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Chapter 2: Pressure Distribution in a Fluid

Pressure and pressure gradient 1 Af
In fluid statics, as well as in fluid ;
dynamics, the forces acting on a | f’h

portion of fluid (CV) bounded bya . e~ _.__,./’

R
-.,__________ —_—

CS are of two kinds: body forces
and surface forces.

Body Forces: act on the entire body of the fluid (force
per unit volume).

Surface Forces: act at the CS and are due to the
surrounding medium (force/unit area-
stress).

In general, the surface forces can be resolved into two
components: one normal and one tangential to the surface.
Considering a cubical fluid element, we see that the stress
in a moving fluid comprises a 2" order tensor.
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Since by definition, a fluid cannot withstand a shear stress
without moving (deformation), a stationary fluid must
necessarily be completely free of shear stress (ci=0, i #
J). The only non-zero stress is the normal stress, which is
referred to as pressure:

Cii—-P
on = -p, Which is compressive, as it should be since
fluid cannot withstand tension. (Sign convention

2 >, n based on the fact that p>0 and in the direction of —n)

Or Px=Py=Pz=Pn=p _(0ne value at a point,
independent of
direction; p is a scalar)

I.e. normal stress (pressure) is isotropic.
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This can be easily seen by considering the equilibrium of
a wedge-shaped fluid element V= 107° mm?®

F :—p dAsina+ p dAsina =0
X n X
pn N pX
— pxdAsina
dA=dldy

> FZ D — pndAc03a+ pZdACOSa—W =0

T W=pgV=yV

Where: pzdAcoso

1
W =W V=AyEAxAz

AX=dlcosa Az=dlsina Aydli=dA= Ay =dA/dl

dA 1 _ 1 _
W = yﬁfdl dlsina cosa = Ey dAdl sin a cosa

1
= —pndACOSa + pszCOSa - ¥ dAdlsina cosa =0

—-p +p —Zdlsinazo
n 'z 2

p =p fordl->0ie.p =p =p =p
n Z
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Note: For a fluid in motion, the normal stress is different
on each face and not equal to p

Oxx 7 Oyy # Ozz £ -P

For an incompressible fluid, by convention p is defined as
the average of the normal stresses:

1 1

p=p= _g(o-xx-l'o-yy‘l'o-zz) = _§O-ii

The fluid element experiences a force on it because of the
fluid pressure distribution if it varies spatially.

Consider the net force in the x direction due to p(x,t).

dy
pdydz i "—| p+ Z—p dx}dydz
X
ap dz
de = pdydz —| p+ a— dedydz dx 15t order
net X Taylor
series
=— » dxdydz
ox

The result will be similar for dFy and dF;; consequently,
we conclude:

*_press |:_a_pf_a_p —@k\:|AV
oXx oy oz
Or: f=-Vp force per unit volume due to p(x,t).

Note: if p=constant, f =0.
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Equilibrium of a fluid element

Consider now a fluid element which is acted upon by both
surface forces and a body force due to gravity:

ngrav =pgdv OF f =g (perunitvolume)

Application of Newton’s law yields: ma=3 F
pdva=(X f )dv

pa= Zi = ibody + isu rface perunit dv

+ f

fSu rface - i pressure —viscous

(Includes iviscou5’ since in general o, =—ps; +7;)
B Viscous part
f pressure — -Vp
2 2 2
oV o0V 07V 2
f . =U —F5+—F+—=|=uVV
—Vviscous [8x2 8y2 822 ]

For p, u=constant, the viscous force will have this form (Chapter 4).

2 . av
pa=-Vp+pg+u V'V with a=—=+V-VV
inertial  pressure gravity viscous ot

gradient

Note that V - V'V is nonlinear, i.e., product of unknowns!



ME:5160 Chapter 2
Professor Fred Stern  Fall 2024 6

This 1s called the Navier-Stokes equation and will be
discussed further in Chapter 4. Consider solving the N-S
equation for p when a and V are known.

vp = plg-a)+ V2V = B(x,1)

This is simply a first order PDE for p and can be solved
readily. For the general case (V and p unknown), one must
solve the NS and continuity equations, which is a
formidable task since the NS equations are a system of 2"
order nonlinear PDEs.

