Flow around Clark-Y airfoil: Summary of EFD benchmark data and comparison with IIHR EFD data and CFD solution

Nobuaki Sakamoto, J. Colin Johnson, Stuart Breczinski, Marian V. Muste and Frederick Stern IIHR-Hydroscience\&Engineering, The University of Iowa

1. EFD benchmark data
[1] Jacobs E.N., Stack J., and Pinkerton R.M., 1930 Airfoil pressure distribution investigation in the variable density wind tunnel, Langley Memorial Aeronautical Laboratory Report No. 353
[2] Marchman J.F. and Werme T.D., 1984 Clark-Y airfoil performance at low Reynolds numbers, In: proc. AIAA $22^{\text {nd }}$ Aerospace Science Meeting, Jan. 9-12, Reno, Nevada, U.S.A.
[3] SILVERSTEN A., 1934, Scale effect on Clark-Y airfoil characteristics from NACA full-scale wind-tunnel tests, Langley Memorial Aeronautical Laboratory Report No. 502
[4] Zimmerman C.H., Characteristics of Clark-Y airfoils of small aspect ratios, 1932, Langley Memorial Aeronautical Laboratory Report No. 431

The summary of EFD benchmark data is given in Table 1.

Table 1 Summary of EFD benchmark data

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Reference \\
Digitized \\
data
\end{tabular}} \& \multirow[t]{2}{*}{\[
\frac{[1]}{C_{p} \text { and } C_{L}}
\]} \& \multicolumn{2}{|l|}{[2]} \& [3] \& [4] \\
\hline \& \& \multicolumn{2}{|l|}{\(\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{L}}\) and \(\mathrm{C}_{\mathrm{D}}\)} \& \(C_{L}\) and \(C_{D}\) \& \(C_{L}\) and \(C_{D}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|c}
\\
\hline\(R^{*}\) \\
\\
\\
\\
Re \({ }^{* *}\)
\end{tabular}} \& \multirow[t]{2}{*}{7.2

$3.56 e 5$} \& \multicolumn{2}{|l|}{5.75} \& 6 \& $$
\begin{aligned}
& \hline 0.5,0.75,1 \\
& 1.25,1.5,2,3,6
\end{aligned}
$$

\hline \& \& C_{p} \& 7.5e4 \& 1.12e6, 1.55e \& 8.6 e 5

\hline \& \& C_{L}, C_{D} \& $$
\begin{aligned}
& 5 \mathrm{e} 4,7.5 \mathrm{e} 4, \\
& 1 \mathrm{e} 5,2 \mathrm{e} 5, \\
& 6.7 \mathrm{e} 6 \\
& \hline
\end{aligned}
$$ \& 3.19e6, 3.59e6 \&

\hline $\alpha(\mathrm{deg})^{* * *}$ \& \[
$$
\begin{aligned}
& 1,4,7,10,13, \\
& 17,20
\end{aligned}
$$

\] \& C_{p} \& \[

$$
\begin{aligned}
& 0,4,6,8,12 \text {, } \\
& 14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \begin{array}{l}
0,1,2,3, \\
4,5,6,7,8,9,10,
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0,10,15,20, \\
& 25,30,35,39
\end{aligned}
$$
\]

\hline \& \& C_{L}, C_{D} \& \[
$$
\begin{aligned}
& 0,4,6,8,12 \text {, } \\
& 14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11,12,13,14,15 \\
& 16,17,18,19,20 \\
& 21,22,23
\end{aligned}
$$
\] \& 40, 42, 50, 60

\hline Wingtip \& \& \multicolumn{2}{|l|}{End plates} \& Wing cross section \& Rectangular

\hline
\end{tabular}

: Aspect ratio, ${ }^{ *}$: Reynolds number, ${ }^{* * *}$: Angle of attack
2. Trend of each data set
2.1 Reference [1]

Fig. 1 Trend of C_{L} in Reference [1]

Fig. 2 Trend of C_{p} in Reference [1]

2.2 Reference [2]

Fig. 3 Trend of C_{L}, C_{D}, and C_{L} / C_{D} with variations of Re in Reference [2]
(a) C_{L} vs α, (b) C_{D} vs α, (c) C_{L} / C_{D} vs α

Fig. 4 Re dependency of $C_{L \max }, C_{D \max }$ and $\alpha_{\max }$ in Reference [2]: (a) $C_{L \max }, C_{D \max }$ vs $R e,(b) \alpha_{\max }$ vs Re

Fig. 5 Trend of C_{p} in Reference [2]

2.3 Reference [3]

Fig. 6 Trend of C_{L}, C_{D}, and C_{L} / C_{D} with variations of $R e$ in Reference [3]
(a) C_{L} vs $\alpha,(b) C_{D}$ vs α, (c) C_{L} / C_{D} vs α

