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Computation of Unsteady 
Viscous Marine-Propulsor Blade 
Flows Part 1: Validation and 
Analysis 
In this two-part paper, time-accurate solutions o f  the Reynolds-averaged Navier- 
Stokes equations are presented, which address through model problems, the response 
of  turbulent propeller-blade boundary layers, and wakes to external-flow traveling 
waves. In Part 1, the Massachusetts Institute of  Technology flapping-foil experiment 
is simulated and the results validated through comparisons with data. The physics 
of  unsteady blade flows are shown to be complex with. analogy to Stokes layers and 
are explicated through visualization and Fourier analysis. It is shown that convection 
induced steady~unsteady interaction causes deformation of  the external-flow waves 
and is responsible for  the upstream- and downstream-traveling pressure-gradient 
waves over the foil and in the wake, respectively. The nature of  the unsteady displace- 
ment thickness suggests viscous-inviscid interaction as the mechanism for  the re- 
sponse. In Part 2, a parametric study is undertaken to quantify the effects of  frequency, 
foil geometry, and waveform. 

Introduction 

In comparison to other rotating machinery, marine propulsors 
are unique in that they are susceptible to cavitation and, more 
importantly for the work herein, operate in the thick hull bound- 
ary layer and/or appendage wakes. This creates a flow which, 
at design conditions, is inherently interactive and unsteady. 
Moreover, at off-design conditions (e.g., maneuvering) com- 
plex natural (i.e., vortex shedding from the hull) and forced 
(i.e., propulsor) unsteady interactions occur. Computational 
fluid dynamics (CFD) methods have been applied extensively 
to the steady-flow approximation of propeller/hull interaction. 
These methods typically use an interactive approach, i.e., a 
body-force propeller representation in a Reynolds-averaged Na- 
vier-Stokes (RANS) method obtained interactively using a vor- 
tex-lattice propeller-performance method for specified inflow 
(e.g., Stern et al., 1994a). CFD methods have also been applied 
to the steady-flow problem of open-water (i.e., uniform inflow) 
propeller-blade and wake flows both for idealized (Kim and 
Stem, 1990) and practical turboprop and marine propulsors 
(Stern et al., 1994b). Despite the advances made by these meth- 
ods, the unsteady complete-configuration flow, whose under- 
standing is critical for issues such as cavitation, vibration, and 
acoustics, remains as a computational Grand Challenge and 
requires both further CFD development and experimental fluid 
dynamics (EFD) validation data. Recent efforts, including those 
reported here, have been directed toward meeting this challenge 
by addressing issues of time-accurate RANS for fixed- and 
moving-boundary problems (Paterson, 1994), practical marine 
propulsors with simplified periodic inflows (Chen et al., 1994), 
and self-propelled maneuvering underwater vehicles (McDon- 
ald and Whitfield, 1996). 

Historically, the rational approach for analysis of unsteady 
propulsor hydrodynamics has been through the use of two- 
dimensional models of propeller blade and wake flow, i.e., a 
foil embedded in vertical and horizontal traveling waves (gusts) 
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at the dominant frequencies (i.e., up to reduced frequency of 
10) of the ships nominal wake. As such, the model problem is 
directly related to the classical and fundamental work on un- 
steady boundary layers and unsteady lifting flows. However, 
both bodies of work have been approached with differing per- 
spectives, i.e., as viscous- and inviscid-flow problems, respec- 
tively, thus creating a need for more comprehensive study. Nev- 
ertheless, the previous work provides a framework for under- 
standing unsteady, viscous, lifting blade flows. 

Nearly all work on unsteady boundary layers is for a flat 
plate subject to a uniform stream with superimposed temporal, 
spatial, or traveling horizontal-wave outer-flow oscillation. 
Most information, however, is for laminar and turbulent bound- 
ary layers with temporal-wave outer flow (e.g., Telionis, 1981; 
Spalart and Baldwin, 1989; Shima, 1993) where it is known 
that the response is characterized by small-amplitude Stokes- 
layer overshoots, phase leads, and streaming and, in addition, 
limited interaction between mean and turbulent motions. Spa- 
tial-wave outer flows, on the other hand, which are related to 
ship hydrodynamics problems involving free-surface piercing 
bodies with gravity waves, have only recently been put in con- 
text of Stokes layers (Choi et al., 1996). Choi et al. (1996) 
showed that Stokes-layer behavior is observed, but is signifi- 
cantly larger in amplitude than the temporal wave, and that 
nonlinear interaction between the zeroth- and first-harmonic 
velocity components result in an asymmetric wake response. 
Of most interest for the work here is the traveling-wave outer 
flow. However, as in the case of spatial waves, very limited 
information is available (Choi et al., 1996; Patel 1975, 1977). 
Choi et al. (1996) did show that for laminar flow, the boundary 
layer response to traveling waves was extreme, i.e., very large 
overshoots and large phase lags, for certain combinations of 
wave speeds and frequencies. Unfortunately, virtually no work 
exists for turbulent boundary layers subject to traveling waves, 
particularly at the level of resolution required to validate RANS 
methods and turbulence models and explicate the interaction 
between mean and turbulent motions. 