We now consider the following special cases:

1) Hydrostatics (a=V =0)
2) Rigid body translation or rotation (v =0)*

3) Irrotational motion (vxv =0)

Vx(Vxb)=V(V b)-V?h

vector identity For vector b=V

if p =constant

——

VxV =0 = VZ\L =0 = Eulerequation = | = Bernoulli equation

also,
VxV =0 =V =Vg &if p=const. =>V?p=0

! No viscous stresses since fluid element does not deform in shape or size/volume.
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Case (1) Hydrostatic Pressure Distribution

Vp = pg = —pgk zt g
. Op_op _ P __ _
l.e. &—5—0 and Pl dp =—pgdz
2 2
or p,-p, =-]pydz=—-g]p(z)dz
1 1

IR

2
Spherical planet uniform density g = go (:—0)

constant near earth's surface r

liquids -> p = constant (for one liquid)
P = -pgz + constant

(z =0, p = constant = pam; p increases z < 0 and decreases
z>0)

gases 2> p = p(p,t) which is known from the equation
of state: p = pRT = p=p/RT

dp _ g dz  which can be integrated if T =T(2) is

P RT(z) known as it is for the atmosphere.
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Manometry

Manometers are devices that use liquid columns for
measuring differences in pressure. A general procedure
may be followed in working all manometer problems:

1.) Start at one end (or a meniscus If the circuit is
continuous) and write the pressure there in an appropriate
unit or symbol if it is unknown.

2.) Add to this the change In pressure (in the same unit)
from one meniscus to the next (plus if the next meniscus
Is lower, minus if higher).

3.) Continue until the other end of the gage (or starting
meniscus) Is reached and equate the expression to the
pressure at that point, known or unknown.

Pa
EX..-\_..QF&_ 1.3 2{)){)1:?“

P=constant

Pascal’s Law: for static fluid at same depth p = constant,
L.e., py = py, = 0.
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Hydrostatic forces on plane surfaces

The force on a body due to a pressure distribution is:
E=~[pndA
A

where for a plane surface n = constant and we need only
consider |F| noting that its direction is always towards the

surface: |E|=I pdA.
A

Consider a plane surface AB entirely submerged in a
liquid such that the plane of the surface intersects the free
surface with an angle a. The centroid of the surface is

denOted“ ( X, y) Upper and lower orange triangles, same area.
o
AF= P AR &e‘/
= R‘\-SA,;\ A AR

p=vy
‘ y' = ysina
© gauge i.e. relative Py

F = ysinayA=pA

Where P is the pressure at the centroid.
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To find the line of action of the force which we call the
center of pressure (Xcp, Yep) We equate the moment of the
resultant force to that of the distributed force about any
arbitrary axis.

Yoo F :jde
A

= ysin aI y2dA Note: dF = 7ysin adA

ijdAz l.,—> momentof Inertiaabout X-x
A
_ VAT
I = moment of inertia WRT horizontal centroidal axis
-  F=pA=ysinayA
_ L,
sina yA = ysin ( A+I)
> YprsinayA=ysinaly Note coordinate system

y = 0 at O and I = horizontal

- Y, = S/ + SI_A centroid axis

and similarly, for Xcp

X, F =] xdF where I, = product of inertia

Txy Ixyzlxy+xyA

X ==2+4X
cp yA

Note that the coordinate system in the text has its origin at the centroid
and is related to the one just used by:

X =X—X and y = —(y - S/)
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Hydrostatic Forces on Curved Surfaces

: \7?

F\,\ hé?“
In general, Horizontal Components:
F - {pndA F_Fu_—jpnudA
A dA(
F, :_I p dA,
A

dAx = projection of n dA onto a plane perpendicular to x direction
dAy = projection of n dA onto a plane perpendicular to y direction

The horizontal component of force acting on a curved surface
Is equal to the force acting on a vertical projection of that
surface including both magnitude and line of action and can
be determined by the methods developed for plane surfaces.

F.=-[pnkdd=-[pdd, =y[hda, = ,y
A Az

Where h Is the depth to any elemental arez g4 _of the surface.
The vertical component of force acting on a curved surface is
equal to the net weight of the total column of fluid directly
above the curved surface and has a line of action through the
centroid of the fluid volume.
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Example Drum Gate
h 2 P il /bﬂ\x‘?\‘\ gx
Wakes

h=R-Rcos6=R(1-cos0)
p=yh=yR(1-cosd)

h

n=—sinfi+cosBk

dA=IRd&

(— sin @ + cos Hi)ﬁdﬁ

E:—J'yR(l—cos@
OL \pf J/
F-T=

0

( coS 9\ +=

oy

Il
m{% 3

2RI

n dA

F.=#R jl cos@)sin &d @

cos 20|, ) =24R®

Same force as that on projection of gate
onto vertical plane perpendicular x
direction
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E, = —yIR? fon(l — cos@)cos0do

— —ip2(cing 8 _ 1 T
= —yIR (sm@ . 4stG)O

2
— _lezg — )/l (%) = yVv > | Net weight of water above curved surface

Another approach:

1
F, =yl lRZ - ZnRZ]

= lell !
TR?
F2=VIT+F1
yITR?
F=F2_F1= 2

-
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Buoyancy and Stability

;I Kl

Archimedes Principle

=N Ve

= fluid weight above 2asc — &
fluid weight above 1apc

= weight of fluid equivalent
to the body volume
In general, Fg = pgv (v=submerged volume).

