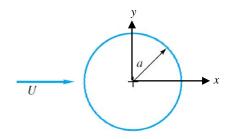
ME:5160, Fall 2024

The exam is closed book and closed notes.

The velocity potential function for an ideal flow around a long cylinder centered at origin is given by $\phi = \left(\frac{B}{r} + Ar\right) \cos \theta$. The cylinder has a radius a and is placed in a uniform flow of velocity U. (a) Determine the constants A and B in terms of a and U, using boundary conditions at the surface and at $(x, y) = (0, \infty)$. (b) Determine the location and magnitude of the maximum velocity on the surface.

Equations:
$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
; $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}$; $r = \sqrt{x^2 + y^2}$; $\theta = \tan^{-1} \left(\frac{y}{x}\right)$



Name: ----- Quiz: No. 14 Time: 15 minutes

(2) ME:5160, Fall 2024

Solution:

KNOWN: ϕ , U, a

(1) FIND: A, B, θ_{max} , V_{max}

ASSUMPTIONS: Irrotational flow

ANALYSIS:

(a)

$$v_r = \frac{\partial \phi}{\partial r} = \left(-\frac{B}{r^2} + A\right) \cos \theta$$

$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = \frac{1}{r} \left(\frac{B}{r} + Ar\right) (-\sin \theta) = -\left(\frac{B}{r^2} + A\right) \sin \theta$$
(0.5)

B.C. at cylinder surface:

At
$$r = a$$
, $v_r = 0$

$$\left(-\frac{B}{a^2} + A\right)\cos\theta = 0$$

$$\Rightarrow -\frac{B}{a^2} + A = 0$$
(0.5)

B.C. above the cylinder far from surface:

(0.5) At
$$\theta = \frac{\pi}{2}$$
 and $r = \infty$, $v_{\theta} = U$

$$-\left(\frac{B}{\infty} + A\right) \sin\left(\frac{\pi}{2}\right) = U$$

$$A = -U$$

Name: ----- Quiz: No. 14 Time: 15 minutes

ME:5160, Fall 2024

$$\Rightarrow B = Aa^2 = -Ua^2$$
 (0.5)

(b)

Since $v_r = 0$ at the surface, the total velocity is $V = v_\theta$:

$$v_{\theta}(r=a) = -\left(\frac{B}{a^2} + A\right)\sin\theta = -\left(\frac{-Ua^2}{a^2} - U\right)\sin\theta = (2U)\sin\theta$$

The maximum velocity would be for where $\sin \theta = 1$:

(0.5)
$$\theta = 90^{\circ}, V_{max} = 2U$$