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Chapter 6 Introduction Incompressible Turbulent Flow 

 

3. Basic Concepts 

Most flows in engineering are turbulent:  flows over 

vehicles (airplane, ship, train, car), internal flows (heating 

and ventilation, turbomachinery), and geophysical flows 

(atmosphere, ocean). 

 

V(x, t) and p(x, t) are random functions of space and time, 

but statistically stationary flows such as steady and forced 

or dominant frequency unsteady flows display coherent 

features and are amendable to statistical analysis, i.e. time 

and space (conditional) averaging.  RMS and other low-

order statistical quantities can be modeled and used in 

conjunction with the averaged equations for solving 

practical engineering problems. 

 

Turbulent motions range in size from the width in the flow 

δ to much smaller scales, which become progressively 

smaller as the Re = Uδ/υ increases. 
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a.  Randomness and fluctuations: 

Turbulence is irregular, chaotic, and unpredictable.  

However, for statistically stationary flows, such as steady 

flows, can be analyzed using Reynolds’s decomposition. 
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u  = mean motion 

'u = superimposed random fluctuation 

2'u = Reynolds stresses = mean square 'u = variance u 

2'u = RMS 'u = standard deviation (SD) u 

SD%Mean = coefficient of variation= 2'u /u  

 

Triple decomposition is used for forced or dominant 

frequency flows. 

 

''' uuuu ++=  

 

Where ''u  = organized oscillation 
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b.  Nonlinearity  

Reynolds stresses and 3D vortex stretching are direct 

result of nonlinear nature of turbulence.  In fact, Reynolds 

stresses arise from nonlinear convection term after 

substitution of Reynolds decomposition into NS equations 

and time averaging. 

 

c.  Diffusion 

Large scale mixing of fluid particles greatly enhances 

diffusion of momentum (and heat), i.e., 

 

Reynolds Stresses:    
 stressviscous

ijijji
uu  =− ''  

Isotropic eddy viscosity: kuu ijijtji 
3

2
'' −=−  

 

d.  Vorticity/eddies/energy cascade 

Turbulence is characterized by flow visualization as 

eddies, which vary in size from the largest Lδ (width of 

flow) to the smallest LK. The largest eddies have velocity 

scale U and time scale Lδ/U.  
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The orders of magnitude of the smallest eddies (Kolmogorov 

scale) are: 

LK = Kolmogorov micro-scale = 
4

1

3

3










U


=

1
3 4



 
 
 

 

LK = O(mm) >> Lmean free path = 6 x 10-8 m 

Velocity scale = (νε)1/4= O(10-2m/s) 

Time scale = (ν/ε)1/2= O(10-2s) 

Largest eddies contain most of energy, which break up into 

successively smaller eddies with energy transfer to yet 

smaller eddies until LK is reached and energy is dissipated by 

molecular viscosity.  Richardson (1922): 

Lδ Big whorls have little whorls. 

 Which feed on their velocity. 

 And little whorls have lesser whorls, 

LK And so on to viscosity (in the molecular sense). 

 

 

IIHR wave basin experiments 

LK ≈ .1 - .5 mm, i.e.,  

100 – 500 m. 

17-181 m ≈ Dhair 
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e.  Dissipation 
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ε = rate of dissipation = energy/time 
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Energy comes from 

largest scales and 

fed by mean 

motion 

Dissipation 

occurs at 

smallest 

scales 

Dissipation rate is 

determined by the 

large-scale dynamics 

and not f(). 

The smallest scales are only 

f(), e.g., length scale LK . 
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f. Examples Experimental Data for Wall Flows 

 

Fig. below shows measurements of turbulence for 

Rex=107. 

 

Note the following mean-flow features: 

 

(1) Fluctuations are large ~ 11% U∞ 

 

(2) Presence of wall causes anisotropy, i.e., the 

fluctuations differ in magnitude due to geometric and 

physical reasons.  2'u  is largest, 2'v  is smallest and reaches 

its maximum much further out than 2'u  or 2'w .  2'w  is 

intermediate in value. 

 

(3) 0'' vu  and, as will be discussed, plays a very 

important role in the analysis of turbulent shear flows. 
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(4) Although 0=
ji

uu  at the wall, it maintains large values 

right up to the wall 

 

(5)  Turbulence extends to y > δ due to intermittency.  The 

interface at the edge of the boundary layer is called the 

superlayer.  This interface undulates randomly between 

fully turbulent and non-turbulent flow regions.  The mean 

position is at y ~ 0.78 δ. 

