Work session 11/1/23

1. A tank of water with depth h is to be drained by a $5-\mathrm{cm}$-diameter exit pipe. Water density is $998 \mathrm{~kg} / \mathrm{m}^{3}$, water viscosity is $0.001 \mathrm{~kg} / \mathrm{ms}$. The pipe extends out for 15 m and a turbine and an open globe valve are located on the pipe. The head provided by the turbine is $h_{t}=10 \mathrm{~m}$. (a) If the exit flow rate is $Q=0.04 \mathrm{~m}^{3} / \mathrm{s}$, calculate h assuming there are no minor losses, the turbine is 100% efficient, and the pipe is smooth. (b) Calculate Q if h is same as part (a) but there are minor losses ($K=0.5$ for the sharp entrance and $K=6.9$ for the open globe valve), the turbine has an efficiency of 80%, and the pipe is rough with $\varepsilon=0.3 \mathrm{~mm}$. Use the value of f from part (a) as initial guess and stop at the end of the second iteration.

Solution 1

ANALYSIS:
Energy equation
between free-surface (1) and exit (2):

$$
\begin{gathered}
\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f}-h_{p}+h_{t} \\
p_{1}=p_{2}=p_{a t m} \\
z_{1}-z_{2}=h \\
V_{1}=0 ; \quad h_{p}=0 \\
h_{f}=\frac{V_{2}^{2}}{2 g}\left(f \frac{L}{D}+\sum K\right)
\end{gathered}
$$

Replace and find h :

$$
h=\frac{V_{2}^{2}}{2 g}\left(1+f \frac{L}{D}+\sum K\right)+h_{t}
$$

Find velocity using the flow rate and then $R e$:

$$
\begin{gathered}
V_{2}=\frac{Q}{\frac{\pi}{4} D^{2}}=\frac{\left(0.04 \mathrm{~m}^{3} / \mathrm{s}\right)}{\frac{\pi}{4}(0.05 \mathrm{~m})^{2}}=20.4 \mathrm{~m} / \mathrm{s} \\
\operatorname{Re}=\frac{\rho V_{2} D}{\mu}=\frac{\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)(20.4 \mathrm{~m} / \mathrm{s})(0.05 \mathrm{~m})}{(0.001 \mathrm{~kg} / \mathrm{ms})}=1.02 \mathrm{E} 6 \text { (turb.) }
\end{gathered}
$$

(a)

Find the friction factor from the moody diagram using $R e$:

$$
\begin{gathered}
f_{\text {smooth }} \sim 0.011 \\
h=\frac{V_{2}^{2}}{2 g}\left(1+f_{\text {smooth }} \frac{L}{D}\right)+h_{t} \\
h=\frac{\left(20.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(2)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}\left[1+(0.011) \frac{(15 \mathrm{~m})}{(0.05 \mathrm{~m})}\right]+(10 \mathrm{~m})=101 \mathrm{~m}
\end{gathered}
$$

(b)

Consider minor losses, turbine efficiency, and roughness of the pipe with h from part (a).

$$
h=\frac{V_{2}^{2}}{2 g}\left(1+f_{\text {rough }} \frac{L}{D}+K_{\text {ent }}+K_{\text {valve }}\right)+\frac{h_{t}}{\eta}
$$

Find an expression of V_{2} as a function of $f_{\text {rough }}$:

$$
\begin{gathered}
V_{2}=\sqrt{\frac{2 g\left(h-\frac{h_{t}}{\eta}\right)}{1+f_{\text {rough }} \frac{L}{D}+K_{\text {ent }}+K_{\text {valve }}}}=\sqrt{\frac{(2)(9.81)\left(101-\frac{10}{0.8}\right)}{1+f_{\text {rough }} \frac{(15)}{(0.05)}+0.5+6.9}} \\
V_{2}=\sqrt{\frac{1736.37}{300 f_{\text {rough }}+8.4}}
\end{gathered}
$$

Use $f_{\text {smooth }}$ as initial guess to compute new velocity and $R e$:

$$
V_{2}=\sqrt{\frac{1736.37}{300(0.011)+8.4}}=12.18 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rightarrow \quad R e=6.08 \mathrm{E} 5
$$

Find the friction factor from the Moody diagram using $R e$ and relative roughness and iterate twice.

$$
\frac{\varepsilon}{D}=\frac{(0.0003 \mathrm{~m})}{(0.05 \mathrm{~m})}=0.006
$$

Iteration 1:

$$
\begin{gathered}
f_{\text {rough }} \sim 0.032 \\
V_{2}=\sqrt{\frac{1736.37}{300(0.032)+8.4}}=9.82 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rightarrow \quad R e=4.90 \mathrm{E} 5
\end{gathered}
$$

Iteration 2:

$$
f_{\text {rough }} \sim 0.032 \text { (converged) }
$$

Compute flow rate:

$$
Q=V_{2}\left(\frac{\pi}{4} D^{2}\right)=\left(9.82 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \frac{\pi}{4}(0.05 \mathrm{~m})^{2}=0.019 \mathrm{~m}^{3} / \mathrm{s}
$$

2. The reservoirs in the Figure below contain water at $20^{\circ} \mathrm{C}(\rho=998 \mathrm{~kg} / \mathrm{m} 3, \mu=0.001 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$.$) . \Delta z=$ $80 \mathrm{~m}, L=185 \mathrm{~m}$, and the pipe is of cast-iron $(\varepsilon=0.26 \mathrm{~mm})$. If the pipe diameter is 30 mm , calculate flow rate with the unit of $\left\{\mathrm{m}^{3} / \mathrm{h}\right\}$.
Hint: Start with an initial guess of $f_{0}=0.038$ and perform 2 iterations, assuming the solution is converged at $f 2$.

