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Chapter 2: Pressure Distribution in a Fluid 

 
Pressure and pressure gradient  

 

In fluid statics, as well as in fluid 

dynamics, the forces acting on a 

portion of fluid (CV) bounded by a 

CS are of two kinds: body forces 

and surface forces. 

 

Body Forces:  act on the entire body of the fluid (force      

  per unit volume). 

 

Surface Forces:  act at the CS and are due to the  

     surrounding medium (force/unit area- 

     stress). 

 

In general, the surface forces can be resolved into two 

components: one normal and one tangential to the surface.  

Considering a cubical fluid element, we see that the stress 

in a moving fluid comprises a 2nd order tensor. 
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Since by definition, a fluid cannot withstand a shear stress 

without moving (deformation), a stationary fluid must 

necessarily be completely free of shear stress (σij=0,  i ≠ 

j).  The only non-zero stress is the normal stress, which is 

referred to as pressure: 

 

σii=-p 

 

 

i.e.  normal stress (pressure) is isotropic.   

Or px = py = pz = pn = p   

n 

(One value at a point, 

independent of 

direction; p is a scalar) 

σn = -p, which is compressive, as it should be since 

fluid cannot withstand tension. (Sign convention 

based on the fact that p>0 and in the direction of –n) 
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This can be easily seen by considering the equilibrium of 

a wedge-shaped fluid element ∀= 10−9 mm3 
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Note:  For a fluid in motion, the normal stress is different 

on each face and not equal to p 
 

σxx ≠ σyy ≠ σzz ≠ -p 
 

For an incompressible fluid, by convention p is defined as 

the average of the normal stresses: 
 

𝑝 = 𝑝̅ = −
1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) = −

1

3
𝜎𝑖𝑖 

 

The fluid element experiences a force on it because of the 

fluid pressure distribution if it varies spatially. 
 

Consider the net force in the x direction due to p(x,t). 

 
The result will be similar for dFy and dFz; consequently, 

we conclude: 

ˆˆ ˆ
press

p p p
dF i j k

x y z

   
= − − −  

   
 

 

Or:  pf −=   force per unit volume due to p(x,t). 

 

Note: if p=constant, 0=f . 

dx 

dz 

dy 

  

 

 =  

1st order 

Taylor 

series 
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Equilibrium of a fluid element 
 

Consider now a fluid element which is acted upon by both 

surface forces and a body force due to gravity: 

 

= dg
grav

dF   or gf
grav

=  (per unit volume) 

 

Application of Newton’s law yields: = Fam  
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For ρ, μ=constant, the viscous force will have this form (Chapter 4). 
 

2a p g V  = − + +              with  𝑎 =
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻𝑉 

 

Note that 𝑉 ⋅ 𝛻𝑉 is nonlinear, i.e., product of unknowns! 

Viscous part 

inertial pressure 

gradient 

gravity viscous 

_____ 

_________ 

___ 
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This is called the Navier-Stokes equation and will be 

discussed further in Chapter 4.  Consider solving the N-S 

equation for p when a and V are known. 
 

( ) ),(2 txBVagp =+−=   
 

This is simply a first order PDE for p and can be solved 

readily.  For the general case (V and p unknown), one must 

solve the NS and continuity equations, which is a 

formidable task since the NS equations are a system of 2nd 

order nonlinear PDEs. 
 

We now consider the following special cases: 
 

1) Hydrostatics ( 0== Va ) 

 

2) Rigid body translation or rotation ( 02 = V )1 

 

3) Irrotational motion ( 0= V ) 
 

      For vector  
 



equationBernoulliequationEulerVV  0

constant if

20 =

=

=



 

also, 
20 & . 0V V if const   =  = =  =  

 
1 No viscous stresses since fluid element does not deform in shape or size/volume. 
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Case (1) Hydrostatic Pressure Distribution 

 
 

p g g k  = = −        z           g 

 

i.e. 0=



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
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p

x

p
 and  

p
g
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


= −


  gdzdp −=  

 

or  −=−=−
2

1

)(
2

1
12

dzzggdzpp          

Spherical planet uniform density 𝑔 = 𝑔0 (
𝑟0

𝑟
)

2
≅

constant near earth's surface r0  

 
 

liquids → ρ = constant (for one liquid) 

    p = -ρgz + constant  

 

(z = 0, p = constant = patm; p increases z < 0 and decreases 

z > 0) 
 

gases → ρ = ρ(p,t) which is known from the equation  

    of state: p = ρRT → ρ = p/RT 
 

which can be integrated if T =T(z) is  

known as it is for the atmosphere. 

 

)(zT

dz

R

g

p

dp
−=

∇𝑝 = 𝜌𝑔 = −𝜌𝑔𝑘̂ 
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Manometry 

 

Manometers are devices that use liquid columns for 

measuring differences in pressure.  A general procedure 

may be followed in working all manometer problems: 

 

1.)  Start at one end (or a meniscus if the circuit is 

continuous) and write the pressure there in an appropriate 

unit or symbol if it is unknown.  

 

2.)  Add to this the change in pressure (in the same unit) 

from one meniscus to the next (plus if the next meniscus 

is lower, minus if higher). 