 

(6) Fluctuating normal velocities equal and uiuj = 0 i≠j at 

high frequencies (isotropic behavior).  All five spectra have 

same frequency range. 

 

(7) Near wall turbulent wave number spectra have more 

energy, i.e., small λ, whereas near δ large eddies 

dominate. 

 

Wavenumber 𝑘:  𝑘 =
2𝜋

𝜆
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𝑢′2 = ∫ 𝐹𝑢(𝑘𝑢)𝑑𝑘𝑢

∞

0

 

𝑢′2 = total mean-square fluctuation. 

𝐹𝑢(𝑘𝑢) = 1D spatial energy spectrum. 

 

 

Near 𝛿 

More energy small 

𝑘, i.e., large eddies. 

 

Near wall, more energy 

large 𝑘, i.e., small eddies. 
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Averages: 

For turbulent flow V (x, t), p(x, t) are random functions of 

time and must be evaluated statistically using averaging 

techniques: time, ensemble, phase, or conditional. 

 

Time Averaging 

For stationary flow, the mean is not a function of time, and 

we can use time averaging. 



+
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u
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)(
1

 T > any significant period of uuu −='   

(e.g. 1 sec. for wind tunnel and 20 min. for ocean) 

 

Ensemble Averaging 

For non-stationary flow, the mean is a function of time 

and ensemble averaging is used 


=

=
N

i

i tu
N

tu
1

)(
1

)(  N is large enough that u  independent  

ui(t) = collection of experiments performed under  

identical conditions (also can be phase aligned 

for same t=o). 
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Phase and Conditional Averaging 

Like ensemble averaging, but for flows with dominant 

frequency content or other condition, which is used to 

align time series for some phase/condition.  In this case 

triple velocity decomposition is used: ''' uuuu ++=  where 

u΄΄ is called organized oscillation. Phase/conditional 

averaging extracts all three components. 

 

 Averaging Rules: 

 

 'fff +=   'ggg +=   s = x or t 

 

 0'=f   ff =   gfgf =   0' =gf  

 

 gfgf +=+   f f

s s

 
=

 
  ''gfgffg +=  

 

 = dsfdsf  
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Reynolds-Averaged Navier-Stokes Equations 

For convenience of notation use uppercase for mean and 

lowercase for fluctuation in Reynolds’s decomposition. 

pPp

uUu iii

+=

+=

~

~

 

𝜕𝑢
~
𝑖

𝜕𝑥𝑖
= 0 
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~

𝑖
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+ 𝑢
~

𝑗

𝜕𝑢
~
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= −

1
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+ 𝜐

𝜕2𝑢
~

𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
− 𝑔𝛿𝑖3 

 

Mean Continuity Equation 
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Both mean and fluctuation satisfy divergence = 0 

condition. 

 

 

Instantaneous 
NS 
equation 
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Mean Momentum Equation 

𝜕

𝜕𝑡
(𝑈𝑖 + 𝑢𝑖) + (𝑈𝑗 + 𝑢𝑗)
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𝐷𝑈𝑖

𝐷𝑡
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The difference between the NS and RANS equations is the 

Reynolds stresses 
ji

uu− , which acts like additional stress. 

ji
uu− = 

ij
uu−    (i.e., Reynolds stresses are symmetric) 

[

−𝜌𝑢2 −𝜌𝑢𝑣 −𝜌𝑢𝑤

−𝜌𝑣𝑢 −𝜌𝑣2 −𝜌𝑣𝑤

−𝜌𝑤𝑢 −𝜌𝑤𝑣 −𝜌𝑤2

] = [

−𝜌𝑢2 −𝜌𝑢𝑣 −𝜌𝑢𝑤

−𝜌𝑢𝑣 −𝜌𝑣2 −𝜌𝑣𝑤

−𝜌𝑢𝑤 −𝜌𝑣𝑤 −𝜌𝑤2

] 

2

i
u  are normal stresses. 

jiuu
ji

  are shear stresses. 

6 new unknowns  

RANS 

Equations 
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For homogeneous/isotropic turbulence jiuu
ji

  = 0 and 

=== 222 wvu  constant; however, turbulence is generally 

non-isotropic. 
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Consider shear flow with 0
dy

dU
 as below,

 

The fluid velocity is:  ),,( wvuUV +=  

If fluid particle retains its total velocity V from y to ydy gives,  

𝑈 + 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → If 𝑈 increases, 𝑢 decreases and vice versa. 

