ME:5160

Fall 2024

The exam is closed book and closed notes.

A large tank of liquid under pressure is drained through a smoothly contoured nozzle of area A. The mass flow rate m is thought to depend on the nozzle area A, the liquid density ρ , the difference in height between the liquid surface and the nozzle h, the change in pressure Δp , and the gravitational acceleration g. Taking ρ , A, and g as repeating variables, find an expression for the mass flow rate \dot{m} as a function of the other parameters in the problem in terms of dimensionless Pi groups.

Quantity	Symbol	Dimensions	
		MLTO	FLT [®]
Length	L	L	L
Area	Α	L^2	L^2
Volume	V	L^3	L^3
Velocity	V	LT^{-1}	LT^{-1}
Acceleration	dV/dt	LT^{-2}	LT^{-2}
Speed of sound	a	LT^{-1}	LT^{-1}
Volume flow	Q	$L^{3}T^{-1}$	$L^{3}T^{-1}$
Mass flow	m	MT^{-1}	FTL^{-1}
Pressure, stress	p, σ, τ	$ML^{-1}T^{-2}$	FL^{-2}
Strain rate	ė	T^{-1}	T^{-1}
Angle	heta	None	None
Angular velocity	ω, Ω	T^{-1}	T^{-1}
Viscosity	μ	$ML^{-1}T^{-1}$	FTL^{-2}
Kinematic viscosity	ν	$L^2 T^{-1}$	$L^2 T^{-1}$
Surface tension	Y	MT^{-2}	FL^{-1}
Force	F	MLT^{-2}	F
Moment, torque	М	ML^2T^{-2}	FL
Power	Р	$ML^{2}T^{-3}$	FLT^{-1}
Work, energy	W, E	ML^2T^{-2}	FL
Density	ρ	ML^{-3}	FT^2L^{-4}
Temperature	T	Θ	Θ
Specific heat	C_{p}, C_{y}	$L^2T^{-2}\Theta^{-1}$	$L^2T^{-2}\Theta^{-1}$
Specific weight	γ	$ML^{-2}T^{-2}$	FL^{-3}
Thermal conductivity	k	$MLT^{-3}\Theta^{-1}$	$FT^{-1}\Theta^{-1}$
Thermal expansion coefficient	β	Θ^{-1}	Θ^{-1}

Fall 2024

ME:5160

Solution:

Assumptions: the problem is only a function of the given dimensional variables.

$$\dot{m} = f(A, \rho, h, \Delta p, g)$$

$$n = 6$$

$$\dot{m} = \{MT^{-1}\}; \ A = \{L^2\}; \ \rho = \{ML^{-3}\}; \ h = \{L\}; \ \Delta p = \{ML^{-1}T^{-2}\}; \ g = \{LT^{-2}\}$$
(3)
$$j = 3 \rightarrow k = n - j = 3$$
(1)

The repeating variables are ρ , A, and g; adding each remaining variable in turn, we find the Pi groups:

$$\Pi_{1} = \rho^{a} A^{b} g^{c} \dot{m} = \{ (ML^{-3})^{a} (L^{2})^{b} (LT^{-2})^{c} (MT^{-1}) \} = \{ M^{0} L^{0} T^{0} \Theta^{0} \}$$

$$a = -1; \ b = -5/4; \ c = -1/2$$

$$\Pi_{1} = \frac{\dot{m}}{\rho A^{5/4} g^{1/2}} \qquad (2)$$

$$\Pi_{2} = \rho^{a} A^{b} g^{c} h = \{ (ML^{-3})^{a} (L^{2})^{b} (LT^{-2})^{c} (L) \} = \{ M^{0} L^{0} T^{0} \Theta^{0} \}$$

$$a = 0; \ b = -1/2; \ c = 0$$

$$\Pi_{2} = \frac{h}{A^{1/2}} \qquad (2)$$

$$\Pi_{3} = \rho^{a} A^{b} g^{c} \Delta p = \{ (ML^{-3})^{a} (L^{2})^{b} (LT^{-2})^{c} (ML^{-1}T^{-2}) \} = \{ M^{0} L^{0} T^{0} \Theta^{0} \}$$
$$a = -1; \ b = -1/2; \ c = -1$$
$$\Pi_{3} = \frac{\Delta p}{\rho A^{1/2} g}$$
(2)

Thus the arrangement of the dimensionless variables is:

$$\frac{\dot{m}}{\rho A^{5/4} g^{1/2}} = f\left(\frac{h}{A^{1/2}}, \frac{\Delta p}{\rho A^{1/2} g}\right)$$