 

3.)  Continue until the other end of the gage (or starting 

meniscus) is reached and equate the expression to the 

pressure at that point, known or unknown. 

 

 
Pascal’s Law: for static fluid at same depth p = constant, 

i.e., 𝑝𝑥 = 𝑝𝑦 = 0. 

 

P=constant 
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Hydrostatic forces on plane surfaces 

 

The force on a body due to a pressure distribution is: 
−=

A

dAnpF  

 

where for a plane surface n = constant and we need only 

consider |F| noting that its direction is always towards the 

surface: | |
A

F p dA=  . 

 

Consider a plane surface AB  entirely submerged in a 

liquid such that the plane of the surface intersects the free 

surface with an angle α.  The centroid of the surface is 

denoted ( yx, ). 

 

                             sinF yA pA = =  

 

Where p  is the pressure at the centroid. 

 

 

𝑝 = 𝛾𝑦′ 
𝑦′ = 𝑦𝑠𝑖𝑛𝛼 

gauge i.e. relative 𝑃𝑎𝑡𝑚 

Upper and lower orange triangles, same area. 
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To find the line of action of the force which we call the 

center of pressure (xcp, ycp) we equate the moment of the 

resultant force to that of the distributed force about any 

arbitrary axis. 

 

2sin
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A

A

y F ydF

y dA 

=

=




     Note: dAydF  sin=  

 

IAy

OOaboutInertiaofmoment
o

I

A

dAy

+=

−→=

2

2

 

I  = moment of inertia WRT horizontal centroidal axis 
→ sinF pA yA = =  

→   ( )2

sin sincpy yA y A I   = +  

→ 
Ay

I
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and similarly, for xcp 

 

   where  

 

 

 

 

 

Note that the coordinate system in the text has its origin at the centroid 

and is related to the one just used by: 
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Note coordinate system  

y = 0 at O and I̅ = horizontal 

centroid axis 
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Hydrostatic Forces on Curved Surfaces 

 

 
 

  

In general,     Horizontal Components: 

     

y

x

x

y y

A

F F i p n i dA

dA

F p dA

=  = − 

= −




 

dAx = projection of n dA onto a plane perpendicular to x direction 

dAy = projection of n dA onto a plane perpendicular to y direction 

 
The horizontal component of force acting on a curved surface 

is equal to the force acting on a vertical projection of that 

surface including both magnitude and line of action and can 

be determined by the methods developed for plane surfaces. 

 

 
 
Where h is the depth to any elemental area dA of the surface. 

The vertical component of force acting on a curved surface is 

equal to the net weight of the total column of fluid directly 

above the curved surface and has a line of action through the 

centroid of the fluid volume. 

z 

y 

x 

−=
A

dAnpF

𝑑𝐴𝑧 

𝑑𝐴𝑧  
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Example   Drum Gate 

 

 
h=R-Rcosθ=R(1-cosθ) 

( )1 cos

h

p h R  = = −  

sin cosn i k = − +  
dA lRd=  
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Same force as that on projection of gate 

onto vertical plane perpendicular 𝑥 

direction 

 

𝐹 ∙ 𝑖̂ 

𝑛 = − sin 𝜃 𝑖̂ + cos 𝜃 𝑘̂ 
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  𝐹𝑧 = −𝛾𝑙𝑅2 ∫ (1 − 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0
   

 

       = −𝛾𝑙𝑅2 (𝑠𝑖𝑛𝜃 −
𝜃

2
−

1

4
sin2θ)

0

𝜋
  

 

       = −𝛾𝑙𝑅2
𝜋

2
= 𝛾𝑙 (

𝜋𝑅2

2
) = 𝛾∀ 

         

Another approach: 

 

𝐹1 = 𝛾𝑙 [𝑅2 −
1

4
𝜋𝑅2] 

      = 𝛾𝑙𝑅2 [1 −
1

4
𝜋] 

 

𝐹2 = 𝛾𝑙
𝜋𝑅2

2
+ 𝐹1 

𝐹 = 𝐹2 − 𝐹1 =
𝛾𝑙𝜋𝑅2

2
 

 

 

 

Net weight of water above curved surface 
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Buoyancy and Stability 

 

Archimedes Principle 

 

)1()2( V
F

V
F

B
F −=  

= fluid weight above 2ABC – 

fluid weight above 1ADC 

 

= weight of fluid equivalent 

to the body volume 

 

 

In general, FB = ρg  (= submerged volume). 

 

The line of action is through the centroid of the displaced 

volume, which is called the center of buoyancy. 
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Example: Floating body in “dynamic” heave motion 

 

 
Weight of the block 𝑊 = 𝜌𝑏 𝐿𝑏⏟ ℎ𝑔 = 𝑚𝑔 = 𝛾∀0 where 0  is displaced  
 

water volume by the block for initial static equilibrium position and   is 

the specific weight of the liquid. 

     
:

:     sink

:    floa

  

in

 

g

 

t

b
b w b

w
W B

b

b w

b w

b w

specific gravity

W B Lbhg Lbdg d h S

of the bloc

h

S

d h

d h

d h

k


 



 

 

 

=  =  = =

=

= =

 

 

 

Instantaneous displaced water volume: 

        0 wpyA =  −  

        
..