 

 

00

00

→

→

uv

uv
  0uv   

 

x-momentum tends towards 

decreasing y as turbulence 

diffuses gradients and 

decreases 
dy

dU
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x-momentum transport in y direction, i.e., across y = 

constant AA per unit area 

 

𝑀𝑥𝑦 = ∫𝜌�̃�𝑉 ∙ 𝑛 𝑑𝐴, where �̃� = (𝑈 + 𝑢) 

 

𝑑𝑀𝑥𝑦̅̅ ̅̅ ̅̅

𝑑𝐴
= uvuvvUvuU  =+=+ )(  

 

i.e  
ji

uu  = average flux of j-momentum in 

i-direction = average flux of  

i-momentum in j-direction 
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Closure Problem: 

1. RANS equations differ from the NS equations due to 
the Reynolds stress terms. 

2. RANS equations are for the mean flow ( , )iU P ; thus, 
represent 4 equations with 10 unknowns due to the 
additional 6 unknown Reynolds stresses 𝑢𝑖𝑢𝑗 

3. Equations can be derived for 𝑢𝑖𝑢𝑗  by summing 

products of velocity and momentum components 
and time averaging, but these include additionally 
10 triple products 𝑢𝑖𝑢𝑗𝑢𝑙 unknowns.  Triple 

products represent Reynolds stress transport.  
4. Again, equations for triple products can be derived 

that involve higher order correlations leading to 
fact that RANS equations are inherently non-
deterministic, which requires turbulence modeling. 

5. Turbulence closure models render deterministic 
RANS solutions. 

6. The NS and RANS equations have paradox that NS 
equations are deterministic but have 
nondeterministic solutions for turbulent flow due to 
inherent stochastic nature of turbulence, whereas 
the RANS equations are nondeterministic, but have 
deterministic solutions due to turbulence closure 
models. 
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 𝜕𝑈𝑖
𝜕𝑥𝑗
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Note that differential instantaneous mechanical energy 

equation has - term where  ≥ 0 = rate of viscous 

dissipation = loss of mechanical energy due to 

deformation of fluid particle; and recall differential 

energy equation has term +  term, i.e., gain in internal 

energy due .  See Chapters 3&4 Part 1 page 60. 
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Turbulent Kinetic Energy Equation 

( )2222
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2

1
wvuuk
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++==  = turbulent kinetic energy 
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Subtracting NS equation for iu
~

 and RANS equation for Ui 

results in equation for ui: 
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Multiply by ui and average 

 

𝐷𝑘
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𝜕𝑈𝑖
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− 2𝜐𝑒𝑖𝑗𝑒𝑗𝑖⏟    
𝑉

 

Where j

j

Dk k k
U

Dt t x

VI

 
= +
   and 

1

2

ji
ij

j i

uu
e

x x


=

   

 



058:0160  Chapter 6-part3 

Professor Fred Stern     Fall 2023  24 

24 
 

I =pressure transport 

II= turbulent transport 

III=viscous diffusion 

IV = shear production (usually > 0) represents loss of mean 

kinetic energy and gain of turbulent kinetic energy due to 

interactions of 
ji

uu  and 
j

i

x

U




. 

V = viscous dissipation = ε 

VI= turbulent convection 

Recall previous discussions of energy cascade and 

dissipation:  Energy fed from mean flow to largest eddies and 

cascades to smallest eddies via inviscid processes where 

dissipation takes place. According to Kolmogorov hypotheses 

after 6 turnovers turbulence becomes isotropic. 
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Kinetic energy = k = uo
2 

𝜏0 =
𝑙0

𝑢0
= turn over time. 

0

3

0

0

2

0

l

uu
==


  

l0 = Lδ = width of flow (i.e., size of largest eddy) 

Kolmogorov Hypothesis: 

(1) local isotropy: for large Re, micro-scale ℓ << ℓ0 and 
turbulence structures are isotropic. 

(2) first similarity: for large Re, micro-scale has 

universal form uniquely determined by  and ε: 
universal equilibrium range. 

 

( ) 4/13 / =   length  4/3
0 Re/ −=l  

 

( ) 4/1
 =u   velocity  4/1

0 Re/ −=uu  

 

( ) 2/1
/ =  time          

  
2/1

0 Re/ −=  

Also shows that as Re increases, the range of scales 

increase. 

