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Chapter 6 Introduction Incompressible Turbulent Flow

3. Basic Concepts

Most flows in engineering are turbulent: flows over
vehicles (airplane, ship, train, car), internal flows (heating
and ventilation, turbomachinery), and geophysical flows
(atmosphere, ocean).

V(x, t) and p(x, t) are random functions of space and time,
but statistically stationary flows such as steady and forced
or dominant frequency unsteady flows display coherent
features and are amendable to statistical analysis, i.e. time
and space (conditional) averaging. RMS and other low-
order statistical quantities can be modeled and used in
conjunction with the averaged equations for solving
practical engineering problems.

Turbulent motions range in size from the width in the flow
d to much smaller scales, which become progressively
smaller as the Re = U§/u increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
(b} Re = 20,000. From Dahm and Dimotakis {199¢) .

1(s)

Fig. 1.3, The time history of the axial component of velocity (/i(t) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).
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Fig. 1.4 The mean axial velocity profile in & turbulent jet. The mean velocity (U;)
is normalized by its value on the centerline, {U,}g; and the cross-stream {radial)
coordinate x; is normalized by the distance from the nozzle x;. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994).
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a. Randomness and fluctuations:

Turbulence is irregular, chaotic, and unpredictable.
However, for statistically stationary flows, such as steady
flows, can be analyzed using Reynolds’s decomposition.

' u=>fudT u=0 u"= Tltofu'z dT etc.

u = mean motion
u' = superimposed random fluctuation

u”= Reynolds stresses = mean square u' = variance u
Ju” = RMS u' = standard deviation (SD) u

SD%Mean = coefficient of variation=«/?/ﬁ

Triple decomposition is used for forced or dominant
frequency flows.

U=U+u"+U'

Where u'" = organized oscillation

3
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b. Nonlinearity

Reynolds stresses and 3D vortex stretching are direct
result of nonlinear nature of turbulence. In fact, Reynolds
stresses arise from nonlinear convection term after
substitution of Reynolds decomposition into NS equations
and time averaging.

c. Diffusion

Large scale mixing of fluid particles greatly enhances
diffusion of momentum (and heat), i.e.,

ViSCOuUs stress

—
Reynolds Stresses: —pu' U’ >> 1, = us,
. . . 1 1 2
Isotropic eddy viscosity: —UiU'; =V _§5ijk

d. Vorticity/eddies/energy cascade

Turbulence is characterized by flow visualization as
eddies, which vary in size from the largest Ls (width of
flow) to the smallest Lx. The largest eddies have velocity
scale U and time scale Ls/U.
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The orders of magnitude of the smallest eddies (Kolmogorov

scale) are:
1

035 |4 [,
se]

NI

Lk = Kolmogorov micro-scale =

Lk = O(MmM) >> Limean free path = 6 X 108 M | |IHR wave basin experiments

' Lk =.1-. i.e.
Velocity scale = (ve)Y4= 0(102m/s) K 5mm, i.e.,
100 — 500 um.

Time scale = (v/g)¥2= O(102s) 17-181 pm = Dhair

Largest eddies contain most of energy, which break up into
successively smaller eddies with energy transfer to yet
smaller eddies until Lx is reached and energy is dissipated by
molecular viscosity. Richardson (1922):

Ls Big whorls have little whorls.
Which feed on their velocity.
And little whorls have lesser whorls,

Lk  And so on to viscosity (in the molecular sense).

Plate 3 Copy of Leonardo’s famous sketch
of water falling into a pool. Note the
different scales of motion, suggestive of
the energy cascade. See the discussion in
Section 1.6. [Courtesy of F. C. Davidson.]
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e. Dissipation

lo=Ls

up =~k  k=u?+v?+w?

Energy comes from
-~ » largest scales and

=0 (U) fed by mean
_ — hi motion
Res =Uyly /v =Dhig —
e = rate of dissipation = energy/time  —
2 Dissipation
— u0 €0 - . ) — occurs at
= To = = eddies turn over time
7o Uo smallest
scales
;| —
3 3 |4
u . v
=0 independentu Ly, =| —

"

e

Dissipation rate is
determined by the
large-scale dynamics
and not f(v).