The situation for unsteady lifting flows is similarly incom- 
plete: the results are limited in range, most notably frequency, 
and contradictory since they resolve differing levels of physics. 
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For example, the pioneering linear potential flow theories for 
foils embedded in traveling vertical waves (Sears, 1941) and 
traveling waves with both vertical and horizontal components 
(Horlock, 1968) neglect interaction of the outer unsteady flow 
with the mean flow field and suffer frequency restrictions due 
to use of the steady Kutta condition. Nonlinear potential flow 
methods (Goldstein and Atassi, 1976) show that steady/un- 
steady interaction significantly accelerates and distorts the 
waves resulting in a much different lift response. As further 
shown by Basu and Hancock (1978), this interaction addition- 
ally creates a complex unsteady foil wake which is a combina- 
tion of its shed vorticity due to lift and the deformed gust. Use 
of the steady Kutta condition in potential flow theories has been 
shown to be invalid (Poling and Telionis, 1986) for reduced 
frequencies k = ~L/2Uo above 2 due to nonzero loading at the 
trailing edge. More importantly, Poling and Telionis (1986) 
postulated, through visualization of strong curvature of the near- 
wake streamlines, that viscous-inviscid interaction may be an 
important feature of high-frequency gust flows. Finally, the 
wave characteristics of the pressure field, which are particularly 
important for acoustics and cavitation, differ significantly be- 
tween theory and EFD and CFD. While the classical theories 
predict constant phase angle along the foil (i.e., a temporal- 
wave response), EFD (e.g., Commerford and Carta, 1974) and 
compressible Euler-equation CFD (Atassi et al., 1993; Adam- 
cyzk and Brand, 1972) show upstream- and downstream-travel- 
ing pressure waves. No definitive explanation for this response 
has been advanced since most studies are either focused on 
other aspects (e.g., acoustic energy as opposed to purely hydro 
or aerodynamic sources) or limited in scope and/or range of 
parameters. 

Obviously, there are many issues to be addressed and much 
work is required in understanding their relative importance, 
parametric dependencies, and relationship to practical applica- 
tions. Therefore, the objectives of the present work are twofold. 
First, in Part 1, unsteady-flow calculations and validation 
through comparisons with the Massachusetts Institute of Tech- 
nology (MIT) Marine Hydrodynamics Laboratory flapping-foil 
experiment (FFX) are presented. The results are discussed for 
steady and unsteady flow, including comparisons with the data, 
and an analysis provided to explicate the observed response. 
Second, in Part 2, a parametric study of frequency, waveform, 
and foil geometry is presented to relate the observations made 
in Part 1 to the classical and fundamental work, to further expli- 
cate the response, and to determine implications with regard to 
practical applications. 

M I T  F l a p p i n g - F o i l  E x p e r i m e n t  

The FFX consists of a foil embedded in traveling vertical 
and horizontal waves generated by upstream pitching foils (Fig. 
1 ) and was designed to provide detailed measurements for vali- 
dation of unsteady CFD methods and determination of appro- 
priate Kutta conditions for unsteady potential-flow methods. 
Details of the experimental objectives, apparatus, procedures, 
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and uncertainty are documented by Rice (1991), Delpero 
(1992), and Horwich-Lurie (1993). Associated with FFX was 
the 29-30 March 1993 Office of Naval Research (ONR)/MIT 
Unsteady-Flow Workshop in which various groups of research- 
ers submitted blind computations (i.e., with only the experimen- 
tal conditions and boundary data) and met at the workshop for 
the comparisons with the data and discussion. Paterson and 
Stern (1993) provide a discussion of the Workshop results. 

