For the horizontal series-parallel system of the Figure below, all pipes are 8-cm-diameter asphalted cast iron ($\varepsilon=0.12 \mathrm{~mm}$) filled with water at $20^{\circ} \mathrm{C}\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}, \mu=0.001 \mathrm{~kg} / \mathrm{ms}\right)$. The total flow rate is $Q=0.0269 \mathrm{~m}^{3} / \mathrm{s}$, the lengths of segments A and C are $L_{\mathrm{A}}=250 \mathrm{~m}$ and $L_{\mathrm{C}}=150 \mathrm{~m}$, and velocity in segment A is $V_{\mathrm{A}}=2.06 \mathrm{~m} / \mathrm{s}$. Neglect minor losses and find (a) the length of segment B $\left(L_{\mathrm{B}}\right)$, and (b) the total pressure $\operatorname{drop}\left(p_{1}-p_{2}\right)$.

1. Solution

(a) Continuity:

$$
\begin{gathered}
Q=Q_{A}+Q_{B}=V_{A}\left(\frac{\pi}{4} d^{2}\right)+V_{B}\left(\frac{\pi}{4} d^{2}\right) \\
V_{B}=\frac{Q}{\frac{\pi}{4} d^{2}}-V_{A}=\frac{(0.0269)}{\frac{\pi}{4}(0.08)^{2}}-(2.06)=3.29 \mathrm{~m} / \mathrm{s} \\
V_{C}=\frac{Q}{\frac{\pi}{4} d^{2}}=\frac{(0.0269)}{\frac{\pi}{4}(0.08)^{2}}=5.35 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

For segment A, B and C:

$$
\begin{gathered}
\frac{\varepsilon}{d}=\frac{\left(\frac{0.12}{1000}\right)}{(0.08)}=0.0015 \\
\left(R e_{d}\right)_{A}=\frac{\rho V_{A} d}{\mu}=\frac{(998)(2.06)(0.08)}{(0.001)}=164,470 \rightarrow f_{A}=0.0229 \\
\left(R e_{d}\right)_{B}=\frac{\rho V_{B} d}{\mu}=\frac{(998)(3.29)(0.08)}{(0.001)}=262,674 \rightarrow f_{B}=0.0225 \\
\left(R e_{d}\right)_{C}=\frac{\rho V_{C} d}{\mu}=\frac{(998)(5.35)(0.08)}{(0.001)}=427,144 \rightarrow f_{C}=0.0222
\end{gathered}
$$

For parallel segments A and B the head loss is the same:

$$
\begin{gathered}
\left(h_{f}\right)_{A}=\left(h_{f}\right)_{B} \rightarrow\left(f \frac{L}{d} \frac{V^{2}}{2 g}\right)_{A}=\left(f \frac{L}{d} \frac{V^{2}}{2 g}\right)_{B} \\
L_{B}=L_{A} \frac{f_{A}}{f_{B}}\left(\frac{V_{A}}{V_{B}}\right)^{2}=(250) \frac{(0.0229)}{(0.0225)}\left(\frac{(2.06)}{(3.29)}\right)^{2}=99.76 \mathrm{~m}
\end{gathered}
$$

(b) The energy equation between points (1) and (2) through segment A yields:

$$
\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+\left(h_{f}\right)_{A}+\left(h_{f}\right)_{C}
$$

Since $V_{1}=V_{2} ; z_{1}=z_{2}$

$$
\begin{gathered}
\left(p_{1}-p_{2}\right)=\rho g\left[\left(h_{f}\right)_{A}+\left(h_{f}\right)_{C}\right]=\rho g\left[\left(f \frac{L}{d} \frac{V^{2}}{2 g}\right)_{A}+\left(f \frac{L}{d} \frac{V^{2}}{2 g}\right)_{C}\right] \\
\left(p_{1}-p_{2}\right)=(998)(9.81)\left[(0.0229) \frac{(250)}{(0.08)} \frac{(2.06)^{2}}{2(9.81)}+(0.0222) \frac{(150)}{(0.08)} \frac{(5.35)^{2}}{2(9.81)}\right]=746,052 \mathrm{~Pa}
\end{gathered}
$$

Alternatively, through segment B:

$$
\left(p_{1}-p_{2}\right)=\rho g\left[\left(h_{f}\right)_{B}+\left(h_{f}\right)_{C}\right]=(998)(9.81)\left[(0.0225) \frac{(99.76)}{(0.08)} \frac{(3.29)^{2}}{2(9.81)}+(0.0222) \frac{(150)}{(0.08)} \frac{(5.35)^{2}}{2(9.81)}\right]=746,059 \mathrm{~Pa}
$$

