3.5 Problem statement

A glass tube 10 cm long and 0.5 mm internal diameter has one end closed. The tube is inserted into water to a depth of 2 cm , as shown. In the process of inserting the tube, the air is trapped inside and undergoes a constant temperature compression. The atmospheric pressure is 100 kPa , and the water density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Find the location of the water level in the tube including the effects of surface tension.

Find

Location of water line in tube

Solution

(a) Assume water wets the glass

Equate forces acting at the liquid surface inside the glass tube

$$
\begin{gather*}
\sum F_{z}=0 \\
-p_{i} A+p_{l} A+\sigma \pi d=0 \tag{1}
\end{gather*}
$$

Where p_{i} is the pressure inside the tube and p_{l} is the pressure in water at depth l. Also

$$
\begin{align*}
& \quad p_{i} \forall_{i}=p_{\text {atm }} \forall_{\text {tube }} \\
& p_{i}=p_{\text {atm }}\left(\forall_{\text {tube }} / \forall_{i}\right) \\
& \quad=p_{\text {atm }}\left(0.10 A_{\text {tube }} /\left((.08+l)\left(A_{\text {tube }}\right)\right)\right) \\
& p_{i}=p_{\text {atm }}(0.10 /(.08+l)) \tag{2}\\
& p_{l}=p_{\text {atm }}+\gamma l \tag{3}
\end{align*}
$$

Solve for l with Eqs. (1), (2), and (3)

$$
\begin{gathered}
-\left(p_{\text {atm }} \frac{0.10}{.08+l}\right)\left(\frac{1}{4} \pi d^{2}\right)+\left(p_{a t m}+\gamma l\right)\left(\frac{1}{4} \pi d^{2}\right)+\sigma \pi d=0 \\
-\left(p_{\text {atm }} \frac{0.10}{.08+l}\right) \frac{d}{4}+\left(p_{\text {atm }}+\gamma l\right) \frac{d}{4}+\sigma=0 \\
-\left(10^{5} \frac{0.10}{.08+l}\right) \frac{0.0005}{4}+\left(10^{5}+1000 \times 9.8 \times l\right) \frac{0.0005}{4}+0.073=0 \\
l=0.0192334 m=1.92 \mathrm{~cm}
\end{gathered}
$$

(b) Assume there is NO effect of surface tension. Simply neglect the surface tension term in the above equations and solve for l

$$
l=0.0198063 \mathrm{~m}=1.98 \mathrm{~cm}
$$