The experiments wege performed in the closed-loop MIT 
Variable-Pressure Water Tunnel which has a 53 in long and 20 
inches square test section and a freestream turbulence level of 
about 1 percent. The foil is a modified NACA 66 fixed at an 
angle of attack of 1.18-1.34 deg with transition set at x = 0.105 
on both sides. Modifications were made to the foil geometry to 
account for blockage such that the foil in the tunnel produced 
the same steady pressure distribution as the unmodified foil in 
open-water conditions. The flappers are NACA 0025 and are 
driven by a variable-speed motor with an amplitude of 6 deg 
and a frequency of 16 Hz. The corresponding Re based on the 
foil chord length is 3.78 × 106 and the frequency parameter is 

= 3.6. 
Velocity and surface-pressure measurements were made us- 

ing a two-component laser Doppler velocimeter and miniature 
pressure transducers, respectively. For the unsteady measure- 
ments, the value at each time step is the ensemble, or phase, 
average over 250 periods and had a temporal discretization of 
180 points over the period. 

Prior to the workshop, steady and unsteady (U, V) data was 
provided on the small domain boundaries and 60 percent of the 
tunnel domain inlet along with steady boundary-layer profiles. 
After the workshop, unsteady boundary-layer profiles and pres- 
sure data was provided at the locations shown in Fig. 1. In 
general, comparisons are made to the data whenever possible. 

C o m p u t a t i o n a l  M e t h o d  

In the following, the method is briefly described, an overview 
is given of the solution domains, boundary conditions, and grid 
generation, and numerical uncertainty is discussed. 

D e s c r i p t i o n .  The Reynolds-averaged Navier-Stokes (RANS) 
equations are written in the physical domain using Cartesian 
coordinates with x positive downstream, y normal to x, and 
the origin at the foil leading edge (Fig. 1) and are partially 
transformed (i.e., coordinates only) into nonorthogonal curvi- 
linear coordinates such that the computational domain forms a 
simple rectangular parallelepiped with equal grid spacing. The 
transformed equations are reduced to algebraic form using fi- 
nite-analytic (FA) spatial discretization (Chen and Chen, 
1984), where the FA coefficients are obtained from a local 
analytical solution to the linearized momentum equations, and 
second-order accurate backward finite-difference temporal dis- 
cretization. This results in a computational stencil that includes 
all eight neighboring nodal values and the values at the two 
previous time-steps. The overall solution procedure is based 
upon the two-step pressure-implicit split-operator (PISO) algo- 
rithm (ISSA, 1985) and a pressure equation derived from the 
discrete continuity equation. In step 1 of the algorithm, the 
implicit momentum equations are solved iteratively using line- 
ADI with under-relaxation and the pressure from the previous 
time step. Step 2 consists of iterations between line-ADI solu- 
tion of the implicit pressure equation and an explicit velocity 
correction. In both steps of the algorithm, iterative convergence 
is required to ensure time accuracy and is measured using resid- 
uals based upon the difference between iterates. Also, the FA 
coefficients, which are dependent upon the local velocity, are 
updated at each step thus retaining the nonlinearity of the equa- 
tions. Closure is attained through a quasi-steady application 
of the Baldwin-Lomax turbulence model with modifications to 
account both for the effects of wake asymmetry (Rodi and 
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Srinivas, 1989) and axial pressure gradients (Granville, 1987). 
Note that complete details of the methods used are presented 
in Paterson (1994). 

Solution Domains and Boundary Conditions. The FFX 
was conducted such that calculations could be performed for a 
small domain with given boundary data, for a tunnel domain 
with a specified inflow, or for the complete domain, including 
the upstream flappers. At the workshop, the authors submitted 
blind computations using the small domain. Subsequent calcula- 
tions included all three domains, including a complete-domain 
calculation using unsteady Chimera domain decomposition. All 
three domains (small, tunnel, and complete) are shown in Fig. 
1. Referring to the notation in Fig. 1, the boundary conditions 
for the small domain are: 

(1) On the top and bottom (Ssal), U is from data, V is 
from continuity, and p is from an integrated form of the Euler 
equation. 

(2) On the inlet (Ssd2), U, V are from data and p is from 
the axial Euler equation. 

(3) On the exit (Ssd3), zero-diffusion and zero-pressure- 
gradient conditions are applied. 

For the tunnel domain: 

( 1 ) On the tunnel walls (Stdl), slip boundary conditions are 
used, that is, OU/Oy = 0, V = 0, and Vp" n = 0. 

(2) On the inlet (Sin), U, V is from a combination of data 
and an inviscid model and p is from the axial Euler equation. 

(3) On the exit (S,a3), zero-diffusion and zero-pressure- 
gradient conditions are applied. 

For the complete domain, the boundary conditions are the same 
as the tunnel domain except for: 

1) On the inlet (Sca2), uniform flow and zero-pressure-gra- 
dient conditions are used. 