Micro-scale<<large scale 
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(3) second similarity:  for large Re, intermediate scale 
has a universal form uniquely determined by ε and 

independent of : inertial subrange. 
 

(1) - (3) are called universal equilibrium range in 

distinction from non-isotropic energy-containing range.  

(2) is the dissipation range and (3) is the inertial subrange. 
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Spectrum of turbulence in the inertial subrange S=S(k,) 




=
0

2 )( dkkSu       k = 2/ = wave number. 

3/53/2 −= kAS     for 𝑙0
−1 << 𝑘 << 𝜂−1  (based on 

dimensional analysis) where A  = Kolmogorov universal 

constant = 1.5 and 3/53/2 −= kAS  called Kolmogorov k-5/3 

law. 
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linear 

Constant →
𝑑𝜏

𝑑𝑦
=constant 
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Velocity Profiles: Inner, Outer, and Overlap Layers 

Detailed examination of turbulent boundary layer velocity 

profiles indicates the existence of a three-layer structure: 

 

(1) A thin inner layer close to the wall, which is 
governed by molecular viscous scales, and 

independent of boundary layer thickness , free-
stream velocity Ue and pressure gradient. 

(2) An outer layer where the flow is governed by 

turbulent shear stresses, , Ue and pressure 

gradient, but independent of . 
(3) An overlap layer which smoothly connects inner 

and outer regions. In this region both molecular 
and turbulent stresses and pressure gradient are 
important.  
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Considerably more information is obtained from the 

dimensional analysis and confirmed by experiment. 

 

Inner layer: 𝑈 = 𝑓(𝜏𝑤, 𝜌, 𝜇, 𝑦) 

 

                 𝑈+ =
𝑈

𝑢∗
= 𝑓(

𝑦𝑢∗

𝜈
)        /*

wu =  

 

    = 𝑓(𝑦+ =
𝑦𝑢∗

𝜈
) 

U+, y+ are called inner wall variables. 

Note that the inner layer is independent of δ or r0, for 

boundary layer and pipe flow, respectively. 

 

Outer Layer: 𝑈𝑒 − 𝑈⏟    
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑒𝑓𝑒𝑐𝑡

= 𝑔(𝜏𝑤, 𝜌, 𝑦, 𝛿)   for px = 0 

 

    
𝑈𝑒−𝑈

𝑢∗
= 𝑔(𝜂)         where   /y=  

 

Note that the outer layer is independent of μ. 

 

Wall shear 

velocity 
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Overlap layer: both laws are valid. 

In this region both log-law and outer layer is valid.  

It is not that difficult to show that for both laws to overlap, 

f and g are logarithmic functions. 

 

Inner region: 

+



=
dy

dfu

dy

dU



2

 

 

Outer region: 

 d

dgu

dy

dU 

=
 

 d

dgu

u

y

dy

dfu

u

y 

+




=

2

 ; valid at large y+ and small η.  

 

 

 

 

f(y+) g(η) 
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Therefore, both sides must equal universal constant, 1−  

++ =+= uUByyf /ln
1

)(


 (Inner variables) 



−
=+=

u

UU
Ag e


 ln

1
)(     (Outer variables) 

 , A, and B are pure dimensionless constants. 

 

   = 0.41  Von Karman constant 

 

 B = 5.5         

 

 A = 2.35  BL flow 

  = 0.65  pipe flow   

 

The validity of these laws has been established experimentally as 

shown in Fig. 6-9, which shows the profiles of Fig 6-8 in inner-law 

variable format.  All the profiles, except for the one for separated 

flow, are seen to follow the expected behavior.  In the case of 

separated flow, scaling the profile with u* is inappropriate since 

u* ~ 0. 