0VF m y B W  = = − =  −   

                 wpA y= −  

𝑦 > 0: ∀↓ 𝐵 ↓ 
𝑦 < 0: ∀↑ 𝐵 ↑ 

𝐴𝑊𝑃 
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..

0wpm y A y+ =  

                  

..

0
wpA

y y
m


+ =  

                

                 cos sinn ny A t B t = +   

   Use initial condition (
. .

0 0
0,t y y y y= = = ) to determine A 

and B: 

                       

.

0
0 cos sinn n

n

y
y y t t 


= +  

Where  

                             
wp

n

A

m


 =  

 

     period           
2

2
wp

m
T

A




 
= =

                         Spar Buoy 

 

T is tuned to decrease response to ambient waves: we can 

increase T by increasing block mass m and/or decreasing 

waterline area wpA . 

 

 

  

,𝑦̇ = 𝑦0̇ 

𝑦0̇ 

n 
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Stability of Immersed and Floating Bodies 
 

Here we’ll consider transverse stability.  In actual applications 

both transverse and longitudinal stability are important. 

 

Immersed Bodies 

 

 

Static equilibrium requires:   == 0Mand0Fv  

 

M = 0 requires that the centers of gravity and buoyancy 

coincide, i.e., C = G and body is neutrally stable 

 

If C is above G, then the body is stable (righting moment when 

heeled) 

 

If G is above C, then the body is unstable (heeling moment 

when heeled) 

 

 

 

 

 

Stable Neutral Unstable 
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Floating Bodies 

 

For a floating body the situation is more complicated since the 

center of buoyancy will generally shift when the body is rotated 

depending upon the shape of the body and the position in which 

it is floating. 

 

     Positive GM      Negative GM  

 

The center of buoyancy (centroid of the displaced volume) shifts 

laterally to the right for the case shown because part of the 

original buoyant volume AOB is transferred to a new buoyant 

volume EOD. 

 

The point of intersection of the lines of action of the buoyant force 

before and after heel is called the metacenter M and the distance 

GM is called the metacentric height.  If GM is positive, that is, if 

M is above G, then the ship is stable; however, if GM is negative, 

the ship is unstable. 
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 = small heel angle 

CCx =  = lateral displacement 

  of C 

C = center of buoyancy 

i.e., centroid of displaced  

volume V 

 

 

 

 

Solve for GM:  find x  using: 

(1) basic definition for centroid of V; and 

(2) trigonometry 

 

(1) Basic definition of centroid of volume V 
 

  == ii VxVxdVx  moment about center plane 
 

Vx  = moment V before heel – moment of VAOB  

+ moment of VEOD 

  = 0 due to symmetry of  

   original V about y axis 

   i.e., ship center plane 
 

xV ( x)dV xdV
AOB EOD

= − − +     

 

dV = ydA = x tan  dA (tan  = y/x) 
 

2 2xV x tan dA x tan dA
AOB EOD

=  +    

(where 𝑦 = 𝑥𝑡𝑎𝑛𝛼 and −𝑥 AOB and +𝑥 EOD) 
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= dAxtanVx 2  

  ship waterplane area 

 

   moment of inertia of ship waterplane  

   about z axis O-O; i.e., IOO 

 

IOO = moment of inertia of waterplane  

     area about center plane axis 

 

(2) Trigonometry 

 

=


==

=

tanCM
V

Itan
xCC

ItanVx

OO

OO

 

 

  CM = IOO / V 

 

  GM = CM – CG 

 

  GM = CG
V

IOO −    

 

GM > 0  Stable 

 

GM < 0  Unstable 
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Note: recall that dFM
o

= , 

where d is the perpendicular 

distance from O to the line of 

action of F . 

 

      

=

=

sinGM

GZM G  

Roll: The “dynamic” rotation of a ship about the 

longitudinal axis through the center of gravity. 

 

Consider symmetrical ship heeled to a very small angle θ.  

Solve for the subsequent motion due only to hydrostatic 

and gravitational forces. 

 

 
 

( ) −= gijFb  ˆsinˆcos  

bg FrM =  

( ) ( )
( )

( )

kGM

kGMGC

kCCGC

ijiCCjGCM g

ˆsin

ˆsin

ˆcossin

ˆsinˆcosˆˆ

=

+−=

+−=

−+−=









   

Note: tan=CC’/CM=GZ/GM=
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
= 𝑡𝑎𝑛𝜃 

CC’cos=CMsin 

O 

F 

( g = Δ=displacement) 

 

 

d  CM 

𝑖̂ × 𝑗̂ = 𝑘̂ 

𝑗̂ × 𝑖̂ = −𝑘̂ 

𝑗̂ × 𝑘̂ = 𝑖̂ 
𝑖̂ × 𝑖̂ = 0 
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 −=
..
IM

G
   

 

 I = mass moment of inertia about long axis through G 
..
 = angular acceleration 
 

 

 

 

 

 

 

 

 

m
Ik =  definition of radius of gyration 

 

m
Ik =2   Imk =2   

2k

gGM

I

GM
=


 

 

The solution to this equation is,  

ttt
n

n

o

no





 sin

.

cos)( +=  

where  
o

 = the initial heel angle 

   

n
  = natural frequency 

  2

gGM

k
=   

k

gGM
=  

 

 

0 for no initial 

velocity 

..
sin 0

..
: 0

I GM

GM
for small

I

GM g GM mgGM

I I I

 

  



+  =


+ =

 
= =
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Simple (undamped) harmonic oscillation: 

 

 The period of the motion is 
n

T


2
=  

gGM

k
T

2
=  

 

Note that large GM decreases the period of roll, which 

would make for an uncomfortable boat ride (high 

frequency oscillation). 