The line of action is through the centroid of the displaced
volume, which is called the center of buoyancy.
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Example: Floating body in “dynamic” heave motion

K

Weight of the block W = p,, é,l?, hg = mg = yVv, where Vo is displaced
Awp

water volume by the block for initial static equilibrium position and 7 is
the specific weight of the liquid.

W =B = p,Lbhg = p,Lbdg = d =£2h=S.h

w B w
S, = specific gravity of the block
P, =P, d=h

0, > P, -d>h sink

o, < p, .d<h floating
Instantaneous displaced water volume:

V:vo_yA\Np
> R =my=B-W=pv-p,
==7ApY
y>0:viBl|

y<0:vVIB1
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my+yA,Y =0
7 Ay

m

y+ y=0

y =Acoso.t+Bsinwt

Use initial condition (t=0, y=y, ,y =y,) to determine A
and B:

y:%cmam+g%dm%t

Y /W\Np
" m
i T:2_7r:27[ o
period o VA Spar Buoy
p

T is tuned to decrease response to ambient waves: we can
Increase T by increasing block mass m and/or decreasing

waterline area Ay .

Where
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Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability. In actual applications
both transverse and longitudinal stability are important.

Immersed Bodies

Center of
buoyancy

FIGURE 3.15
Conditions of stability
for immersed bodies. Weight

{a) Stable. (b} Neutral. ()
{c) Unstable. {a (b} ¢

Stable Neutral Unstable

Static equilibrium requires: > F, =0 and >M =0

>.M = 0 requires that the centers of gravity and buoyancy
coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment when
heeled)

If G is above C, then the body is unstable (heeling moment
when heeled)
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Floating Bodies

For a floating body the situation is more complicated since the
center of buoyancy will generally shift when the body is rotated
depending upon the shape of the body and the position in which
it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume) shifts
laterally to the right for the case shown because part of the
original buoyant volume AOB is transferred to a new buoyant
volume EOD.

The point of intersection of the lines of action of the buoyant force
before and after heel is called the metacenter M and the distance
GM is called the metacentric height. If GM is positive, that is, if
M is above G, then the ship is stable; however, if GM is negative,
the ship is unstable.
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A
F 5
a = small heel angle a :
% r, ) T:% \

x =CC' = lateral displacement e > O
of C # s
C = center of buoyancy e e SR ek plomtc
I.e., centroid of displaced
volume M “

Solve for GM: find x using:
(1) basic definition for centroid of ¥; and

(2) trigonometry Y PR

(1) Basic definition of centroid of volume M

XV = [xdV = Y X;AV.  moment about center plane

XV = moment ¥ before heel — moment of Maos
~ —~— — + moment of Meop
= 0 due to symmetry of
original ¥ about y axis
I.e., ship center plane

XM=— [ (=X)dV+ [ XdV
AOB EOD

dV = ydA = x tan o dA (where y = xtana and —x AOB and +x EOD)

XN = | x2 tan adA+ | x2 tan a.dA
AOB EOD



ME:5160 Chapter 2
Professor Fred Stern  Fall 2024 20

XV = tan o x“dA
ship waterplane area

— _J
~

moment of inertia of ship waterplane
about z axis O-0O; i.e., loo

loo = moment of inertia of waterplane
area about center plane axis

(2) Trigonometry

R '/dA 3
CC'=x=——"">=CMtana - 2
il IT' N&\&M

CM = |oo/V my

GM =CM - CG |

GM = 'O—O—CG

V

GM>0 Stable

GM<O0 Unstable
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Roll: The “dynamic” rotation of a ship about the
longitudinal axis through the center of gravity.

Consider symmetrical ship heeled to a very small angle 6.
Solve for the subsequent motion due only to hydrostatic

and gravitational forces.