2) On the flapping-foils (Sc~f), the no-slip condition is 
used, that is, U = - a ~  cos ( ~ - ) ( y  - Yr), V = - -a~  COS ( ~ T ) ( X  
- Xr), and Vp" n = 0 where a is the flapper amplitude, (xr, 
Y r )  is the center of rotation, 7- is the nondimensional time, and 

(=wL/U) is the frequency parameter. 

Grid Generation. Two grid-generation techniques were 
used depending on the domain and grid topology. EAGLE 
(Thompson, 1987) was used to generate C-grids for the foil in 
the small domain and the flappers in the complete domain. 
Algebraic H-grids were generated for both the tunnel and com- 
plete domains with hyperbolic tangent stretching functions and 
transfinite interpolation such that the grid spacing was con- 
trolled along the foil surface, leading and trailing edges, and 
the flapper wakes. For the complete domain, Chimera domain 
decomposition (Suhs and Tramel, 1991) was used to resolve 
the oscillating flappers by decomposing the domain into three 
separate, but coupled domains. 

Numerical Uncertainty. The recent publication of ASME 
Standards and Guidelines for numerical uncertainty (Freitas, 
1993 ) are important in signaling a new era in CFD development 
and application. Recently, Stern et al. (1996) critically reviewed 
the standards and guidelines, grouped them into documentation 
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(1, 7, 8), verification ( 2 - 6 ) ,  and validation (9, 10), and pro- 
vided implementation recommendations. 

Documentation of the unsteady algorithm is provided in Pat- 
erson (1994). In addition, the core CFD method has been ap- 
plied to many steady-flow applications and is well documented 
(e.g., Stem et al., 1996). 

Verification analysis consists of evaluating iterative and grid 
convergence, minimization of phase (i.e., time-step conver- 
gence) and dissipation errors, and determination of order-of- 
accuracy. Iterative convergence typically required 25 and 50 
iterations for the implicit momentum and pressure/velocity- 
correction steps, respectively. Residuals less than 0.0001 and/ 
or a drop of three orders of magnitude were used as the stopping 
criterion. 

Grid convergence was studied for both steady and unsteady 
flow. For steady flow, the number of points in the boundary- 
layer and near-wall grid spacing were increased and decreased, 
respectively, until the change of velocity profiles and wall-shear 
stress between grids was approximately 1 percent. For unsteady 
flow, effect of axial resolution and, therefore, inherent artificial 
dissipation upon the wave amplitude was studied in the tunnel 
domain without the foil. Approximately 40 points/wavelength 
were required to maintain 90 percent of the amplitude at the 
exit of the domain. The number of points across the flapper 
wakes for both tunnel and complete domains was not studied. 

Time-step convergence and phase error was assessed by vary- 
ing the time step and comparing solution and data Fourier-series 
phase angles. For both small and tunnel domains, the difference 
in phase response, in both inviscid and viscous regions, between 
50 and 64 time steps/period was approximately 0.5 percent. 

Due to solution dependent FA coefficients, the order of the 
method is a function of cell Re and aspect ratio and, as such, 
the discretization does not lend itself to the typical term-by-term 
order-of-accuracy analysis that is common to finite-difference 
methods. However, using a grid-doubling scheme and Richard- 
son extrapolation, order-or-accuracy of the core viscous-flow 
solver has been calculated for a variety of problems. For simple 
(i.e., laminar flat-plate boundary-layer and fully-developed an- 
nular-pipe flows) and complex (i.e., high Re flat plate, axisym- 
metric bodies, surface-piercing foils) flows (Dolphin, 1996; 
Zhang and Stem, 1996) with high Re (i.e., up to 109) and very 
highly stretched grids (i.e., aspect ratio up t o  1 0 6 ) ,  order-of- 
accuracy has been shown to range from 1.5 to 2.5. Note that 
this level of order-or-accuracy is comparable to, and in some 
cases better than, second-order finite-difference discretizations 
on stretched, non-orthogonal grids. 

Validation, which is the purpose of this paper, is provided 
through detailed comparison with the MIT FFX data and is 
presented in the following sections. 

Computat ional  Grids and Condit ions  
The grids used are shown in Figs. 2 -4 .  The small- and tunnel- 

domain grids have 181 × 80 and 180 × 179 points, respectively. 
In comparison, the complete domain has 240 × 179 and 71 × 
40 points for the foil and flappers, respectively, for a total of 
48,640. For each domain, approximately 40 points span the 
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Fig. 4 Complete-domain overset-grid system 

boundary-layer and the near-wall grid spacing was set such that 
the first grid point was located at y + ~-- 0.1. 