The smallest scales are only
f(e,v), e.g., length scale Lk .
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f. Examples Experimental Data for Wall Flows

Fig. below shows measurements of turbulence for
Re,=10".

U L

° - s . ) ~ (4

Note the following mean-flow features:

1) Fluctuations are large ~ 11% U
( g

(2) Presence of wall causes anisotropy, i.e., the
fluctuations differ in magnitude due to geometric and

physical reasons. u” is largest, v is smallest and reaches

its maximum much further out than u? or w?. w”® is
intermediate in value.

(3) u'v'=0 and, as will be discussed, plays a very
important role in the analysis of turbulent shear flows.



058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2023 8

(4) Although uu =0 at the wall, it maintains large values

right up to the wall

(5) Turbulence extendstoy > & due to intermittency. The
interface at the edge of the boundary layer is called the
superlayer. This interface undulates randomly between
fully turbulent and non-turbulent flow regions. The mean
positionisaty ~ 0.78 0.

(6) Fluctuating normal velocities equal and uju; = 0 i#j at
high frequencies (isotropic behavior). All five spectra have
same frequency range.

(7) Near wall turbulent wave number spectra have more
energy, i.e.,, small A, whereas near & large eddies
dominate.

2T

Wavenumber k: k = -
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Hot-wire measurements showing turbulent veloeity fluctuations: (a) typical 2 | =20 = -
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FIGURE 5-36

Flat-plate measurements of the fluctuating velocities w' (slreamwise), v’

|
{ {(normal), snd w’ (lateral) and

[ J—

i Curva fit: 5= [1+5{y/8)%]
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FIGURE 5-37

:I'he phenomenon of intermittency in a turbulent boundary layer: {a) measured
intermittency factors [after Klcbanoff (1955)]; (b) the superlayer interface be-
__ tween tuf[:ttdom_fnd nonturbulent fluid.  *

—

the turbulent shear w'v'. (After Klebanoff (1965).]
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2.0
1.0

Near wall, more energy
large k, i.e., small eddies.

0.1

o
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Near 6

- / |  FIGURE 66

0.1 1.0 10 100 The wave-number spectrum of the stream-
wise turbulent velocity fluctuation in fia:-
plate flow. [Adapted from Klebanoff (1955).

More energy small

k,i.e., large eddies. o

u't = F,(k,)dk,
0

u'? = total mean-square fluctuation.

E,(k,) = 1D spatial energy spectrum.

10
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Averages:

For turbulent flow V (x, t), p(x, t) are random functions of
time and must be evaluated statistically using averaging
techniques: time, ensemble, phase, or conditional.

Time Averaging

For stationary flow, the mean is not a function of time, and
we can use time averaging.

. to +t B
u :_% fu(t)dt T >any significant period of u'=u-u
to

(e.g. 1 sec. for wind tunnel and 20 min. for ocean)

Ensemble Averaging

For non-stationary flow, the mean is a function of time
and ensemble averaging is used

_ N . _
u(t) = % >u'(t) Nislarge enough that u independent
i=1

u'(t) = collection of experiments performed under

identical conditions (also can be phase aligned
for same t=0).

11
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Fig. 123 An ensemble of functions ul1).

12
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Phase and Conditional Averaging

Like ensemble averaging, but for flows with dominant
frequency content or other condition, which is used to
align time series for some phase/condition. In this case
triple velocity decomposition is used: u=u+u"+u' where
u'' is called organized oscillation. Phase/conditional
averaging extracts all three components.

Averaging Rules:

f=1f+f' g=9g+g' s=xort

f'=0 f=f fg=1fg f'g=0
_f.n of of 7ol el e

f+g=1f+g = fg=fg+ f'g

13
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Reynolds-Averaged Navier-Stokes Equations

For convenience of notation use uppercase for mean and
lowercase for fluctuation in Reynolds’s decomposition.