L S ,‘/‘9:
,:’_E,J;:tlfg e ;[\Q €2
< ‘P\i/ / TS x
[ / ixj=k
= jxk=1
/ IXi=0
E, = (COS@ —sin & ),OQV (,ev= A=displacement)
Mg — £ X Eb —
M, = (-GCj+CCT)x Alcosd —sinef) | Note: recall that M, = F|-d,
: , . where d is the perpendicular
=(-GCsing+CC Cof 0)Ak distance from O to the line of
=(~GC +CM )sin oAk action of F . g
— GM sin 6Ak O‘LIZ“
Note: tand=CC’/CM=GZ/GM=2 — ¢tgng | Me =624 z
cos@ =GMsing A
CC’cosO=CMsin6
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M, =-16

| = mass moment of inertia about long axis through G
6= angular acceleration

| 6+ AGM sin@ =0

AGM

for small : 6+ 0=0

AGM  pgvVGM  mgGM
I I I

k= %n definition of radius of gyration

AGM  gGM
2 _ | m 2 _
K _%n K =1 | - k?

The solution to this equation is,

0 for no initial
velocity

O(t) =6 cosmt + Z Sido t
0

where 6 = the initial heel angle

@ = natural frequency

_ /96|V| JgGM
k? - K
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Simple (undamped) harmonic oscillation:

i .. 27 27K
The period of the motion is T="S T=
P 0} JgGM

Note that large GM decreases the period of roll, which
would make for an uncomfortable boat ride (high
frequency oscillation).

Earlier we found that GM should be positive if a ship is to
have transverse stability and, generally speaking, the
stability is increased for larger positive GM. However, the
present example shows that one encounters a ‘“design
tradeoff” since large GM decreases the period of roll,
which makes for an uncomfortable ride, i.e., seasickness!
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Parametric Roll:

The periodicity of the encounter wave causes variations of
the metacentric height i.e. GM=GM (t). Therefore:

| 6+ AGM (1)0 =0

Assuming GM (t) = GM,, + GM, cos(w,t):
| 0+ A(GM, +GM, cos(w,t) 0 =0 =

O+ (co,f +Ca’ Cos(a)et)) 6=0

where
@, :ﬂ; :%; A=mg; | =mk?; and @, = wave encounter frequency
k GM,
dt = w.dt
: do 960
By change of variables (r =t ): E=Za_ra_z=“’edt
. 2 d-o ..
6(r)+5(1+Ccosz)d(r) =0 and 5:% —p = Wil

e

This ordinary 2nd order differential equation where the

restoring moment varies sinusoidally, is known as the

Mathieu equation. This equation gives unbounded

solution (i.e., it is unstable) when

5:a)_£:(2n +1
a)e

For the principle parametric roll resonance, n=0, i.e.,

, =20, 2—7Z=2><2—7Z:>Tn = 2T,
T T

e n

2
j n=0,123,..

Hosseini, H., Stern, F., Olivieri, A., Campana, E., Hashimoto, H., Umeda, N., Bulian, G. and
Francescutto, A, “Head-Waves Parametric Rolling of Surface Combatant,” Ocean Engineering,
Vol. 37, Issue 10, July 2010, pp. 859 — 878.

Movie
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Case (2) Rigid Body Translation or Rotation

In rigid body motion, all particles are in combined
translation and/or rotation and there is no relative motion
between particles; consequently, there are no strains or
strain rates, and the viscous term drops out of the Navier-
Stokes (NS) equations (.vzv =o).

Vp=plg-a)

from which we see that Vp acts in the direction of (g -a),

and lines of constant pressure must be perpendicular to this
direction (by definition, Vf Is perpendicular to f =
constant).

The NS equations are derived for an inertial reference
frame and must be transformed for a non-inertial reference
frame for the present purposes of rigid body motion, which
Is a simplification of the more general case of non-rigid
body fluid motion.
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FIGURE 4.6 Geometry showing the relationship Q1)
between a stationary coordinate system 0123 and a
noninertial coordinate system 0123 that is moving,
accelerating, and rotating with respect to 0123, In
particular, the vector connecting O and O is X{f) and
the rotational velodity of 012’3 is £{t). The vector
velocity u at point P in 0123 is shown. The vector
velocity u' at point P in 0'1'2'Y differs from u because
of the motion of 0123,

u=U+u'+0Qxx’

1) Non-inertial reference frame 0°,1°,2°,3” translates at X =

U and rotates at 2 with respect to distant starts, i.e.,
inertial/stationary reference frame 0,1,2,3.

2) Velocity of particle P, i.e., u can be resolved in either
frame.

3) Time invariant between both reference frames.