The calculations were performed at the experimental values 
of Re and ~ and at an angle of attack of 1.34 deg. The small- 
domain solution submitted for the workshop used the data for 
boundary conditions as previously described. Since the data did 
not correspond to the boundary-point locations, the data was 
smoothed using a cubic spline and interpolated both in time 
and space using a biquadratic polynomial. However, the coarse- 
ness of the data lead to erroneous results, especially for pressure. 
To validate the boundary condition formulation, a revised calcu- 
lation was made with high resolution boundary data interpolated 
from the tunnel-domain solution. For tunnel-domain inlet 
boundary Sta2, smoothed and interpolated data provided approx- 
imately 60 percent of the tunnel inflow area and, as previously 
mentioned, the remaining 40 percent was specified by matching 
a potential-flow approximation to the data [ see Paterson (1994) 
for details]. Figure 5 shows the tunnel-domain and data inlet 
profiles in terms of zeroth- and first-order harmonics. Also 
shown are second-harmonic amplitudes (U z, V2), which are 
large, particularly near the flapper wakes, and which were attrib- 
uted to an excited mode of tunnel vibration (Horwich-Lurie, 
1993). For the complete domain, the boundary-conditions were 
well-posed and required no special treatment. However, use of 
the Baldwin-Lomax turbulence model with overset grids pre- 
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Fig. 5 Comparison of boundary data and tunnel-domain inlet conditions 

sented difficulties. Because of these difficulties and the low 
flapper ReL = 6.3 X 105, it was assumed that the flapper flow 
was laminar. Lastly, transition was fixed by forcing the eddy 
viscosity upstream of the boundary-layer trip to zero. 

The steady-flow solution was used as the starting point for 
each calculation and typically 2 periods for the small domain 
and 4 periods for the tunnel and complete domains were re- 
quired to attain a periodic solution. For the small and tunnel 
domains, the time step was ~0 of a period (At = 0.01745) and 
for the complete domain, the time step was i of the period (At 
= 0.01364). CPU time per period and memory required on a 
CRAY YMP was 15 minutes/4MW, 45 minutes/6MW, and 
120 minutes/8MW for the small, tunnel, and complete domains, 
respectively. 

Discuss ion of  Results  and C o m p a r i s o n  to Data  

In the following, a brief description of the similarities and 
differences between the solutions on the different domains is 
provided. Then, using only the tunnel-domain solution, the re- 
sults are compared to data and discussed in terms of the zeroth 
(steady) and first- and second-order (unsteady) Fourier har- 
monic amplitudes and phases which are defined as 

2 

~b(t) = ~b0 + ~ ~bn sin (ni t  + Y~,n) 
n = l  

~. = ~a.~ + b~ 

Y~.n = tan l (an/b,) 

an = T =o ~ ( r )  cos (nEt)dr 

= 2  ~ r  
b. T ~-=o qS(r) sin (nEt)dr (1) 

complete domain 

tunnel domain 

Fig. 6 

small domain 

Domain comparison: axial-velocity contours at t i T  = 0 
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where ~b represents one of the flow variables. Note that Eq. ( 1 ) 
was evaluated for every point in the domain by using the last 
period of simulation. 

C o m p a r i s o n  o f  S o l u t i o n  D o m a i n s .  In Paterson and Stern 
(1993), it was shown that the solutions gave similar overall 
agreement with the data, except for the small domain with data- 
prescribed boundary conditions, for both steady and unsteady 
flow. This demonstrated that, despite differences in boundary 
conditions, grid generation, and CPU-time and memory require- 
ments, complex problems could be handled with a variety of 
formulations. There were, however, some differences. It was 
shown, as previously mentioned, that the small domain with 
data-prescribed boundary conditions introduced erroneous 
higher harmonics which were attributed to the coarseness of 
the data. The small-domain formulation, however, was validated 
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by using boundary conditions prescribed by interpolating from 
the tunnel-domain solution. This showed nearly identical results 
as the tunnel domain. The inclusion of pressure-gradient effects 
in the turbulence model for one tunnel-domain calculation sig- 
nificantly improved the solution. The complete-domain solution 
was similar to the others, but had some small differences due 
to the laminar-flow treatment of the flappers, the lack of tunnel- 
induced vibration (i.e., response was almost purely first har- 
monic), and the definition of the non-dimensional velocity. 