~

ui =U; +u;

p=P+p

2 _ g —

oxi Instantaneous
u; oy du; 10dp N d%u; s NS

e u,—= ——— 1) —_ e —» .

dt J axj p 0Xx; axjaxj g0i3 equation

Mean Continuity Equation

Q(Ui +ui):an Lou_du,

OX. OX. ~ OX  OX

au:8Ui+8ui:O %:O

OX ~ OX  OX OX.

Both mean and fluctuation satisfy divergence = 0

condition.

14
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Mean Momentum Equation

d 0 10
5 Wi +w) + (U +uj)a_xj(Ui tu;) = —;a—xi(P‘FP)"'
2

ax]x] (U + ul) 96l3

Sy, o,
ot ot ot o

U +u) LU +u)y=u Yy X o Py M
T oX ' OX y ox ' OX
ou,
=U —+—uu
‘oX. ox
0o — oW ou, ou
Since —uu =u/A>+U —=U —"
ox ox —~ 'OX ' OX
i(P+ ):ap op _oP
OX. OX. OX  OX
—9g9,=-09,
0° 0%V,  d%ui %,
v—r Uj+U))=v—"+v L=p——

2 2 2
8xj axj axj axj

15
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. . O(uiu; 2
%+Uj Vi, (Lit) _ 1P +0 82Ui —QJi3
ot OXj OX 0 OX; OX|
DU.
Or Az—la—P—g% g uaU'—u,uj
Dt P OX; OXj| OX;
DU 1 0 — ]
Or l——g5i3 + — _O-ij
bt p ox; RANS
— ouU. oU. — .
Oij =P5”—|—,u[§-'+§_]jpuiuj Equations
with %zo
O —

The difference between the NS and RANS equations is the
Reynolds stresses —,ofuj, which acts like additional stress.

—pTuj: —puu, (i.e., Reynolds stresses are symmetric)

—puz  —puwv  —puw| [-pu? —puv —puw
—pvu  —pv?: —pww|=|-puww —pv2 —pow
—pwu  —pwv —pw?] |—puw —pvw —pw?

7
U~ are normal stresses.

Uu, i# Jareshear stresses.

6 new unknowns

16
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For homogeneous/isotropic turbulence uu  i= j =0and

u® =v: =W = constant; however, turbulence is generally
non-isotropic.

Isotropic Anisotropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a uv-pair at a certain ==«
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Consider shear flow with du >0 as below,

dy
Y )
0 .
a1 e ——— S . flund
particle
y .........................................................................
y-dy ..................................................................

> U

The fluid velocity is: V. = (U +u,V,w)

If fluid particle retains its total velocity V from y to y#dy gives,
U + u = constant — If U increases, u decreases and vice versa.

v>0 — u<O0
v<0 — u>0

X-momentum tends towards
decreasing y as turbulence

. uv<0 diffuses gradients and

dU
decreases —
dy

18
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x-momentum transport in y direction, i.e., across y =
constant AA per unit area

M,y = [ pilV - ndA, where i = (U + u)

17— .
) = p(U +u)v=pUVv+ puv = puv

e puu = average flux of -momentum in

i-direction = average flux of

i-momentum in j-direction

19
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Closure Problem:

1. RANS equations differ from the NS equations due to
the Reynolds stress terms.

2. RANS equations are for the mean flow (U;,P); thus,
represent 4 equations with 10 unknowns due to the
additional 6 unknown Reynolds stresses u;u;

3. Equations can be derived for u;u; by summing
products of velocity and momentum components
and time averaging, but these include additionally
10 triple products u;u;u; unknowns. Triple
products represent Reynolds stress transport.

4. Again, equations for triple products can be derived
that involve higher order correlations leading to
fact that RANS equations are inherently non-
deterministic, which requires turbulence modeling.

5. Turbulence closure models render deterministic
RANS solutions.

6. The NS and RANS equations have paradox that NS
equations are deterministic but have
nondeterministic solutions for turbulent flow due to
inherent stochastic nature of turbulence, whereas
the RANS equations are nondeterministic, but have
deterministic solutions due to turbulence closure
models.