 

Earlier we found that GM should be positive if a ship is to 

have transverse stability and, generally speaking, the 

stability is increased for larger positive GM.  However, the 

present example shows that one encounters a “design 

tradeoff” since large GM decreases the period of roll, 

which makes for an uncomfortable ride, i.e., seasickness! 
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Parametric Roll: 
 

The periodicity of the encounter wave causes variations of 

the metacentric height i.e. GM=GM (t). Therefore: 
..

( ) 0I GM t +  =  

 

0 1Assuming ( ) cos( ) :GM t GM GM t= +  

( )0 1

..
cos( ) 0I GM GM t  +  + =   

( )2 2
..

cos( ) 0n n eC t    + + =  

where 

0 21

0

; ; ; ; and encounter wave freq.n e

gGM GM
C mg I mk

k GM
 = =  = = =    

 

By change of variables ( et = ): 

( )
..

( ) 1 cos ( ) 0C     + + =   and  
2

2

n

e





=  

This ordinary 2nd order differential equation where the 

restoring moment varies sinusoidally, is known as the 

Mathieu equation. This equation gives unbounded 

solution (i.e., it is unstable) when   
22

2

2 1
0,1, 2,3,..

2

n

e

n
n






+ 
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 
 

For the principle parametric roll resonance, n=0, i.e., 
2 2

2 2 2e n n e
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T T

 
 = =   =  

Hosseini, H., Stern, F., Olivieri, A., Campana, E., Hashimoto, H., Umeda, N., Bulian, G. and 
Francescutto, A, “Head-Waves Parametric Rolling of Surface Combatant,” Ocean Engineering, 
Vol. 37, Issue 10, July 2010, pp. 859 – 878. 

e 

e 

wave encounter frequency 

𝑑𝜏 = 𝜔𝑒𝑑𝑡 
𝑑𝜃

𝑑𝑡
=

𝜕𝜃

𝜕𝜏

𝜕𝜏

𝜕𝑡
= 𝜔𝑒𝑑𝑡 

𝑑2𝜃

𝑑𝑡2
= 𝜔𝑒

2𝜃̈ 

(𝜔𝑒𝑡) 

(𝜔𝑒𝑡) 

Movie 

https://user.engineering.uiowa.edu/~me_160/2024/Lecture_notes/Chapter2/Head-Waves%20Parametric%20Rolling%20of%20Surface%20Combatant.pdf
https://user.engineering.uiowa.edu/~me_160/2024/Lecture_notes/Chapter2/Head-Waves%20Parametric%20Rolling%20of%20Surface%20Combatant.pdf
https://user.engineering.uiowa.edu/~me_160/2024/Lecture_notes/Chapter2/Head-Waves%20Parametric%20Rolling%20of%20Surface%20Combatant.pdf
https://www.youtube.com/watch?v=b9iTX0kpjqI
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Case (2) Rigid Body Translation or Rotation 

 

In rigid body motion, all particles are in combined 

translation and/or rotation and there is no relative motion 

between particles; consequently, there are no strains or 

strain rates, and the viscous term drops out of the Navier-

Stokes (NS) equations ( )02 = V . 
 

( )agp −=   
 

from which we see that p  acts in the direction of ( )ag − , 

and lines of constant pressure must be perpendicular to this 

direction (by definition, f  is perpendicular to f = 

constant). 

 

The NS equations are derived for an inertial reference 

frame and must be transformed for a non-inertial reference 

frame for the present purposes of rigid body motion, which 

is a simplification of the more general case of non-rigid 

body fluid motion. 
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1) Non-inertial reference frame 0’,1’,2’,3’ translates at 𝑋̇ =

𝑈  and rotates at 𝛺  with respect to distant starts, i.e., 

inertial/stationary reference frame 0,1,2,3. 
 

2) Velocity of particle P, i.e., 𝑢 can be resolved in either 

frame. 
 

3)  Time invariant between both reference frames. 

 
 

General case discussed after NS equations derived is 

required for rotating machinery, maneuvering vehicles, 

geophysical flows (atmospheric, oceanic), etc. 

 
KCS movie 

 

https://user.engineering.uiowa.edu/~me_160/2024/Lecture_notes/Chapter2/Movies.pptx
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O’ translates at 𝑈 and rotates at   = the angular velocity 

vector relative to O. 