As an overall comparison, Fig. 6 shows axial-velocity con- 
tours for each of the domains at t / T  = 0. The difference in the 
domain size, consistency between the solutions, and wavy na- 
ture of the flow are evident. The small- and tunnel-domain 
solutions are nearly identical. The complete domain shows con- 
tinuity across the overlaid-grid region and flapper wakes, due 
to their laminar treatment, that are wider than tunnel domain 
and data. 

Given the above discussion, the tunnel-domain solution with 
pressure gradient modifications will be used for discussion of 
the results and analysis of the response. 

S t e a d y  F l o w  ( Z e r o t h  H a r m o n i c ) .  The zeroth harmonic is 
the same as a steady-flow solution and displays typical foil 
flow. Figure 7, which is a comparison in the inviscid region of 
the flow field on the small-domain boundaries, shows (U0, V0) 
on Sad1 top and bottom. Uo and data agree and show acceleration 
on the suction side, whereas Vo is similar in shape, but shows 
a small underprediction in comparison to the data. Surface pres- 
sure and wall-shear stress is shown in Figs 8 and 9, respectively. 
The pressure shows agreement with the data and the stress 
displays the fixed transition along with a small region of separa- 
tion over the last 5 percent on the suction side. Velocity profiles, 
at selected stations, are shown in the left column of Fig. 10 and 
show good agreement with the data. This level of agreement, 
which required pressure-gradient modifications to the turbu- 
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, . . . .  , . . . .  ~ . . . .  , . . . .  0 .000  lence model, appears to be a general assessment of the current 
capabilities of isotropic turbulence models since it is consistent 
with the other participants in the FFX workshop and overall 
results found in the literature. 

Unsteady Flow. Figure 7 includes first-harmonic amplitude 
(Ut, V~) and phase (YVl, Yw). On Sad1 top, Ui and data agree 
in magnitude and display spatial sinusoidal oscillations of nearly 
the same form and Vt agrees in magnitude and shape with the 
data. On S~dx bottom, Ux shows agreement in both the magnitude 
and shape and Vx shows an axial decay in comparison to the 
data. The phases are in agreement with the data on both top 
and bottom and show a downstream-traveling wave [in the 
Fourier analysis, the argument of the trigonometric functions 
(~t + 3') is equivalent to characteristic lines ~(t ± x /c ) ,  which 
corresponds to downstream (3, = - ~x/c) or upstream (y = 
+ix~c) traveling waves]. 

Figure 11 shows the lift and drag time histories over one 
period. The lift shows a large second harmonic which is consis- 
tent with the inflow. The drag is also second harmonic and 
indicates a small phase lead in comparison to the lift. Figure 
12 shows the surface-pressure first-harmonic amplitude and 
phase, the former of which has similar amplitude in comparison 
to the data. The shapes and zero values at certain x /L  are differ- 
ent and unconfirmed by the limited data. A large second har- 
monic (figure not shown) is consistent with the lift and drag 
and inlet profiles. On both sides, the streamwise increasing 
phase indicates upstream-traveling waves which are uncon- 
firmed by the data of nearly constant phase. It should be noted 
that the uncertainty of the pressure data was much debated at 
the ONR workshop and that, unfortunately, no estimate was 
provided. 

Figure 13 shows the wall-shear stress first-harmonic ampli- 
tude and phase. There is no data for validation of the amplitudes, 
however, the phase indicates the influence of the pressure gradi- 
ent: on the pressure side, decreasing values (i.e., downstream- 
traveling wave) on the forebody and upstream-traveling wave 
on the afterbody; and on the suction side, an upstream-traveling 
wave which leads the pressure by about 80 deg. This implies 
that the direction of the near-wall flow is opposite of the exter- 
nal-flow traveling wave. 

The velocity first-harmonic amplitude and phase profiles indi- 
cate, for x ~- 0.784 (pressure side) and x -~ .9 (suction side), 
amplitudes with small overshoots and phases with increasing 
lags with x and smooth transition across the boundary layer. In 
contrast, for x greater than these values, a two-layer structure 
is displayed with relatively constant amplitude of different mag- 
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nitude for the inner and outer flows with a zero amplitude and 
phase shift (180 deg/130 deg on suction/pressure sides) at the 
inner/outer boundary which is at approximately the boundary- 
layer edge. Figure 10 shows this at two selected stations on 
both sides of the foil. In the wake, where there is no data, the 
amplitude shows large overshoots and the phase initially shows 
a continuation of the boundary-layer response and then by x = 
1.1, leads on both the pressure and suction sides. The unsteady 
boundary-layer response is also depicted in Fig. 14 which shows 
perturbation-velocity (i.e., difference between steady and un- 
steady) time-history contours which vividly exhibit the features 
previously described. 