20
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Note that differential instantaneous mechanical energy
equation has -¢ term where ¢ > 0 = rate of viscous
dissipation = loss of mechanical energy due to
deformation of fluid particle; and recall differential
energy equation has term + ¢ term, i.e., gain in internal
energy due ¢. See Chapters 3&4 Part 1 page 60.

—
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Turbulent Kinetic Energy Equation

k = %F _ %(F FVE 4 W) = turbulent kinetic energy

Ui :Ui +Ui
p=P+p

Subtracting NS equation for uj and RANS equation for U,
results in equation for u;:

ou; ou; oU. ouy o —— 1op d%u
—+Uj—+uj—+uj — (uin):_——+U 5
ot OX OX OXj  OX; 0 OX; OX
Multiply by u; and average
Dk 10___ 10 — 9, dU;
D_t = —Ea—x]pu] —Ea—xjui Uj + Zva—xjuieij — uiuja—xj
) I T II R T 2
— 2vel-jejl-
v
Dk ok . oK 1 ou, ou,
—="4U, — e =i 770
Where Dt ot 'ox; and U 26X, OX

%/_/

VI

23
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| =pressure transport
llI= turbulent transport
llI=viscous diffusion

IV = shear production (usually > 0) represents loss of mean
kinetic energy and gain of turbulent kinetic energy due to

interactions of uu, and aﬁi
X

i

V = viscous dissipation = €
VI= turbulent convection

Recall previous discussions of energy cascade and
dissipation: Energy fed from mean flow to largest eddies and
cascades to smallest eddies via inviscid processes where
dissipation takes place. According to Kolmogorov hypotheses
after 6 turnovers turbulence becomes isotropic.

Different scales in a turbulent flow

€ A NI S\ 00
oS } B, LA ) s a8 )

. First instability

\i‘::’“ et @ @ @ @ @ @

Second instability

0803 QDOD OXVL

Third instability

§

Energy flux
Gep0 VDLVCIPPE SRV ODOVBHAT

Figure 1.14 A schematic representation of +
the energy cascade (after Frisch 1995). See

Viscosity
also Leonardo’s sketch—Plate 3.

24
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Kinetic energy = k = u,?

l

0 )
TO = — = {furn over time.
Up

c

3
0

E=—=——-

lo = Ls = width of flow (i.e., size of largest eddy)
Kolmogorov Hypothesis:

(1) local isotropy: for large Re, micro-scale £ << £ and
turbulence structures are isotropic.

(2) first similarity: for large Re, micro-scale has
universal form uniquely determined by v and «:
universal equilibrium range.

/4
n= (03 /8)1 length nlly = Re3/4
u, = (50)1/4 velocity u, /Uy = Re /4
T, = (0/5)1/2 time T, 179 = Re /2

o /
Vv

Micro-scale<<large scale
Also shows that as Re increases, the range of scales
increase.

25
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(3) second similarity: for large Re, intermediate scale
has a universal form uniquely determined by € and
independent of v: inertial subrange.

(1) - (3) are called universal equilibrium range in
distinction from non-isotropic energy-containing range.
(2) is the dissipation range and (3) is the inertial subrange.

Universal equilibrium range Energy-containing

|
|
|
| range
| |
Dissipation range | Inertial subrange |
| Aecx T N7 Lox |
l |
| ! ! - | [
" {p; = &o == b L

Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.

26
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Spectrum of turbulence in the inertial subrange S=S(k,&)

u® = ofS(k) dk  k=2n/A =wave number.
0

S=Ae23k™"  for Il <<k <<n™! (based on
dimensional analysis) where A = Kolmogorov universal

constant = 1.5 and S = Ag?/3k >/3called Kolmogorov k3
law.

! . ' - - »"
b cmm— equilibrum ROEE
|
. e Ertia] SUDFANRE e ep————
| ! . dissipating
r range
!

