P4.83 The flow pattern in bearing lubrication can be illustrated by Fig. P4.83, where a viscous oil (ρ, μ) is forced into the gap h(x) between a fixed slipper block and a wall moving at velocity U. If the gap is thin, $h \ll L$, it can be shown that the pressure and velocity distributions are of the

form p = p(x), u = u(y), v = w = 0. Neglecting gravity, reduce the Navier-Stokes equations (4.38) to a single differential equation for u(y). What are the proper boundary conditions? Integrate and

show that

4(0)=V= 62

+5

$$u = \frac{1}{2\mu} \frac{dp}{dx} (y^2 - yh) + U \left(1 - \frac{y}{h} \right)$$

where h = h(x) may be an arbitrary slowly varying gap width. (For further information on lubrication theory, see Ref. 16.)

Fig. P4.83

Continued:
$$\frac{3u}{3v} + \frac{3u}{3v} = 0$$
 $v = w = 0$

$$v = w = 0$$

$$v =$$