 

 
 

 

 

 

=
𝑫𝒖′

𝑫𝒕
 

Other terms (i.e., terms 1 to 4) are added inertial forces, i.e., body force 

terms (force per unit volume) due to motion of non-inertial frame. 

1) 

2) 

3) 

4) 
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Usually, all these terms are not present simultaneously.  In 

fact, fluids can rarely move in rigid body motion unless 

restrained by confining walls.  Here we consider (1) rigid 

body acceleration and (2) rigid body rotation, as an 

introduction to pressure variation in a moving fluid. 

 

For rigid body motion 𝑢′ = 0, as all fluid particles in the 

non-inertial reference frame move at the same velocity, i.e.,  
 

𝑢 = 𝑈 + 𝛺 × 𝑥 ′ 

 

𝑑𝑢

𝑑𝑡
= 𝑎 =

𝑑𝑈

𝑑𝑡
+ 𝛺 × (𝛺 × 𝑥 ′) +

𝑑𝛺

𝑑𝑡
× 𝑥 ′ 

 

 

∇𝑝 = 𝜌(𝑔 − 𝑎) 

 

1) 𝑎 =  𝑈̇ = constant = Uniform Linear Acceleration 

 

2)  𝑎 = 𝛺 × (𝛺 × 𝑥′) with 𝛺 = constant = Rigid Body 

Rotation 
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(1)  Uniform Linear Acceleration  

 
 

( ) =−= agp   Constant 

 

 

     x

p
a

x



= −

           

     1. 0xa         p  increase in +x 

     2. 0xa        p  decrease in +x 

 

( )z

p
g a

z



= − +


     

1. 0za                      p  decrease in +z 

2. gaanda zz  0   p decrease in +z but slower than g 

3. 0 | |z za and a g     p  increase in +z 

( ) ^^

iakag
xz

++−= 

𝑠̂ 

𝑛̂ 
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unit vector in the direction of p : 

 

𝑠̂ =
∇𝑝

|∇𝑝|
=

(𝑔 + 𝑎𝑧)𝑘̂ + 𝑎𝑥𝑖̂

[(𝑔 + 𝑎𝑧)2 + 𝑎𝑥
2]

1
2

 

  

lines of constant pressure are perpendicular to p . 

 

𝑛̂ = 𝑠̂ × 𝑗̂ =
𝑎𝑥𝑘̂ − (𝑔 + 𝑎𝑧)𝑖̂

[𝑎𝑥
2 + (𝑔 + 𝑎𝑧)2]

1
2

 

                        

unit vector in direction of p=constant 

 

angle between 𝑛̂ and x axes: 

 

)(
tan 1

z

x

ag

a

+
= −  

 

The pressure variation in the direction of 𝛻𝑃 is greater 

than in ordinary hydrostatics; that is: 

 
1

2 2 2( )x z

dp
p s a g a

ds
G

  =   = + +    which is > ρg 

 

pressuregageGs

Gsp





=

+= constant
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(2) Rigid Body Rotation  
 

Consider a cylindrical tank of liquid rotating at a constant 

rate Ω = Ω k : 

 

 

( )agp −=   

𝑎 = 𝛺 × (𝛺 × 𝑟0) = −𝑟𝛺2 𝑒
^

𝑟 

( ) rerkgagp ˆˆ 2+−=−=   

i.e.   
2p

r
r




= 


  
p

g
z




= −


 

integrate with respect to r: czfrp ++= )(
2

22
  

integrate with respect to z: ( )p f r gz C= + − +    

Cgzzf +−= )(  

 

 

The constant is determined by specifying the pressure at 

one point; say, p = p0 at (r,z) = (0,0). 

22

0
2

+−= rgzpp


  

(Note: Pressure is linear in z and parabolic in r) 

Constant
2

22 +−= gzrp 

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Curves of constant pressure p=p1 are given by: 

 
2 2

20 1

2

p p r
z a br

g g

− 
= + = +  

which are paraboloids of revolution, concave upward, 

with their minimum points on the axis of rotation. 

 
𝑑𝑧

𝑑𝑟
= 2𝑏𝑟|𝑝=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑑𝑧

𝑑𝑟
|

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑙𝑖𝑛𝑒
= −

1

𝑑𝑧
𝑑𝑟

|
𝑝=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

= −
𝑔

𝑟𝛺2
 

 

The unit vector in the direction of p  is: 

  2/1222

2

)()(

ˆˆ
ˆ

+

+−
=

rg

erkg
s r




 

2tan
dz g

slope of s
rdr

 = = −


 

r
g

z

r

dr
dz

g
ln

22

=


−→=


−  

i.e., 






 
−=

g

z
Cr

2

1
exp  equation of p  surfaces 

 

 

 

 

 

θ 

s  

r 

z 𝑠̂ =
∇𝑝

|∇𝑝|
 

𝜌𝑟𝛺2 

−𝜌𝑔 
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Note: 𝑧(𝑟) and 𝑟(𝑧) not 𝑓(𝜌). 
 

Depending on 𝜌 a small particle or bubble could rise or 

fall along these lines, as shown by buoyant streamers. 
 