Fig. 7 Re dependency of $C_{L \max }$ and $\alpha_{\max }$ for C_{L} in Reference [3]: (a) $C_{L \max }$ vs Re, (b) $\alpha_{\max }$ vs Re

2.4 Reference [4]

Fig. 8 Trend of C_{L}, C_{D}, and C_{L} / C_{D} with variations of $A R$ in Reference [4]
(a) C_{L} vs $\alpha,(b) C_{D}$ vs α, (c) C_{L} / C_{D} vs α

Fig. 9 Aspect ratio dependency of $\mathrm{C}_{\mathrm{L} \max }$ and $\alpha_{\max }$ for C_{L} in Reference [4]: (a) $\mathrm{C}_{\mathrm{Lmax}}$ vs AR, (b) $\alpha_{\max }$ vs AR
3. Comparison between the reference experimental data
3.1 C_{L} vs α with largest AR

Fig. $10 C_{L}$ vs α with largest $A R$: (a) $\operatorname{Re}=O\left(10^{5}\right)$, (b) $\operatorname{Re}=O\left(10^{6}\right)$
$3.2 C_{D}$ vs α with largest AR

Fig. $11 C_{D}$ vs α with largest AR: (a) $\operatorname{Re}=O\left(10^{5}\right)$, (b) $\operatorname{Re}=O\left(10^{6}\right)$
3.3 C_{L} / C_{D} vs α with largest AR

Fig. $12 \mathrm{C}_{\mathrm{D}}$ vs α with largest AR: (a) $\mathrm{Re}=\mathrm{O}\left(10^{5}\right)$, (b) $\mathrm{Re}=\mathrm{O}\left(10^{6}\right)$
3.5 $\mathrm{C}_{\mathrm{Lmax}}, \mathrm{C}_{\mathrm{Dmax}}$ and $\alpha_{\max }$ with largest AR

Fig. 13 Re dependency for $C_{L \max }, C_{D \max }$ and $\alpha_{\max }$: (a) $C_{L \max }, C_{D \max }$ vs Re, (b) $\alpha_{\max }$ vs Re
$3.4 C_{p}$ with largest AR

Fig. $14 C_{p}$ distribution with largest AR: (a) $\alpha \approx 0 \mathrm{deg}$, (b) $\alpha \approx 4 \mathrm{deg}$, (c) $\alpha \approx 7 \mathrm{deg}$, (d) $\alpha \approx 13 \mathrm{deg}$
4. Comparison with Flowlab simulation results

4.1 C L VS α

Fig. $15 C_{L}$ vs α with largest $A R$, Flowlab solutions added: (a) $\operatorname{Re}=O\left(10^{5}\right)$, (b) $\operatorname{Re}=O\left(10^{6}\right)$

Fig. $16 C_{D}$ vs α with largest $A R$, Flowlab solutions added: (a) $\operatorname{Re}=O\left(10^{5}\right)$, (b) $\operatorname{Re}=O\left(10^{6}\right)$
4.3 C_{L} / C_{D} vs α

Fig. $17 C_{D}$ vs α with largest $A R$, Flowlab solutions added: (a) $\operatorname{Re}=O\left(10^{5}\right)$, (b) $\operatorname{Re}=O\left(10^{6}\right)$
4.3 C_{p} with largest AR

Fig. 18 C distribution with largest AR, Flowlab solutions added
(a) $\alpha \approx 0 \mathrm{deg}$, (b) $\alpha \approx 4 \mathrm{deg}$, (c) $\alpha \approx 7 \mathrm{deg}$, (d) $\alpha \approx 13 \mathrm{deg}$
5. Comparison between EFD benchmark data and IIHR experimental data
$5.1 C_{\mathrm{L}}$ vs α

Fig. $19 C_{L}$ vs α, IIHR EFD data added: (a) large AR (≥ 5.75), (b) small AR ($1.5 \leq A R \leq 3$)

Fig. $20 C_{D}$ vs α, IIHR EFD data added: (a) large AR (≥ 5.75), (b) small AR ($1.5 \leq \operatorname{AR} \leq 3$)
$5.3 C_{p}$

Fig. $21 C_{p}$ distribution, IIHR EFD data added: (a) $\alpha \approx 0 \mathrm{deg}$, (b) $\alpha \approx 16 \mathrm{deg}$
6. Comparison between EFD benchmark data, IIHR experimental data and Flowlab solution 6.1 C_{L} and C_{D} vs α

Fig. $22 C_{L}$ and C_{D} vs α : (a) C_{L}, (b) C_{D}
$6.2 C_{P}$

Fig. $23 \mathrm{C}_{\mathrm{p}}$ distribution: (a) $\alpha \approx 0 \mathrm{deg}$, (b) $\alpha \approx 16 \mathrm{deg}$
7. Discussion and Conclusion (To be added.)

