The pump in Fig. P3. 144 creates a $20^{\circ} \mathrm{C}$ water jet oriented to travel a maximum horizontal distance. System friction head losses are 6.5 m . The jet may be approximated by the trajectory of frictionless particles. What power must be delivered by the pump?

Fig. P3.144

Solution: For maximum travel, the jet must exit at $\theta=45^{\circ}$, and the exit velocity must be

$$
\mathrm{V}_{2} \sin \theta=\sqrt{2 \mathrm{~g} \Delta \mathrm{z}_{\max }} \quad \text { or: } \quad \mathrm{V}_{2}=\frac{[2(9.81)(25)]^{1 / 2}}{\sin 45^{\circ}} \approx 31.32 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The steady flow energy equation for the piping system may then be evaluated:

$$
\mathrm{p}_{1} / \gamma+\mathrm{V}_{1}^{2} / 2 \mathrm{~g}+\mathrm{z}_{1}=\mathrm{p}_{2} / \gamma+\mathrm{V}_{2}^{2} / 2 \mathrm{~g}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{p}}
$$

or: 0 । 0 । $15=0$ । $(31.32)^{2} /[2(9.81)]$ । 2 । $6.5 \mathrm{~h}_{\mathrm{p}}$, solve for $\mathrm{h}_{\mathrm{p}} \approx 43.5 \mathrm{~m}$ Then $\quad \mathrm{P}_{\text {pump }}=\gamma \mathrm{Qh}_{\mathrm{p}}=(9790)\left[\frac{\pi}{4}(0.05)^{2}(31.32)\right](43.5) \approx \mathbf{2 6 2 0 0} \mathbf{W}$ Ans.