The position of the free surface is found, as it is for linear 

acceleration, by conserving the volume of fluid.   
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Case (3) Pressure Distribution in Irrotational Flow; 

Bernoulli Equation 

Navier-Stokes for constant property incompressible flow: 

 

2 2ˆ( ) ( )

( ) ( ) ( )

a p gk V p z V

V
V V p z V V

t

    

  

= − − +  = − + + 

 
+  = − + +    −      

 

Viscous term=0 for =constant and =0, i.e., potential flow 

solutions also solutions NS under such conditions!  But cannot 

satisfy no slip condition and suffers from D'Alembert's paradox 

that drag = 0. 

 
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached 

in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for 

incompressible and inviscid potential flow – the drag force is zero on a body moving with constant 

velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial 

drag on bodies moving relative to fluids, such as air and water, especially at high velocities 

corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox. 

 

1. Assuming inviscid flow: =0 and using vector identity 

 𝑉 ⋅ ∇𝑉 =
1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉) 

 

𝜌 [
𝜕𝑉

𝜕𝑡
+ (

1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉))]=−∇(p + γz)  Euler Equation 

 

VVVVgz
pV

t

V
==








+++



 2

2

2


    (𝜔 ≠ 0) 

 

 

http://en.wikipedia.org/wiki/D'Alembert's_paradox
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2. Additionally, assuming steady flow: 0=




t
 

gz
pV

B

VB

++=

=




2

2
 

Consider:  

 

B perpendicular B= constant 

 

V B =     perpendicular V and   
 

Therefore, B=constant contains streamlines and vortex 

lines: 
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3. Additionally assuming irrotational flow: =0 
 

0=B  B= constant (everywhere same constant) 

 
2

2

V p
gz B


+ + =

 

 
4. Unsteady, inviscid, incompressible, and irrotational flow: 

=0, =constant, =0, i.e., potential flow 

 

)(
2

0
2

2

tBgz
p

t

gz
p

t

V

V

=++


+




=







++


+






=

=













 

B(t)= time dependent constant 
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In a space increment 𝑑𝑠, the tangent unit vector 𝑒̂𝑠  is transformed into 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑠
𝑑𝑠 and its direction changes by 𝑑𝜃. The vector connecting the 

two can be obtained using the triangle rule, and its magnitude is equal to 

𝑑𝜃, pointing in the −𝑒̂𝑛 direction. Alternatively, this can be written as: 

−
𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠. 

Therefore: 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑠
𝑑𝑠 = 𝑒̂𝑠 −

𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠 

i.e., 
𝜕𝑒̂𝑠

𝜕𝑠
= −

𝜕𝜃

𝜕𝑠
𝑒̂𝑛 = −

1

𝑅
𝑒̂𝑛 

Where 
𝜕𝜃

𝜕𝑠
 represents the curvature 𝑘 of the trajectory, or equivalently 

1/𝑅. 

𝑑𝜃 

𝑒̂𝑠 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑠
𝑑𝑠 

−
𝜕𝜃

𝜕𝑠
𝑒̂𝑛𝑑𝑠 

𝑅 = local radius 

of curvature 

along streamline 

To 1st order 𝑒̂𝑠 changes by 
𝜕𝑒̂𝑠

𝜕𝑠
 along 𝜓 for increments 

𝑑𝑠 = 𝑅𝑑𝜃 

𝜕𝜃

𝜕𝑠
=

1

𝑅
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Similarly, in a time increment 𝑑𝑡, the tangent unit vector 𝑒̂𝑠  is 

transformed into 𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑡
𝑑𝑡 and its direction changes by 𝑑𝜃. The 

vector connecting the two can be obtained using the triangle rule, 

and its magnitude is equal to 𝑑𝜃, pointing in the −𝑒̂𝑛 direction. 

Alternatively, this can be written as: −
𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡. 

Therefore: 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑡
𝑑𝑡 = 𝑒̂𝑠 −

𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡 

i.e., 
𝜕𝑒̂𝑠

𝜕𝑡
= −

𝜕𝜃

𝜕𝑡
𝑒̂𝑛 

Consequently, the acceleration vector can be expressed as: 

 

𝑒̂𝑠 +
𝜕𝑒̂𝑠

𝜕𝑡
𝑑𝑡 

𝑒̂𝑠 

−
𝜕𝜃

𝜕𝑡
𝑒̂𝑛𝑑𝑡 

𝑑𝜃 
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Larger speed/density or smaller R require larger pressure 

gradient or elevation gradient normal to streamline. 

 

Highlights that the Bernoulli equation can also be obtained 

by integration of the Euler equation along a streamline. 
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Flow Patterns: Streamlines, Streaklines, Pathlines 
 

1) A streamline is a line everywhere tangent to the 

velocity vector at a given instant. 

 

2) A pathline is the actual path traveled by a given fluid 

particle. 

 

3) A streakline is the locus of particles which have earlier 

passed through a particular point. 

 

 
 

Note: 

 

1. For steady flow, all 3 coincide. 

 

2. For unsteady flow, ψ(t) pattern changes with time, 

whereas pathlines and streaklines are generated as 

the passage of time. 
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Streamline 

 

By definition along a streamline 0= drV  which upon 

expansion yields the equation of the streamlines for a given 

time 1
tt =  

ds
w

dz

v

dy

u

dx
===          s= integration parameter 

 

So if (u,v,w) known, integrate with respect to s for t=t1 with 

IC (x0,y0,z0,t1) at s=0 and then eliminate s.  