Figure 15 shows the perturbation velocity vectors and particle 
traces at t /T  = 0.8. The interaction between the flapper-wake 
vortices and foil is complex: distortion and increased speed on 
the suction (wavespeed, c ~. 1.26) versus the pressure (c ~. 
1.05) side such that the flapper-wake vortices are out of phase 
by the time they reach the foil trailing edge; and secondary 
counter-rotating vortices near the trailing edge and in the wake. 
The latter directly correlate with and explain the region where 
the first-harmonic velocity profiles displayed the two-layer 
structure. Also, the distortion and wake complexity has similar- 
ity to that shown by Basu and Hancock (1978) and is a result 
of the unsteady wake sheet interacting with the distorted gust. 
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Figure 15 also shows the perturbation axial pressure-gradient 
contours. This figure (and others in the time series which are 
not shown) indicates the direct correspondence between the 
flow pattern and axial pressure gradient, i.e., the perturbation 
flow directions are consistent with the regions of  favorable and 
adverse gradients. The wake is complex, including higher har- 
monics and upstream- and downstream-traveling waves over 
the foil and in the near wake and in the intermediate wake, 
respectively. The upstream-traveling waves are consistent with 
the surface-pressure first-harmonic phase. 

Analysis  of  Uns teady  Response.  To explain the unsteady 
response and, in particular, the nature of the correspondence 
between pressure gradient and external flow waves, an analysis 
of  the pressure gradient is presented. Substituting the first three 
terms of  the velocity Fourier series into the axial Euler equation 
gives 

~p 
Ox = Pxo + ~ P~, sin (nEt + y~° + 5%°) (2) 

,=i 

where p~,, is the amplitude and 5%, is the phase shift of  the 
pressure gradient with respect to Yu, ~ - n ~ x / c ,  The thirty- 

two terms which comprise Px, were evaluated along lines out- 
side the boundary layer at y+ ~ 10 4 (Fig. 16(a)  and it was 
determined that three terms, for each order, are dominant such 
that 

p.,= nUo~ + UoU.-bx- ! + Uo 

~r~o = tan-~ ~o~- ~ ~ = t a n - ' ( A )  (3) 

0x 
The first term in p~. is from the temporal derivative and the 
second and third, which represent steady/unsteady interaction, 
are from the convective term. Three cases are of  particular 
interest: 

(1)  U,, ~ U~(x) (i.e., U... = 0) such that A = ± ~  and 
~/p.o = _+re/2, where + corresponds to a lead (i.e., temporal 
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Fig. 13 Wall-shear stress distribution: first harmonic amplitude and 
phase 
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Fig. 14 Perturbation-velocity time-history contours. (a) Pressure side; 
(b) suction side 

wave with c -+ w) and - to a lag (i.e., spatial wave with 
c ~ 0 )  

(2) U, ~ ax (i.e., U,,n = a)  such that A and ~p,o = 0. This 

corresponds to a downstream-traveling wave in phase with the 
velocity wave. 

(3) U,, ~ sin (n~xB/c)  (i.e., U,o ~ cos (n~xB/c))  such 

that A ~ tan (n~xB/c)  and "Yexo "~ n~xB/c,  where 

(A)  B < 1 corresponds to a downstream-traveling 
wave 

(B)  B = 1 corresponds to a temporal, or stationary, 
wave 

(C)  B > 1 corresponds to an upstream-traveling wave. 
For reference, note that a simple flat-plate boundary layer sub- 
ject  to a horizontal traveling waves is case (1) ,  i.e., U0 = 1, 
O U i / O x  = 0, Px~ = Ut((1 - ~/c) ,  and "Ypx~ = 7r/2. 

Figure 16 (b) shows U1 amplitudes along the evaluation lines. 
It is harmonic over the foil (i.e., case 3),  which is consistent 
with the spatial oscillations shown for both EFD and CFD in 
Fig. 7, and linearly decreasing in the wake (i.e., case 2).  Figure 
16(c)  is a plot of  Ut~ + UoUl(Oyua/Ox)/Uo(OUl/Ox) and 
indicates a tangent-function behavior over the foil with B = 1,2 
and 1.8 on the pressure and suction sides, respectively. This 
corresponds to upstream-traveling waves, which are consistent 
with Fig. 12, traveling at a wave speed of  0.2 and 0.8. In the 
wake, similarly strong conclusions are difficult due to departure 
from case 2 behavior (i.e., oscillations and singularities in A 
at each point where OU1/Ox is zero),  however, in subsequent 

J o u r n a l  of  F lu ids  E n g i n e e r i n g  MARCH 1997, VoI. 119 / 151 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/119/1/145/5758260/145_1.pdf by U

niversity O
f Iow

a user on 26 February 2021



Fig. 15 Overall and detailed views of perturbation axial-pressure-gradient contours 
and instantaneous particle traces at t / T  = 0.8 

discussion, it is shown that the pressure-gradient exhibits down- 
stream-traveling waves in the intermediate wake. 