P e 10! |
KN
¢ sited on a log-log scale
Fig. 12.12 A wypical wavenumber spectrum observed in the acean, plotted on a WE-0F
» - -~ T ; ' - )
The unit of S is arbitrary, and ihe dots represent hypothetical cala

27
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Dissipation ¢

-—— -

Production P

T()

Transfer of energy to
successively smaller scales

-~ ~— ~ e é i
|

n Ip1

Dissipation
range

45 £y £

Inertial subrange Energy-containing

range

Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.

Figure 5.3 Schemaric representation of the
energy cascade.

Log (energy)
A

IL Energy cascade
I A
I

Energy generated
R
at rate 73 S;;

(— |

| Dissipation of
: energy at rate ¢

Inertial
subrange

e

I ‘ | : Log (k) =

’ﬂ————«-.-
Eddies depend on /and u = Eddies depend on v

28
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Velocity Profiles: Inner, Outer, and Overlap Layers

Detailed examination of turbulent boundary layer velocity
profiles indicates the existence of a three-layer structure:

104 10~ 0.01 0.1 0.3 |

—_ N E— f I | y/8
OUTER LAYER
overlap region
log-law region
INNER LAYER
viscous wall region
buffer layer
viscous sublayer
v
| | | i1 | | |
1 5 10 30 50 100 1,000 10, 000

Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of
v' =y/dé, and y/d, for turbulent channel flow at high Reynolds number (Re, = 107),

(1) A thin inner layer close to the wall, which is
governed by molecular viscous scales, and
independent of boundary layer thickness o, free-
stream velocity U, and pressure gradient.

(2) An outer layer where the flow is governed by
turbulent shear stresses, 0, U. and pressure
gradient, but independent of v.

(3) An overlap layer which smoothly connects inner
and outer regions. In this region both molecular
and turbulent stresses and pressure gradient are
important.

31
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Considerably more information is obtained from the
dimensional analysis and confirmed by experiment.

Inner layer: U = f (1,0, 1, Y)

+_ U _ W r Wall shear
u u* f( 1% ) u TW/'O velocity
= fyt =20

v

U*, y* are called inner wall variables.

Note that the inner layer is independent of 6 or rg, for
boundary layer and pipe flow, respectively.

Quter Layer: U,—-U = g(ty,p,y,6) forpy=0

__\r_/
velocity defect

Ue_U
u*

=g(m) where n=y/o

Note that the outer layer is independent of u.
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Overlap layer: both laws are valid.

In this region both log-law and outer layer is valid.

It is not that difficult to show that for both laws to overlap,
fand g are logarithmic functions.

Inner region:
<2

du u" df

dy 14 dyJr

Outer region:

du u”dg
dy o dp

2
yu  df yu'dg

g v dy* S S dn ; valid at large y* and small n.

“ Y,
~ ~ ~

fly+) a(n)
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Therefore, both sides must equal universal constant, KL

+ 1 + * .
f(y )=;Iny +B=U/U" (Inner variables)

1 u -u
9(77)=;|n?7+A= eu* (Outer variables)

K, A, and B are pure dimensionless constants.

K = 041 Von Karman constant

Values vary
somewhat
depending on
different exp.

= 5.5

The difference is due to

arrangements. A

2.3 BL flow loss of intermittency in

= 0.65 pipe flow duct flow. A = 0 means
small outer layer

The validity of these laws has been established experimentally as
shown in Fig. 6-9, which shows the profiles of Fig 6-8 in inner-law
variable format. All the profiles, except for the one for separated
flow, are seen to follow the expected behavior. In the case of
separated flow, scaling the profile with u* is inappropriate since
u*~0.
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FIGURE 6-8
Experimental turbulent-boundary-

tayer velocity profiles for various
pressure  pradients. [Dawa from
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FIGURE 6-9 :
Replot of the velocity profiles of Fig. 6-8 using inner-law variables y* and u
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Details of Inner Layer

Neglecting inertia and pressure forces in the 2D turbulent
boundary layer equation we get:
d du __
oM (E) —puv) =0
du —

-> U (5) — pUV =T
The total shear stress is the sum of viscous and turbulent
stresses. Very near the wall y=>0, the turbulent stress
vanishes. Sublayer region:

(1) e () -
i (Gy) o = 1(Gy) L, =™

From the inner layer velocity profile (note u” = Jtwl p):

(d_U) _wafyh) _tw
dy y=0 B v dy+ o u
df (y™) _ N\ o+

No slip condition at y = 0 requires C = 0.

