±5; (d ) x¯ 6.

The vector traces still show the focus of the hairpin’s rotation, though its shape has
changed slightly. A saddle point, whose separatrix caps the focus, now appears at the
intersection of the upward flow between the legs of the hairpin and the far-field flow.
Below the focus, the vector traces bend in the vicinity of the sphere’s projected area.
On the left of the figure, the contour lines show the cross-section of the hairpin vortex’s
head with a hole in the centre near the saddle point. In addition, there is a small leg
extending downward from the head of the vortex in the region of the bending vector
traces. Since the hairpin vortex consists of clockwise rotating flow, and the general
sense of rotation of the bend is counterclockwise, the small extension is most likely the
beginning of the induced hairpin’s legs. Figure 35(c) is taken at x¯ 5±5, passing
through the core of the hairpin’s head and slicing through the upstream segment of the
induced hairpin’s legs. The spiral focus has disappeared into a point node. Below the
node, the bend in the vector traces has become stronger. The contours show the head
of the hairpin centred just over the node and the legs of the induced hairpin, having
increased in size, are now separated from the head of the hairpin. In figure 35(d ), at
x¯ 6, the head of the hairpin has shrunk considerably while the legs of the induced
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F 36. Cross-section of the vortical structure and streamlines of projected cross-flow velocity
vectors : (a) x¯ 7±5; (b) x¯ 8; (c) x¯ 8±5; (d ) x¯ 9.

hairpin have grown. In addition, the vectors along the centreline, below the head of the
hairpin, point downward, aligned with the induced velocity between the legs of the
induced hairpin.

Figure 36 shows the next sequence of planes at x¯ 7±5, 8, 8±5 and 9, passing through
the induced hairpin vortex’s head to the legs of the following hairpin. Figure 36(a)
shows the plane at x¯ 7±5, approaching the induced hairpin’s head. The development
from the end of the previous figure at x¯ 6 to here is straightforward: more cross-flow
vectors are induced downward by the induced hairpin’s legs as they grow to what is
seen in figure 36(a). Figure 36(b) shows a plane at x¯ 8. The head of the induced
hairpin is clear in the contour lines and the counterclockwise spiral of the induced
hairpin’s legs has disappeared. In analogous fashion to the previous sequence, there is
a clockwise bend in the vector traces and an outgrowth in the contour plot has
appeared at y¯ 0, z¯®0±2, revealing the beginning of the next hairpin’s legs. A node
at y¯ 1±0 indicates that the next hairpin vortex has already begun exerting its influence
on the cross-flow. At x¯ 8±5, in figure 36(c), the clockwise motion of the vector traces
has increased and the leg of the hairpin vortex has grown and separated from the head
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F 37. Computational streaklines at Re¯ 300 for φ¯π : (a) (x,y)-plane; (b) (x, z)-plane.

of the induced hairpin. The small link between the two in the contour plot is, in all
likelihood, an artifact of the plotting interpolation. In the final figure of this sequence,
figure 36(d ) at x¯ 9, the cross-flow pattern has developed as should be expected. The
clockwise rotation of the legs of the hairpin vortex has become dominant and the head
of the induced hairpin has decreased in size.

6.6. Comparison with experiments

Figures 35 and 36 show that both the hairpin and induced hairpin vortices exhibit the
real physical properties one would expect from a vortex. However, there remains an
apparent disparity between the calculated vortex structure shown in figure 30 and the
results of flow-visualization experiments attempting to reveal the vortex structure. The
sketch in figure 1, for example, from Achenbach (1974) depicts what appears to be one
side of the structure shown in figure 30. In addition, dye visualization results presented
by Perry & Lim (1978) and Sakamoto & Haniu (1990) show essentially the same
structure sketched by Achenbach. In both cases, hairpin vortices are observed shedding
with a constant orientation. This one-sided, fixed-orientation shedding of hairpin
vortices is seen in all of these experimental studies. Even numerical particle traces, such
as those by Shirayama (1992) and by Gebing (1994) reveal one-sided shedding.