 

𝑉 × 𝑟 = (𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂) × (𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂ + 𝑑𝑧𝑘̂) = 

𝑢𝑑𝑦𝑘̂ − 𝑢𝑑𝑧𝑗̂ − 𝑣𝑑𝑥𝑘̂ + 𝑣𝑑𝑧𝑖̂ + 𝑤𝑑𝑥𝑗̂ − 𝑤𝑑𝑦𝑖̂ = 0 

(𝑣𝑑𝑧 − 𝑤𝑑𝑦)𝑖̂ + (𝑤𝑑𝑥 − 𝑢𝑑𝑧)𝑗̂ + (𝑢𝑑𝑦 − 𝑣𝑑𝑥)𝑘̂ = 0 

 
𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
 

𝑑𝑥

𝑢
=

𝑑𝑧

𝑤
 

𝑑𝑧

𝑢
=

𝑑𝑦

𝑣
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Pathline 

 

The pathline is defined by integration of the relationship 

between velocity and displacement. 

w
dt

dz
v

dt

dy
u

dt

dx
===          

Integrate u,v,w with respect to t using IC (
0

,
0

,
0

,
0

tzyx ) then 

eliminate t. 

 

Streakline 

 

To find the streakline, use the integrated result for the 

pathline retaining time as a parameter. Now, find the 

integration constant which causes the pathline to pass 

through ( 000 ,, zyx ) for a sequence of times t . Then 

eliminate  . 
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The Stream Function 
 

Powerful tool for 2-D flow in which V is obtained by 

differentiation of a scalar   which automatically satisfies 

the continuity equation. 
 

Note for 2D flow  

∇ × 𝑉 = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) × (𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂) = |

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢 𝑣 𝑤

|

= (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑖̂ − (

𝜕𝑤

𝜕𝑥
−

𝜕𝑢

𝜕𝑧
) 𝑗̂ + (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 𝑘̂

= (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) = (0, 0, 𝜔𝑧) 

 

  
NS equation for unsteady constant property flow: 

𝜌
𝜕𝑉

𝜕𝑡
+ 𝜌(𝑉 ∙ ∇)𝑉 = −∇(𝑝 + 𝛾𝑧) + 𝜇∇2𝑉 

 

Taking the curl gives: 

𝜌 (∇ ×
𝜕𝑉

𝜕𝑡
) + 𝜌∇ × (𝑉 ∙ ∇)𝑉 = 𝜇∇2(∇ × 𝑉)      (1) 

 

For the unsteady term: 

𝜌 (∇ ×
𝜕𝑉

𝜕𝑡
) = 𝜌

𝜕

𝜕𝑡
(∇ × 𝑉) = 𝜌

𝜕𝜔

𝜕𝑡
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Recall vector identity: 

𝑉 × (∇ × 𝑉) =
1

2
∇(𝑉2) − (𝑉 ∙ ∇)𝑉 

 

Such that: 

(𝑉 ∙ ∇)𝑉 =
1

2
∇(𝑉2) − 𝑉 × (∇ × 𝑉)     (2) 

 

Taking the curl of (2), recalling that the curl of the gradient of a 

scalar equals zero and using ∇ × 𝑉 = 𝜔, gives: 
 

∇ × {(𝑉 ∙ ∇)𝑉} = −∇ × (𝑉 × 𝜔) = ∇ × (𝜔 × 𝑉)     (3) 

 

And using Eq. (3) into Eq. (1) gives: 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌∇ × (𝜔 × 𝑉) = 𝜇∇2𝜔      (4) 

 

Recall vector identity: 

∇ × (𝑎 × 𝑏) = 𝑎(∇ ∙ 𝑏) + (𝑏 ∙ ∇)𝑎 − 𝑏(∇ ∙ 𝑎) − (𝑎 ∙ ∇)𝑏 

 

Such that: 

∇ × (𝜔 × 𝑉) = 𝜔(∇ ∙ 𝑉) + (𝑉 ∙ ∇)𝜔 − 𝑉(∇ ∙ 𝜔) − (𝜔 ∙ ∇)𝑉 

 

And Eq. (4) becomes (vorticity transport equation): 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)𝜔 − (𝜔 ∙ ∇)𝑉] = 𝜇∇2𝜔     (4) 

 

The second term in brackets in Eq. (4) represents vortex 

stretching and it is exactly zero for 2D flow, since the velocity 

and vorticity vector are orthogonal, i.e., 𝜔 ∙ ∇= 𝜔𝑧
𝜕

𝜕𝑧
=0. 