General case discussed after NS equations derived is
required for rotating machinery, maneuvering vehicles,
geophysical flows (atmospheric, oceanic), etc.

Z
el

KCS movie
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(’ e, ,."._/,vu" 2 \_,} A / { e
; X o
dx dX adx &y g
W e U + 55['\)161 + x5€, + x5e})
dx d, dx’, de! del de!, ;
= —lol t 2! 4 Bl 4 XL+, 22 = Fu' + Q2 x X
Ut matgatgethg tegthygy = UhrHR
- }
——— =
w S\
{M*- Cine \* NP \hh : !_‘_’ 2 - = € 5
.',) I 1.5 ) -~
2 £

O’ translates at U and rotates at O = the angular velocity
vector relative to O.

Neeeha sk
3 10 aQ /
.=t —d~(U+ O+ QxX) = —+a +2@x v+ xX +Qx (Q xX).
it dt dt di -
- 'S
1) 5B ey a ki L s 2) DV )
- !
/ \ Du
z ) ‘ G e PR e
:,/__/_( = et el o /s 3 AP D P DYD O At ad ¢ - ~8 Dt
2) 2 JL Iy = ’_i@ TS 1 = -
3) 2= xy/ = pece : 0
1°) _—=m XX
4) N (& % \(/\ = LI A o\ ) - -
— .

Other terms (i.e., terms 1 to 4) are added inertial forces, i.e., body force
terms (force per unit volume) due to motion of non-inertial frame.
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Usually, all these terms are not present simultaneously. In
fact, fluids can rarely move in rigid body motion unless
restrained by confining walls. Here we consider (1) rigid
body acceleration and (2) rigid body rotation, as an
Introduction to pressure variation in a moving fluid.

For rigid body motion u’ = 0, as all fluid particles in the
non-inertial reference frame move at the same velocity, i.e.,

u=U+0Xxx
au _ —dg+[2><(!2>< ')+dQ>< '
dt = dr =TT T TR
Vp =p(g —a)

1)a = U = constant = Uniform Linear Acceleration

2) a=0x(2xx’)with 2 = constant = Rigid Body
Rotation
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(1) Uniform Linear Acceleration

Fluid
at rest

Vp = plg —a)= Constant

:—pl(g +a)k+a, ||
op
—~ ——pa
o La,
1. 8,<0 P increase in +x

2.a,>0  p decrease in +x

op
~ p(g+a,)
1.4,>0 P decrease in +z

2.a,<0and |a,|<g pdecrease in +z but slower than g

3.a<0 and |a,|[>g P increase in +z
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unit vector in the direction of Vvp:

Vp (g + a)k + a,i
o=
L 1 + a2 + a2]

S =

N[ =

lines of constant pressure are perpendicular to Vp.

ak — (g + a,)i

[az + (g + az)?]

n=8§XJ=

N| =

unit vector in direction of p=constant

angle between 7 and x axes:

0 =tan*
(9+a,)

The pressure variation in the direction of VP Is greater
than in ordinary hydrostatics; that is:

dp o ) 2T . .
E_Vp.s_p[ax +(gv+az) ]2 which 1s > Pg

G

p = pGs+ constant
= pGS gage pressure
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(2) Rigid Body Rotation

Consider a cylindrical tank of liquid rotating at a constant
rate Q = Qk:

Fig. 2.22 Development of

\
=p,
pﬂraboloid constant-pressure I
surfaces in a fluid in rigid-body Axisof| _y\’
rotation. lhe dashed line nlon the rotation |
|

d ection of xnnump
is a ntia l

Vp=plg-a)

e 8—2/”92 —=-pg

Integrate with respecttor: p= ngQZ +f(2)+c
Integrate with respect to z: p=f(r)+-pgz+C
f(z)=—pgz+C

p= r ‘(2 — pgz + Constant

The constant is determined by specifying the pressure at
one point; say, p = po at (r,z) = (0,0).
p=py — gz + 2 Q"

(Note: Pressure is linear in z and parabolic in r)
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Curves of constant pressure p=ps are given by:

2

po — P + rZQ
P9 29

which are paraboloids of revolution, concave upward,

with their minimum points on the axis of rotation.

7= =a+br?

dz

dr 2br|p=constant
1 g

& BT

r'lp=constant

dz
dr

gradient line

The unit vector in the direction of Vp is:

p 2A A
T 6 —,ogk+,or§2er/2 Z
S=1< 2 2\2
7Pl (00)? + (or)?]
tané?:%:—%g2 slopeof§ pr? r,
0
2 2
_Q_dzzg_)_g Z:|nr l
g r g ~
S

l.e.,, r=C, exp(— %j equation of Vp surfaces
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Note: z(r) and r(z) not f(p).