It is clear that to compare the current numerical simulations directly to experimental
results, instantaneous streamlines, vector traces, and the computed vortex structure are
not appropriate. Therefore, figure 37 shows streaklines produced from the numerical
simulation viewed normal to the (x, y)- and (x, z)-planes. A streakline is the locus of
points connecting particles released into the flow from a fixed point in the flow field.
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Experimentally, streaklines correspond to the results obtained from flow visualizations
whereby dye, moving with the sphere, is released from the wake region. The numerical
streaklines shown in figure 37 correspond to the flow field at a phase angle of φ¯π,
the designated starting point of the shedding cycle. Therefore, figures 37(a) and 37(b)
can be compared with the third panels of figures 30(a) and 30(b). The loops in the
streaklines correspond well to the locations of the hairpin vortices revealed by Jeong
& Hussain’s method. What is most striking though, is the fact that the induced hairpin
does not show up in the streaklines. Some limited attempts at repositioning the
numerical ‘dye ports ’ were also unsuccessful in capturing the induced hairpins in the
streaklines. The fact that the current results simultaneously reveal the alternately shed
hairpins using Jeong & Hussain’s method and show the experimentally observed one-
sided shedding in the streaklines is particularly interesting.

Current experimental flow-visualization results for the shed vortex structure are
shown in figures 38 and 39. Figure 38 shows the structure of a shedding hairpin vortex
as it extends out of the near wake. This picture clearly shows the physically observed
geometry of the vortices and can be compared to the numerically calculated structures
in figures 30 and 31. In figure 39 both pictures are taken some time after the sphere has
traversed the region and show the wake at approximately 30 diameters downstream of
the sphere. Figure 39(a) shows what would correspond approximately to the (x, y)-
plane in the simulations, although it is slightly rotated and the vertical direction is
reversed. Even so, the constant orientation of the shed vortices is plainly evident. The
spacing between the vortex heads was measured at just over 6±5 sphere diameters giving
a Strouhal number of 0±15. Figure 39(b) corresponds to what would be the (x, z)-plane
in the simulations. The regularity of the vortex spacing is clear and the vortex spacing
was again found to be between 6 and 7 sphere diameters. The most interesting aspect
of figure 39 is the small kinks that are present in the legs of the hairpin vortices. This
same-style kink is present in the results from Sakamoto & Haniu although it is not
depicted in their accompanying sketch. It is likely, from the results presented above,
that these kinks develop under the influence of the induced velocity from the induced
hairpin vortices. Considering figure 30, it is easy to imagine the induced hairpins
causing a spreading and turning of the flow to cause such a feature. A similar kink is
present, but only very faintly, in the streakline pattern of figure 37(b) at xE 5, the
correct location to correspond to the head of the induced vortex. It is quite possible
that more a refined calculation of the streaklines would show the hairpin kinks in
greater detail.

Finally, with what is now known from the numerical results, the experimental
observations of the shedding process can be described. Observations from the flow
visualizations produced using the method described in §3 reveal a generally less
detailed, but equally interesting, picture of the shedding mechanism than that provided
by the numerical simulations. Figure 40 shows a picture of the near wake as a hairpin
vortex is beginning to shed. The view is equivalent to the (x, y)-plane in the numerical
results with the z-direction reversed. Figure 41 illustrates a complete shedding cycle.
The shedding mechanism apparent from experimental observations can be followed by
studying these pictures. The photographs in figure 41 were taken at a Reynolds number
of 300 and are equally spaced in time from the start of one period to the next.
Therefore, the time increment between each photograph is equal to 1}5 of a period. For
the experimental conditions one period was roughly 14±5 s. With reference to the
numerically defined coordinates, the vantage point in the photographs is approximately
45° above the (x, z)-plane, with the orientation of the shed hairpins toward the bottom
of the pictures.
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F 38. Dye visualization of a shedding hairpin vortex at Re¯ 300.

(a)

(b)

F 39. Two views of dye visualizations of the hairpin vortices in the wake at Re¯ 300:
(a) (x, y)-plane; (b) (x, z)-plane.