Sublayer: U*=y* valid for y*<5
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Buffer layer: Merges smoothly the viscosity-dominated
sub-layer and turbulence-dominated log-layer in the
region 5< y* < 30.

Unified Inner layer: There are several ways to obtain
composite of sub-/buffer and log-layers.

Evaluating the RANS equation near the wall using
turbulence model shows that:

be ™ y? y >0
Several expressions which satisfy this requirement have

been derived and are commonly used in turbulent-flow
analysis. Thatis:

Hy = /me"{e"“* ~1-xU" _("U2+)2}

Assuming the total shear is constant very near to the wall
a composite formula which is valid in the sub-layer, buffer
layer, and logarithmic-overlap regions is obtained.

U=y’ —e"{e"‘” ~1-xU" _(Ku+)2 _(Ku+)3}
2 6
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Fig. 6-11 shows a comparison of this equation with
experimental data obtained very close to the wall. The

agreement is excellent.

It should be recognized that

obtaining data this close to the wall is very difficult.

\, Spaiding's law of the wall:
Eq. [S-41) [x =04, &= 6.5

Duata of Lindgren [ 1965):
V U g- &, 100
= 10,000

o = 27,000
= = 48,000

FIGURE 6-11
Comparison of Spalding's inner-law expression with the pipe-flow data of Lindgren (19650

168 1,008
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Details of the Outer Law

The inner law was successful for smooth-wall turbulent
flow in providing similarity profiles that collapse all the
velocity profile data except for separating flows.

At the end of the overlap region the velocity defect is
given approximately by:
Upg—U

u*

= 9.6(1 — n)* where n=y/§

However, this approximation does not include the effects
of pressure gradients which have a strong effect on the
outer flow, as shown in figure below.

30
{ ® Strong favorabile, A = 1.0
: v Flat plate, A =2.5
* o Mild acverse, A ~ 5.8
& 4 Strong adversa, A =13
20_
A
a F
'Y
% "
13 | © A
| tm - o
o> a]
a1 A
0fe , °
LAY < A
4.- o o
. 7 '
*.7 5 o
. T A
. e @
L] - T A
ol 1 ! ° Ay oK
0.0 0.2 0.4 0.6 o8 1.0

Bitg

FIGURE 6-10
Replot of the velocity profiles of Fig. 6-8 using outer-law variables from Eq. (6-38), Success is not
evident because each profile has a different value of the parameter £,
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With pressure gradient included, the outer law becomes:
Upg—U

- —9mpb)
n=y/o g = 5—*% =  Clauser equilibrium
w parameter
Clauser (1954,1956):

Boundary layers with different CZZ:

but constant S are in

equilibrium, i.e., can be scaled with a single parameter:
Upg—U
— vs. y/A

A = defect thickness = [, —.—

0 u*

dy = 6*2

Also, G = Clauser Shape parameter

G=~[" (”‘?‘”)2 dy = 6.1,/f + 1.81 — 1.7

A u*

Curve—fit' by Mach
Which is related to the usual shape parameter by:
H=6/0=0-G/A)~! % const. due to 1 = A(x)

Finally, Clauser showed that the outer layer has a wake-
like structure such that:

e = 0.016pU, 6" =f(x)=f(x,y)
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Mellor and Gibson (1966) combined these equations into
a theory for equilibrium outer law profiles with excellent
agreement with experimental data: Fig. 6-12