(𝑎 × 𝑏) = −(𝑏 × 𝑎) 
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The resulting equation is (2D vorticity transport equation): 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)𝜔] = 𝜇∇2𝜔     (5) 

 

Recall: 
𝑢 =  𝜓𝑦    𝑣 = 𝜓𝑥 

 

𝜔 = ∇ × 𝑉 = 𝑘̂𝜔𝑧 = −𝑘̂∇2𝜓 

 

Such that Eq. (5) becomes: 

𝜌
𝜕(−𝑘̂∇2𝜓)

𝜕𝑡
+ 𝜌[(𝑉 ∙ ∇)(−𝑘̂∇2𝜓)] = 𝜇∇2(−𝑘̂∇2𝜓) 

 

And writing (𝑉 ∙ ∇) by components gives: 

𝜌
𝜕(−𝑘̂∇2𝜓)

𝜕𝑡
+ 𝜌 [(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) (−𝑘̂∇2𝜓)] = 𝜇∇2(−𝑘̂∇2𝜓)     (6) 

 

Substituting the definition of stream function in Eq. (6) for u and 

v gives: 

𝜕∇2𝜓

𝜕𝑡
+ [

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
(∇2𝜓) −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(∇2𝜓)] = 𝜈∇4𝜓 

 

This represents a single scalar equation, but 4th order! 

 

boundary conditions (4 required):  

 

xy
vu

x
vU

y
u





−====

=−=


==

0       :bodyon 

0           :infinityat 
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Irrotational Flow  

 

.      :on  

.      :on  

equation Laplacelinear order  2nd      02

const
B

S

constyUS

=

+


=


=







 

 

yx
v

xy
u





=−=

==

 

 

Ψ and φ are orthogonal. 
 

udyvdxdy
y

dx
x

d

vdyudxdy
y

dx
x

d

+−=+=

+=+=





 

i.e. 

constdx

dyv

u

constdx

dy

=

−
=−=

=





1
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Geometric Interpretation of   

 

Besides its importance mathematically   also has 

important geometric significance. 

 

 = constant = streamline 

Recall definition of a streamline: 

 

streamline a along     0   i.e.

 with    compare

0

ˆˆ           0V

=

+−=+=

=−

=

+==





d

udyvdxdy
y

dx
x

d

vdxudy

v

dy

u

dx

jdyidxdrdr

 

 

Or  =constant along a streamline and curves of constant   

are the flow streamlines. If we know  (x, y) then we can 

plot  = constant curves to show streamlines. 
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𝑢 =
𝜕𝜓

𝜕𝑦
,  𝑣 = −

𝜕𝜓

𝜕𝑥
 

Physical Interpretation 
.

ˆ ˆ ˆ ˆ      ( ).( ) 1

      

      

y x

dQ V ndA

dy dx
i j i j ds

y x ds ds

dy dx

d

 

 



=

 
= − −  

 

= +

=

 

 

i.e., change in d  is volume flux and across streamline 0=dQ . 

12

2

1

2

1

21
.  −=== →

ddAnVQ  

Consider flow between two streamlines: 

 

 

( 𝑑𝐴 = 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎  𝑑𝑠 × 1  with 2D unit tangent 

and normal vectors) 

𝑑𝑄 = 𝑉 ∙ 𝑛𝑑𝐴 
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𝑑𝑄 = 𝑑𝜓 = 𝑉 ∙ 𝑛𝑑𝐴 = 𝑉𝑛𝑑𝐴 

𝑉𝑛 =
𝑑𝜓

𝑑𝐴
∝

1

𝑑𝐴
 

i.e., proportional to streamline spacing. 
 

 

Incompressible Plane Flow in Polar Coordinates 

 

( ) ( )

( ) ( ) 0  :or

0
1

r

1
 :continuity

=



+





=



+













vrv
r

v
r

rv
r

r

r

 

1
say:                

1
then      ( ) ( ) 0

as before     0  along a streamline  and  

volume flux  change in stream function

rv v
r r

r
r r r

d dQ d



 



 

 

 

 
= = −

 

   
+ − =

   

= =

=

 

 

𝑉 
𝑛 

𝜓𝑦 > 0 → 𝑢 > 0 

 
𝜓𝑦 < 0 → 𝑢 < 0 
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Incompressible axisymmetric flow 

 

 
 

( ) ( )







ddQd

rrzzr
r

rr

rrz
v

zrr
v

z
v

zr
rv

r

==

=















+











−








=




−=

=



+





 and streamline a along  0  before as

0
111

   :then

1
        

1
  :say

0
r

1
 :continuity

 

no 𝜃 variation 
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Generalization 
 

Steady plane compressible flow: 
 

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) = 0 

 

define:    𝜌𝑢 =
𝜕𝜓

𝜕𝑦
      𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
 

 

𝜓 = compressible flow stream function 

 
𝑢𝑑𝑦 − 𝑣𝑑𝑥 = 0  definition streamline 

 
1

𝜌
𝜓𝑦𝑑𝑦 +

1

𝜌
𝜓𝑥𝑑𝑥 = 0 

 

𝑑𝜓 = 𝜓𝑥𝑑𝑥 + 𝜓𝑦𝑑𝑦 ⇒
1

𝜌
(𝑑𝜓) = 0   i.e. 

 

𝑑𝜓 = 0   and 𝜓 = constant is a streamline 

 

The change in 𝜓 is now equal to the mass flow rate: 

 

12

2

1

21
).(

).(





−==

==

→
dAnVm

ddAnVmd





 