F 40. Dye visualization of the near wake at Re¯ 300.
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F 41. Dye visualization sequence of shedding in the near wake at Re¯ 300: (a) t¯ 0; (b) t¯T}5; (c) t¯ 2T}5; (d ) t¯ 3T}5;
(e) t¯ 4T}5; ( f ) t¯T.
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During the experimentally observed shedding cycle, one side of the vortex ring is
seen to move downstream to form the downstream bight of a hairpin vortex. Ignoring
for now what are known to be the legs of a previously shed hairpin vortex, this
corresponds to the spiralling recirculation seen at the lower right-hand side of figure 40.
Note again that the flow in figure 40 is upside down relative to the numerical results
where the downstream bight of the hairpin is shed from the top of the wake. Figure
41(a) shows the first stage in the shedding cycle. The vortex ring is located about one
diameter downstream of the sphere, on the far right side of the photograph. The ring
has already tilted and the downstream bight is moving out of view. As the downstream
bight of the vortex sheds and proceeds farther downstream to form a hairpin-shaped
vortex, the legs of the hairpin remain in the near wake and are seen to stretch and move
closer together and toward the axis. As they move toward the axis, they can be seen
becoming enveloped in the shear layer which surrounds the near wake and from which
they themselves originated. In figure 41(b) the downstream bight has just moved out
of the picture and the shear layer is beginning to envelop the legs of the hairpin. This
is particularly evident in the slight jog in the lower surface of the wake boundary. At
this point the upstream bight of the shed hairpin vortex, adjacent to the rear surface
of the sphere, appears to move across the wake. In figure 41(c), as unlike 41(b), the legs
of the shed hairpin curve downward as they extend into the near wake. This stage is
also well represented in figure 40, which shows the legs of a previously shed hairpin
extending into the near wake and appearing to originate from the lower half of the
wake. Recall from figure 41(a) that the legs remain connected to the upstream bight.
The upstream bight of the hairpin, which is known to have begun on the top side of
the wake, has therefore moved to the lower half of the figure. With reference to figure
27, which shows (x, y)-cross-sectional contours of z-vorticity, this cross-wake
movement of the upstream bight is represented in the last panel in the figure where
positive vorticity from the lower half of the wake tears from the rest of the shear-layer
vorticity. It is this cross-wake move of the upstream bight which, during flow
visualizations, appears to be responsible for separating the next hairpin in the
sequence.

In figures 41(c) to 41( f ) this process is seen in discrete steps. In figure 41(c) the
upstream bight has crossed to the bottom of the wake where there is new vortex
forming out of the shear layer. In figure 41(d ) the new vortex on the lower side of the
wake has grown and moved a bit downstream. By figure 41(e), the new vortex has
completely formed and can be seen encircling the legs of the previous hairpin. It is in
figure 41(e) that the cycle has reached the stage where the lower section of the new
vortex is being separated from the near wake by the upstream bight of the previous
vortex. By the final figure, figure 41( f ), the flow has essentially returned to the state
shown in figure 41(a) with the next vortex beginning to shed. The complete cycle
suggests a mechanism not unlike, though lacking the details, of that indicated by the
numerical results.

The upstream bight, which originates from the top of the shear layer in figure 41,
consists of clockwise rotating flow. When it moves to the bottom of the wake,
intuitively under the effect of the self-induced velocity of the highly curved bight and
the corotating legs of the hairpin, it interacts with and dissipates counterclockwise
rotating flow in the lower half of the shear layer. This interaction process is then
responsible for cutting the next hairpin free from the shear layer to restart the process.
The consistent orientation of the shed vortices can then be associated with the self-
induced cross-wake movement of the upstream bight.

This view of the shedding process can be seen as closely related to that given by
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Gerrard (1966) for the shedding behind circular cylinders, where vorticity is induced
across the wake to release a vortex from the opposite side. However, as the current
work clearly shows, a mechanism obtained solely from experimental observations is,
by definition, completely phenomenological and ignores critical features of the three-
dimensional process such as the azimuthal flow and pressure gradient effects on the
evolution of the vortices as well as the generation and presence of the induced hairpin
vortices.

7. Conclusions

The present study was undertaken with the objective of numerically simulating and
analysing in detail the first three flow regimes of the flow past an isolated sphere,
namely steady axisymmetric flow, steady non-axisymmetric flow, and unsteady
periodic flow. Of primary interest was defining the kinematics of the flows and the
transition processes between regimes. The final goal of the work was to be a cross-
regime description of the flow evolution from symmetry breaking to temporal
instability.

The results showed flow separation occurring at a Reynolds number of 20 and the
wake was found to consist of a toroidal vortex. These are results consistently reported
in previous studies. However, in pursuing a more in-depth analysis of the flow field, the
vortex is found to be balanced at these low Reynolds numbers by viscous forces, as
opposed to radial pressure gradients. With increasing Reynolds number, pressure
effects are shown to become increasingly important. By Re¯ 200, the centrifugal
acceleration of the wake vortex is seen to be balanced by a local pressure minimum
within its core as the viscous effects become less dominant. The structure of the wake
vortex, which is fairly straightforward in this regime, was best elucidated not by
vorticity contours, but rather by the method proposed by Jeong & Hussain (1995)
which targets swirling motions around local pressure minima.