Values vary 

somewhat 

depending on 

different exp. 

arrangements. 
The difference is due to 

loss of intermittency in 

duct flow. A = 0 means 

small outer layer 
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---------------------------------------------------------------------- 
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Details of Inner Layer  

Neglecting inertia and pressure forces in the 2D turbulent 

boundary layer equation we get: 

𝑑

𝑑𝑦
(𝜇 (

𝑑𝑈

𝑑𝑦
) − 𝜌𝑢𝑣 ) = 0 

      ➔                 𝜇 (
𝑑𝑈

𝑑𝑦
) − 𝜌𝑢𝑣 = 𝜏𝑡                               

The total shear stress is the sum of viscous and turbulent 

stresses. Very near the wall y→0, the turbulent stress 

vanishes.  Sublayer region: 

lim
𝑦→0

𝜇 (
𝑑𝑈

𝑑𝑦
) − 𝜌𝑢𝑣 = 𝜇 (

𝑑𝑈

𝑑𝑦
)
𝑦=0

= 𝜏𝑤 

From the inner layer velocity profile (note  /*
wu = ): 

                       (
𝑑𝑈

𝑑𝑦
)
𝑦=0

= 
𝑢∗
2

𝜈

𝑑𝑓(𝑦+)

𝑑𝑦+
=
𝜏𝑤

𝜇
                            

               
𝑑𝑓(𝑦+)

𝑑𝑦+
= 1   ➔ 𝑓(𝑦+) =  𝑦+ +  𝐶                  

No slip condition at y = 0 requires 𝐶 = 0. 

    Sublayer:    U+ = y+             valid for             y+ ≤ 5          
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Buffer layer: Merges smoothly the viscosity-dominated 

sub-layer and turbulence-dominated log-layer in the 

region 5< y+ ≤ 30.  

Unified Inner layer: There are several ways to obtain 

composite of sub-/buffer and log-layers.   

Evaluating the RANS equation near the wall using μt 

turbulence model shows that: 

μt ~ y3  y  →  0 

Several expressions which satisfy this requirement have 

been derived and are commonly used in turbulent-flow 

analysis.  That is: 

( )













−−−=

+
+− +

2
1

2
U

Uee UB

t


 

                 

Assuming the total shear is constant very near to the wall 

a composite formula which is valid in the sub-layer, buffer 

layer, and logarithmic-overlap regions is obtained. 

( ) ( )













−−−−−=

++
+−++ +

62
1

32
UU

UeeyU uB 


       

 

 



058:0160  Chapter 6-part3 

Professor Fred Stern     Fall 2023  38 

38 
 

Fig. 6-11 shows a comparison of this equation with 

experimental data obtained very close to the wall.  The 

agreement is excellent.  It should be recognized that 

obtaining data this close to the wall is very difficult. 
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Details of the Outer Law 

The inner law was successful for smooth-wall turbulent 

flow in providing similarity profiles that collapse all the 

velocity profile data except for separating flows. 

 

At the end of the overlap region the velocity defect is 

given approximately by: 

 
𝑈𝑒−𝑈

𝑢∗
= 9.6(1 − 𝜂)2                       where   /y=  

However, this approximation does not include the effects 

of pressure gradients which have a strong effect on the 

outer flow, as shown in figure below. 
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With pressure gradient included, the outer law becomes: 

 
𝑈𝑒−𝑈

𝑢∗
= 𝑔(𝜂, 𝛽)                                                

 𝜂 = 𝑦/𝛿  𝛽 =
𝛿∗

𝜏𝑤

𝑑𝑝𝑒

𝑑𝑥
 =  

 

Clauser (1954,1956): 

Boundary layers with different 
𝑑𝑝𝑒

𝑑𝑥
 but constant   are in 

equilibrium, i.e., can be scaled with a single parameter: 

 
𝑈𝑒−𝑈

𝑢∗
 vs. 𝑦/𝛥 

 𝛥 = 𝑑𝑒𝑓𝑒𝑐𝑡 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = ∫
𝑈𝑒−𝑈

𝑢∗
∞

0
𝑑𝑦 = 𝛿∗𝜆 

 𝜆 = √2/𝐶𝑓 

Also, G = Clauser Shape parameter 

 G=
1

𝛥
∫ (

𝑈𝑒−𝑈

𝑢∗
)
2∞

0
𝑑𝑦 = 6.1√𝛽 + 1.81 − 1.7⏟            

𝐶𝑢𝑟𝑣𝑒−𝑓𝑖𝑡 𝑏𝑦 𝑀𝑎𝑐ℎ

 

Which is related to the usual shape parameter by: 

𝐻 = 𝛿∗/𝜃 = (1 − 𝐺/𝜆)−1 ≠ 𝑐𝑜𝑛𝑠𝑡.  𝑑𝑢𝑒 𝑡𝑜 𝜆 = 𝜆(𝑥) 

Finally, Clauser showed that the outer layer has a wake-

like structure such that: 