Depending on p a small particle or bubble could rise or
fall along these lines, as shown by buoyant streamers.

The position of the free surface is found, as it is for linear
acceleration, by conserving the volume of fluid.

gf 1 T TS )—
Still - 2 Volume = £ g2, T
water — — —]— L _ 2 Q2R2

level

SIE

Fig. 2.23 Determining the free- Qb e
surface position for rotation of '

a cylinder of fluid about its -I “
central axis. & ]
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Case (3) Pressure Distribution in Irrotational Flow:
Bernoulli Equation

Navier-Stokes for constant property incompressible flow:
pa=-V(p)- pgk + uV?Y =-V(p +yz) + V>V

p[‘z_\tiﬂi.v\i}:—V(p+7/z)+u[V(V-\L)—V><(VX\i)]

Viscous term=0 for p=constant and ®=0, i.e., potential flow
solutions also solutions NS under such conditions! But cannot
satisfy no slip condition and suffers from D'Alembert's paradox
that drag = 0.

In fluid dynamics, d'Alembert’s paradox (or the hydrodynamic paradox) is a contradiction reached
in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that — for
incompressible and inviscid potential flow — the drag force is zero on a body moving with constant
velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial
drag on bodies moving relative to fluids, such as air and water, especially at high velocities
corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox.

1. Assuming inviscid flow: u=0 and using vector identity
V-V =-w-V-Vx(VxV)

%, (% V-V -V x(Vx K))]:—V(p + yz) Euler Equation

oV

V. _|V? p _ 2 _
E+V{E +;+QZ}—\LXQ) Vi=VY (@ #0)


http://en.wikipedia.org/wiki/D'Alembert's_paradox
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2. Additionally, assuming steady flow: g =0
VB=V xw
2
B= v I 0z
2 p
Consider:

VB perpendicular B= constant

V xw=VB perpendicular V and o

Therefore, B=constant contains streamlines and vortex
lines:

A
(By VB = ﬁ =
Os
e,VB=0
1472

_r P '
B= EY + ; + & =constant along streamlines

and vortex lines.
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3. Additionally assuming irrotational flow: ©=0

VB =0 B= constant (everywhere same constant)

_|_

V2
— +0z=8B
5 g

P
Yo,
4. Unsteady, inviscid, incompressible, and irrotational flow:
u=0, p=constant, ®=0, i.e., potential flow
V=Vogp
VZ=Vep-Vo

\% 6¢+V¢'V¢+£+ gz =0
ot 2 Jo,

8¢+V¢-V¢+£+ gz = B(t)
ot 2 Jo,

B(t)= time dependent constant
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Alternate derivation using stream line coordinates:
. h

R = local radius
of curvature
along streamline

~

V=v(s,t)e +v.e =v(s,1)e,

n-n

jon o
~ O ~ O
V=e —+e
os on
DV oV oV oV oV . Oe ov. . oe.
a=——=—+V-VIl=—+v —=[—e +v,—|+v[ e +v, —]
Dt ot ot os ot ot Os Os
és A
> To 1% order &, changes by
40 a0 9¢s alon for increments
~ s é,ds | 5, alongy
. 086 s ds = Rd@
é; +——ds
das

In a space increment ds, the tangent unit vector é; is transformed into
é + %ds and its direction changes by d6. The vector connecting the

two can be obtained using the triangle rule, and its magnitude is equal to

d@, pointing in the —¢,, direction. Alternatively, this can be written as:
a0 ,

—Eends.
Therefore:
. 0é 00
| es+gds=es—£ends
i.e.,
%z_a_eé =—lé\ 69_1
0s os " R™ s R

Where % represents the curvature k of the trajectory, or equivalently
1/R.
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do 00
——2é,dt
5 +aés dt o
e
S ot

Similarly, in a time increment dt, the tangent unit vector é; is
transformed into é; + % dt and its direction changes by df. The

vector connecting the two can be obtained using the triangle rule,
and its magnitude is equal to d@, pointing in the —¢,, direction.

Alternatively, this can be written as: — % é,dt.

Therefore:
5 + 25 dt = é 5. d
es + Y t = e ate" t
..,
06, 00
ot ot
Consequently, the acceleration vector can be expressed as:
v oV, . A 00 Vv .
a=[—+v,—e +[-v,————le,
ot Os ot R
ov
E.,Ts=local a, in direction of flow
v, o0
a E=local a, normal to flow

ov, , | .
vy —E’; =convective a; due to convergence/divergence

of streamlines

v?