Concurrent with the shift of the wake vortex from viscous to pressure gradient
effects, the transition to the second flow regime is observed. At a Reynolds number of
211, the axial symmetry of the flow is seen to break down. The resulting flow, however,
still preserves reflection symmetry and temporal stability. The computed onset of this
regime is in excellent agreement with previous experimental and numerical results
which put the transition at 210!Re! 212. It appears that the transition is associated
with an azimuthal instability of the low-pressure core of the toroidal vortex. The
instability grows as the viscous effects in the vortex become increasingly less important.
Based on this supposition, a mechanism describing the transition is proposed. An
azimuthal pressure gradient resulting from the instability drives flow through the
vortex core and opens up the once closed separation region to the entrainment and
release of fluid. The release of wake fluid occurs through two tails, in agreement with
the double-thread wake first observed in liquid drop experiments by Magarvey &
Bishop (1961). The vortex structure of the wake clearly shows two streamwise vortices
extending downstream. Contours of the streamwise vorticity component compare well
to the isosurface calculated by Tomboulides (1993). The experimental flow visualization
results of the current study were found to compare quite well to particle traces from
the numerical simulation.

Using the full unsteady capabilities of the numerical method, steady solutions for the
flow were found up to a Reynolds number of 270. At Re¯ 280 the results were clearly
periodic. The current results, therefore, agree with the experimental results of
Magarvey & Bishop (1961) who reported the onset of unsteadiness at Re¯ 270.
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Comparisons with previous numerical investigations are also favourable. Although
strictly applicable only to the axisymmetric base flow, the stability analysis by
Natarajan & Acrivos (1993) indicates a Hopf bifurcation at Re¯ 277±5. Tomboulides
(1993) found the transition from the physically observed non-axisymmetric base flow
in the range 270!Re! 285. At Re¯ 300 computed flow variables also compare well
with previous results to the extent that they are available. The computed Strouhal
number of 0±137 is in remarkable agreement with that of Tomboulides at 0±136. The
current study’s experimentally determined Strouhal number range of 0±148–0±165 is
slightly higher, as generally appears to be the case with experimental results : Sakamoto
& Haniu (1990) found a range of 0±15–0±165. The calculated drag coefficient of 0±656
lies between the experimental results of Roos & Willmarth (1971) at 0±629 and the
numerical results of Tomboulides at 0±671.

The mechanism proposed above for the breakdown of axial symmetry is extended
to describe the transition to unsteadiness. The unsteady flow is seen to be driven by the
periodic growth of the wake vortex and its release from and subsequent regeneration
within the near-wake region. The vortical structure of the wake shows not only the
periodic hairpin vortices shed with consistent orientation as revealed by flow
visualizations, but also previously unrevealed, oppositely oriented hairpin vortices
induced by the interaction of the near-wake flow and the outer flow. These newly
visualized vortex structures support an intuitive understanding of the shedding process
showing a reaction of the flow field to the previously revealed one-sided hairpins. The
presence of the induced hairpin vortices clarifies the points raised in the introduction
regarding the structure of the wake. In particular, it becomes clear that the transverse
circulation of the wake is bounded with the induced vortices opposing the effect of the
standard hairpins. In addition, the topological inconsistencies of figure 1 are avoided
with hairpins connected to induced hairpins rather than to each other. Correctly
capturing the vortical structure of the wake is clearly required for a firm understanding
of the physics. Numerical streaklines, however, help to validate the computed results
by mimicking the experimental flow visualizations and revealing only the hairpins
generated in the interior of the wake. This point highlights the importance of
understanding the limitations of the tools of both experimental and numerical analysis.

Finally, as a complement to the shedding mechanism implied by the details of the
numerical results, a phenomenological mechanism is put forth based on the
experimental flow visualization results. Here, one loop of the wake vortex is shed
downstream while the other loop moves under its self-induced velocity field across the
wake to cut the next vortex loop free. While this mechanism is intuitively appealing,
it is important to be aware of the whole picture, as supplied by the numerical results.

The authors would like to acknowledge the help received from Dr Fotis Sotiropoulos
in the development of the numerical method used in this work. In addition, the
substantial contributions made by one of the journal’s referees, through thoughtful and
piercing questions, served to greatly improve the quality of the paper.
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