Data Clarr | 15541

#=18 #=8.0
o X= 133" a X= 185
& =TT s = 8T
" =TT = w70

FIGURE 612 0}
Equilibrium-defect profiles as

carrelated by the Claasar pa-

rameter A and the theory of | I L _—
Mellor and Chabson (1966 (a)
flat-plate data: () equblibrizm
adverss pradicnts

Coles (1956): A weakness of the Clauser approach is that
the equilibrium profiles do not have any recognizable
shape. This was resolved by Coles who showed that:

/ Deviations above log-overlap layer

U'=25Iny =55 1, /s

U, —25Ihs" -55 2
Y, \

hd

Max deviation at & Single wake-like function of y/6

_ o2 (TYN _ a2 503
W = wake function = 2 sin (2 6) =3n° —2n
curve fit
n=y/o
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Thus, it is possible to derive a composite log-law, which

covers both the overlap and outer layers, as shown in Fig.
6-13.

1 T
Ut = Elny+ + B +EW(3’/5)
T = wake parameter = n(f)

=0.8(F + 0.5)0'75—> (Curve fit for data)
Note the agreement of Coles’ wake law even for 8 #

constant boundary layers are quite good.

L‘s_'_'ﬁ Eq. (6-47): I <18

Li] ] | l |
o 02 0.4 08 0.8 .0
FIGURE &-13
Tl:rbl.H-tnl }'?Ia:-n::r profiles computed from the Coles wall wake formuls, Eq. (6-47). assumin
&%= J00 The curve for il = 0 s the pure law of ihe wall Troem T—":I (41,
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We see that the behavior in the outer layer is more
complex than that of the inner layer due to pressure
gradient effects. In general, the above velocity profile
correlations are extremely valuable both in providing
physical insight and in providing approximate solutions for
simple wall bounded geometries: pipe, channel flow and
flat plate boundary layer. Furthermore, such correlations
have been extended using additional parameters to
provide velocity formulas for use with integral methods
for solving the boundary layer equations for arbitrary px.

Summary of Inner, Outer, and Overlap Layers

Mean velocity correlations

Inner layer:

U™ =1(y")

Ut=U/u" y =y/iu" o =r,lp
Sub-layer: U*=y* for 0<y <5

Buffer layer: where sub-layer merges smoothly with

log-law region for <y <30
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Outer Layer:

U -u .

eu* =9 B) n=ylo, ﬂzf—px
forn>0.1
Overlap layer (log region):

+_ 1 + . .

U :;Iny +B inner variables

U.-U 1
c—=—-"Inp+A outer variables
u K

fory*>30and 7<0.3

Composite Inner/Overlap layer correlation
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Composite Overlap/Outer layer correlation

Ut =—Iny* +B+=W(n)
W =Sin2(%7yj=3n2—2n3

7 = 0.8(8 + 0.5)°75

for y* > 50

Reynolds Number Dependence of Mean-Velocity Profiles
and Reynolds stresses

10 ¢ -
\\:\\\
S
[ . log-w
107! _ﬁ.gﬁ;‘ﬁgﬂ:{n
¥/o N .
2 h buffer
1072 N?“f'
\\\
[ VIsCOUS
107} sublayer |
-4 |
i .
i |n4 ]ﬂj
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1. Inner/overlap U* scaling shows similarity; extent of
overlap region (i.e., similarity) increases with Re.

2. Outer layer for px = 0 may asymptotically approach
similarity for large Re as shown by AU ™ vs. Reg, but
controversial due to lack of data for Reg > 5 x 10%.

3. The normalized Reynolds stresses wu/k,
production-dissipation ratio and the normalized
mean shear stress are somewhat uniform in the log-
law region. Experiments in flat plate boundary layer,
pipe and channel flow shows k = 3.34 - 3.43 u™2 in
lower part of log-law region.

4. Decay of k ~ y2 near the wall.

5. Streamwise turbulence intensity u™ = U% vs. y*
u

shows similarity for 0< y* <15 (i.e., just beyond the
point of kmax, Y* = 12), but u* increases with Reg.
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