𝜇𝑡 ≈ 0.016𝜌𝑈𝑒𝛿
∗=f(x)≠f(x,y) 

Clauser equilibrium 

parameter 
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Mellor and Gibson (1966) combined these equations into 

a theory for equilibrium outer law profiles with excellent 

agreement with experimental data: Fig. 6-12 

 

Coles (1956):  A weakness of the Clauser approach is that 

the equilibrium profiles do not have any recognizable 

shape.  This was resolved by Coles who showed that:  

 

)/(
2

1

5.5ln5.2

5.5ln5.2



yW

U

yU

e


−−

−−
++

++

   

 

 

𝑾 = 𝒘𝒂𝒌𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝟐𝒔𝒊𝒏𝟐 (
𝝅

𝟐

𝒚

𝜹
)

⏟        
𝒄𝒖𝒓𝒗𝒆 𝒇𝒊𝒕

= 𝟑𝜼𝟐 − 𝟐𝜼𝟑 

𝜼 = 𝒚/𝜹 

Max deviation at δ 
Single wake-like function of y/δ 

Deviations above log-overlap layer 
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Thus, it is possible to derive a composite log-law, which 

covers both the overlap and outer layers, as shown in Fig. 

6-13. 

𝑈+ =
1

𝜅
𝑙𝑛 𝑦+ + 𝐵 +

𝜋

𝜅
𝑊(𝑦/𝛿) 

 𝜋 = 𝑤𝑎𝑘𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = π(𝛽) 

 
75.0)5.0(8.0 +=     (Curve fit for data) 

Note the agreement of Coles’ wake law even for β   

constant boundary layers are quite good. 
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We see that the behavior in the outer layer is more 

complex than that of the inner layer due to pressure 

gradient effects.  In general, the above velocity profile 

correlations are extremely valuable both in providing 

physical insight and in providing approximate solutions for 

simple wall bounded geometries: pipe, channel flow and 

flat plate boundary layer.  Furthermore, such correlations 

have been extended using additional parameters to 

provide velocity formulas for use with integral methods 

for solving the boundary layer equations for arbitrary px. 

 

Summary of Inner, Outer, and Overlap Layers 

Mean velocity correlations 

Inner layer:  

)( ++ = yfU  

*/uUU =+
  + = uyy /   /*

wu =  

Sub-layer: U+ = y+            for  50  +y    

Buffer layer:    where sub-layer merges smoothly with 

                            log-law region for 305  +y   
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Outer Layer: 

 ),(
*

g
u

UUe =
−

   /y= ,  x

w

p





*

=  

                                           for  > 0.1 

Overlap layer (log region): 

 ByU += ++ ln
1


  inner variables 

 

 A
u

UUe +−=
−




ln
1

*  outer variables 

  

               for y+ > 30 and   0.3 

 

Composite Inner/Overlap layer correlation 

 












−−−−−=

++
+−++

6

)(

2

)(
1

32 UU
UeeyU bb 


 

for 0 < y+  50 
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Composite Overlap/Outer layer correlation 

 

 𝑈+ =
1

𝜅
𝑙𝑛 𝑦+ + 𝐵 +

2𝜋

𝜅
𝑊(𝜂)

 
322 23

2
sin 


−=








=W  

𝜋 = 0.8(𝛽 + 0.5)0.75 

 

                                 for y+ > 50   

Reynolds Number Dependence of Mean-Velocity Profiles 

and Reynolds stresses  
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1. Inner/overlap U+ scaling shows similarity; extent of 
overlap region (i.e., similarity) increases with Re. 

  

2. Outer layer for px = 0 may asymptotically approach 
similarity for large Re as shown by 𝛥𝑈+ vs. Reθ, but 
controversial due to lack of data for Reθ > 5 x 104. 

 

3. The normalized Reynolds stresses 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅/𝑘, 

production-dissipation ratio and the normalized 
mean shear stress are somewhat uniform in the log-
law region. Experiments in flat plate boundary layer, 
pipe and channel flow shows k = 3.34 - 3.43 u*2 in 
lower part of log-law region.  
 

4. Decay of k ~ y2 near the wall. 
 

5. Streamwise turbulence intensity *

2

u
uu =+  vs. y+ 

shows similarity for 150  +y  (i.e., just beyond the 
point of kmax, y+ = 12), but u+ increases with Reθ. 
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