—?f =normal a, due to streamline curvature
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Euler Equation
pa==V(p+yz)

Steady flow s equation:

1.e., B=constant along streamline
Steady flow n equation:

~. 2 -
cv c
—-p—=——(p+y2)
R on

vj p .
_,[ Ed n+ » + &2 =constant across streamline

Larger speed/density or smaller R require larger pressure
gradient or elevation gradient normal to streamline.

Highlights that the Bernoulli equation can also be obtained
by integration of the Euler equation along a streamline.
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Flow Patterns: Streamlines, Streaklines, Pathlines

1)A streamline is a line everywhere tangent to the
velocity vector at a given instant.

2) A pathline is the actual path traveled by a given fluid
particle.

3) A streakline is the locus of particles which have earlier
passed through a particular point.

l Dye or smoke
Fluid particle at £ = 1,

/
J

Injected fluid particle
|

/ o7 's‘ / Streakline 1
/ * r) 2
Pathline g Y 2
/ " - .~ " !“ 2
/ B L o " / ,._,‘
¢ \ o
? ‘1. - | >
G. C' '
. b ( Object
Fluid particle atr=1,,y —— \
; \
Fluid particle at some T

intermediate time T
Note:
1. For steady flow, all 3 coincide.
2. For unsteady flow, y(t) pattern changes with time,

whereas pathlines and streaklines are generated as
the passage of time.
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Streamline

By definition along a streamline V xdr=0 which upon
expansion yields the equation of the streamlines for a given

time t=t,

dx dy dz : -
—=—2="=ds S= Integration parameter
u \' w

So if (u,v,w) known, integrate with respect to s for t=t; with
IC (Xo,Y0,Z0,t1) at s=0 and then eliminate s.

VXr= (ui+vj+wl::) X (dxi+dyj+dzl?) =
udyk — udzj — vdxk + vdzi + wdxj — wdyi = 0
(vdz — wdy)i + (wdx — udz)j + (udy — vdx)k = 0

dy dz
—=—
dx dz
u o w
dz dy
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Pathline

The pathline is defined by integration of the relationship
between velocity and displacement.

dx dy dz

—=U —=V —=W

dt dt dt

Integrate u,v,w with respect to t using IC (xo,yo,zo,to) then
eliminate t.

Streakline

To find the streakline, use the integrated result for the
pathline retaining time as a parameter. Now, find the
Integration constant which causes the pathline to pass
through ( %..¥,.2,) for a sequence of times &<t . Then

eliminate ¢.
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The Stream Function

Powerful tool for 2-D flow in which V is obtained by
differentiation of a scalar » which automatically satisfies
the continuity equation.

Note for 2D flow

i 7k
0 ] J . R
VxV = (st o)+ k) x (v wk) = [0 0 0
dx 0dy’ 0z ox dy 0z
u v w
_(aw 6v>A (aw 6u>A+(6v au)k
~\ay ~9z)' " \ax " az)) T \ax " oy

(aw Jv ou Ow 0dv 6u>_ 0.0
3y 92’9z 9x'ox ay) = (0 0w@)

Continuity: u.+v, = 0

say: u=y, and v=-y,

then: ;(w‘,) + ﬁi(—w‘. )=y _ -y, =0 by definition!
ox 7 Oy

V=y,i-y,j
C“.”]K = 'l;:(gd = —!Evgl)ff (ﬁ)z = vx o ”_1' = _Wn‘ - W_lfl' = _Vlyf)
NS equation for unsteady constant property flow:

oV
po-+ (V- V)V = —V(p +y2) + uv?V

Taking the curl gives:

)4
p(an—;)+pVx(Z-V)K=MV2(V><K) (D)

For the unsteady term:

(anz)— a(V><V)— o0
p at) ~ Pat =) =P
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Recall vector identity:

zx(wz)%wz)—@-w

Such that:
(v Py =39(F2) -V x(TxV) @)

Taking the curl of (2), recalling that the curl of the gradient of a

scalar equals zero and using V X V = w, gives: (axb)=—-(bxa)

Vx{(V-V)V}=-Vx(Vxw)=Vx(wxV) 3)

And using Eq. (3) into Eq. (1) gives:

dw
po-tPV X (@XV) =40 (4)

Recall vector identity:
Vx(axb)=a(V-b)+(b-V)a—b(V-a) - (a- b

Such that:

Vx(wxV)=w@T)+V Vo - Vo) - (0 V)V

And Eq. (4) becomes (vorticity transport equation):

0
po= ol V- (0 V)] =2 @

The second term in brackets in Eqg. (4) represents vortex

stretching and it is exactly zero for 2D flow, since the velocity

and vorticity vector are orthogonal, i.e., w - V= w, %:0.
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The resulting equation is (2D vorticity transport equation):

0
p==+p|(V- Vo] = a0 (5)

Recall:
u= wy v =1y

w=VxV=ko,=-kV?
Such that Eqg. (5) becomes:

0(—kV? - -
2T o[y W) kg)] = u(-Rv)

And writing (V - V) by components gives:

9 (—kV? ] 0 - -
p T p|(ug + v0) (-RV)| = uv2(-kv2y) (@

Substituting the definition of stream function in Eq. (6) for u and
V gives:

V2 [ 8 o 0 B
5 (532 W) ‘%@(VZ"’)] Nl

This represents a single scalar equation, but 4" order!
boundary conditions (4 required):

at infinity : u:wyzuoo V=—l//X=0 U — C___z\_s-;-
onbody: u=v=0=y =-y

y X \ )

T——



ME:5160 Chapter 2
Professor Fred Stern  Fall 2024 46

Irrotational Flow

Vzw =0 2ndorderlinear Laplace equation
on SOO 1/ =Uooy+const.

on SB . W =const,

Y and ¢ are orthogonal.
d¢ = ¢de+¢ydy = udx+ vdy

dy = z//xdx+ z//ydy = —vdx+udy

. dy u -1
l.e. — =—=
dXlg = const v dy
dXly, = const
¢ Qo)
FM o L B ‘&““Y‘wd/ ; // (ch-,....i.“‘_\
D - 1 T — Y
i : g “--.. . e 7"|
- 52 .
w
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Geometric Interpretation of y

Besides its importance mathematically  also has
Important geometric significance.

w = constant = streamline
Recall definition of a streamline:

<

x dr =0 dr = dxi +dyj

d

v
udy —vdx =0

= |g

comparewith dy = z//xdx + a//ydy = —vdx + udy
l.e. dw =0 alongastreamline
Or y =constant along a streamline and curves of constant y

are the flow streamlines. If we know v (X, y) then we can
plot v = constant curves to show streamlines.
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Physical Interpretation
dQ =V -ndA

- (fa—l//— ja—l//)(d—yf—% J)xdsx1

oy ox  ds ds
=y dy +y,dx
o s [TV V0
?H.- (dA = flow area ds x 1 with 2D unit tangent
and normal vectors)
AS v ESh TN
35 =2 ‘_:3;1‘

!-\- <=
AS = At Anl

AR = AS x
i.e., change in dy is volume flux and across streamline dQ =0

2 2
Q1—>2 — J-\iﬂdA :j d l// :(//2 — l//l

Consider flow between two streamlines: wu = % p=-2
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Py <P
Yy >y ////
Y, >0->u>0
Flow —=— Yy <0->u<0
%

(c) (b)

dQ = dyp =V - ndA = V,dA

1.e., proportional to streamline spacing.

Incompressible Plane Flow in Polar Coordinates

e
=]
?—*v
. . 10 10
continuity : =—(rv._)+——(v, )=0
y r@r( r) rae(e)
0 0
or: —(rv, )+—I(v,)=0
. _1loy __ oy
AR Yy 0=
then g(ria_l//)_i_i(_a_l/l)zo
or r o 060 or

as before dy =0 along a streamline and dQ =dy
volume flux = change in stream function
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Incompressible axisymmetric flow

A

no @ variation

Pa
continuiw:lg(rv )+£(v )=O
ror* r’ oz'z
Say: \V :_la_w V :18_1//
r r oz Z ror
then: 1.0 (r_lawj+ g (18"”):0
ror\. r oz oz\r or

as before dy =0 alonga streamlineand dQ = dy
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Generalization

Steady plane compressible flow:

0 0

a(PU) +@(PV) =0
define: _ 0y 0y
efine: pu—ay pv=——

Y = compressible flow stream function

udy — vdx = 0 definition streamline

1 1
-, dy +—y,dx =0
pIIJy y pt/Jx

dy =P, dx +P,dy = %(dl/)) =0 ie.

dy = 0 andy = constantis a streamline
The change in ¥ is now equal to the mass flow rate:
dm=p(V.n)dA=dy

2
m,_, = J-,O(\L.D)dAZ v, ¥,
1