Figure 16(d) shows the displacement-thickness first-har- 
monic amplitude. Similar spatial oscillations as Ul are observed, 
but with relatively larger values in the near wake. The maximum 
value coincides with the location where U~ changes from oscil- 
latory to linear behavior. This suggests viscous-inviscid interac- 
tion in the form of a pulsating near-wake displacement thickness 
as the source for the pressure-gradient response. 

The relationship between velocity and pressure first-harmonic 
phases is shown in Fig. 17 for the outer (y+ ~ 104), overlap 
(y+ ~ 200), and sub-layer (y+ ~ 0.1) regions. Also, for the 
outer region, the pressure-gradient phase was obtained both by 
differentiation of the pressure Fourier series and from the Euler- 
equation-derived pressure gradient Eq. (3). The pressure indi- 
cates upstream-traveling waves over the foil and a temporal, or 
stationary, wave in the wake downstream of the displacement- 
thickness peak. Also, it is nearly constant across the boundary 
layer. On the foil in the outer and overlap regions, the velocity 
shows a downstream-traveling wave, whereas in the sub-layer 
region it follows the pressure gradient, which is consistent with 
the wall-shear stress. In the wake, the velocity shows a down- 
stream-traveling wave. The pressure gradient indicates up- 
stream- and downstream-traveling waves over the foil and in 
the wake, respectively. Over the foil and in the near wake, close 
agreement is shown between the two pressure gradients, which 
validates the Euler-equation analysis. 

The velocity first harmonic amplitude and phase in wall coor- 
dinates (figure not shown) shows that the largest overshoots 
occur near y+ ~ 1000, which also corresponds to where the 
phase abruptly changes from the outer to inner values. The 
amplitudes display a double peak across the boundary layer and 
the phase is constant in the sublayer and the lags shown in the 
velocity profiles (Fig. 10) occur in the overlap region. The role 
of the turbulence model vs. physics for the sub-layer region is 
unknown, as no data is available. 

Summary and Conclusions 
Time-accurate RANS solutions of unsteady viscous lifting 

blade flows were presented and validated through comparisons 
with MIT FFX data. Solutions were obtained on three different 

domains, one of which used dynamic overset meshes, and, de- 
spite differences in boundary conditions, gave similar overall 
agreement. The zeroth harmonic, which was the same as steady- 
flow calculations, displayed typical foil response and showed 
that turbulence model corrections for pressure gradient were 
necessary for accurate solution. Despite using a quasi-steady 
application of the Baldwin-Lomax turbulence model, the un- 
steady velocity profiles showed remarkably close agreement 
with the data and displayed a Stokes layer response but with 
additional complexities such as two-layer profiles due to trail- 
ing-edge counter-rotating vortices. Unfortunately, lift and drag 
data were not obtained and agreement between CFD and data 
unsteady pressure response was poor. The CFD indicated up- 
stream- and downstream-traveling pressure and pressure-gradi- 
ent waves over the foil and in the wake, respectively. Detailed 
analysis showed that distortion of the external flow waves, par- 
ticularly on the suction side, is significant and may be partially 
responsible for the complex wake structure. Also, Fourier series 
analysis of the velocity and axial Euler equation showed that 
the upstream traveling pressure waves were due to convection- 
induced interaction between the zeroth and first harmonics and 
require sinusoidal variation, as was shown by both the CFD 
and FFX data, of the velocity first-harmonic amplitude. The 
nature of the unsteady displacement thickness suggests viscous- 
inviscid interaction as the source of this response. 

Clearly, the FFX flow is complex and requires more work to 
understand the variety of flow features and their implication 
with regard to propulsor hydrodynamics. Therefore, a paramet- 
ric study is justified. In Part 2, a parametric study of frequency, 
waveform, and foil geometry is presented to relate the observa- 
tions made in Part 1 to the classical and fundamental work on 
unsteady boundary layers and lifting flows, to further explicate 
the response observed in the FFX, and to determine implications 
with regard to practical applications. 
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