Energy Equation
$\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f}$
Pipe flow
$h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}=\frac{8 f L Q^{2}}{\pi^{2} g D^{5}} ; \quad R e_{D}=\frac{\rho V D}{\mu}=\frac{4 \rho Q}{\mu \pi D}$

Solution 2

KNOWN: $Q, \Delta z, L$
FIND: D
ASSUMPTIONS: the pipe flow is turbulent and $\alpha \approx 1$; no minor losses ANALYSIS:

The energy equation between points (1) and (2) at the free surface yields:

$$
\begin{aligned}
\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1} & =\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f} \\
\frac{P_{a t m}}{\rho g}+\frac{0^{2}}{2 g}+z_{1} & =\frac{P_{a t m}}{\rho g}+\frac{0^{2}}{2 g}+z_{2}+h_{f} \\
\Delta z & =h_{f} \\
\Delta z & =\frac{8 f L Q^{2}}{\pi^{2} g D^{5}}
\end{aligned}
$$

Rearrange and find D as a function of f :

$$
\Delta z=\frac{8 f L Q^{2}}{\pi^{2} g D^{5}} \rightarrow Q^{2}=\frac{\Delta z \pi^{2} g D^{5}}{8 f L} \rightarrow Q=\sqrt{\frac{\Delta z \pi^{2} g D^{5}}{8 L}} \sqrt{\frac{1}{f}}+1.5
$$

Replace numerical values:

$$
Q=\sqrt{\frac{(80) \pi^{2}(9.81)(0.03)^{5}}{8(185)}} \sqrt{\frac{1}{f}}=\frac{3.56617 \times 10^{-4}}{\sqrt{f}}
$$

$$
+1.5
$$

Initial guess: $f_{0}=0.038$

$$
Q=\frac{3.56617 \times 10^{-4}}{\sqrt{0.038}}=1.829 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\begin{gathered}
R e_{D}=\frac{4 \rho Q}{\mu \pi D}=\frac{4(998)\left(1.829 \times 10^{-3}\right)}{(0.001) \pi(0.03)}=77469.9 \\
\frac{\varepsilon}{D}=\frac{0.26 \times 10^{-3}}{0.03}=0.0086667
\end{gathered}
$$

From Moody chart; $f_{1}=0.037$
One more iteration

$$
\begin{gathered}
Q=\frac{3.56617 \times 10^{-4}}{\sqrt{0.037}}=1.854 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
R e_{D}=\frac{4 \rho Q}{\mu \pi D}=\frac{4(998)\left(1.854 \times 10^{-3}\right)}{(0.001) \pi(0.03)}=78528.8 \\
\frac{\varepsilon}{D}=\frac{0.26 \times 10^{-3}}{0.03}=0.0086667
\end{gathered}
$$

From Moody chart; $f_{2}=0.0365 \quad+2.0$
$Q=\frac{3.56617 \times 10^{-4}}{\sqrt{0.0365}}=1.8666 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
$\therefore 1.8666 \times 10^{-3} \times 3600=6.72 \mathrm{~m}^{3} / \mathrm{h}$
3. The viscous oil in below Figure is set into steady motion by a constant pressure gradient $\frac{\partial P}{\partial z}$ and gravity. The radius of pipe is a. Assuming fully developed flow, constant density, circumferentially symmetric flow, and a purely axial fluid motion. (a) Simplify the governing equation with these given conditions. (b) Apply appropriate boundary condition and derive the fluid velocity distribution of $v_{z}(r)$. (c) Calculate wall shear stress at pipe wall. (d) Calculate head loss between point 1 and 2 , and express it with L.

The equations of motion of an incompressible Newtonian fluid with constant density and viscosity in cylindrical coordinates (r, θ, z) with velocity components $(v r, v \theta, v z)$:
Continuity:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(v_{z}\right)=0
$$

r-momentum

$$
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}+v_{z} \frac{\partial v_{r}}{\partial z}-\frac{v_{\theta}^{2}}{r}\right)=\rho g_{r}-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}+\frac{\partial^{2} v_{r}}{\partial z^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}\right]
$$

θ-momentum:

$$
\rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{v_{r} v_{\theta}}{r}\right)=\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}\right]
$$

z-momentum:

$$
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=\rho g_{z}-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]
$$

Boundary condition Hint

- At the pipe wall, the velocity is zero
- At the pipe center, the velocity gradient should be zero

Wall shear stress Hint

$$
-\quad \tau_{\text {wall }}=\left.\mu \frac{\partial v_{z}}{\partial y}\right|_{y=0}=-\left.\mu \frac{\partial v_{z}}{\partial r}\right|_{r=a}, y=a-r \text { where } a: \text { Radius of pipe }
$$

Flow rate Hint

$$
-\quad Q=\int_{0}^{2 \pi} \int_{0}^{a} v_{z} d r d \theta
$$

Head loss Hint - Use energy equation

$$
-\quad \frac{p_{1}}{\rho g}+\frac{\alpha_{1}}{2 g} V_{1}+z_{1}=\frac{p_{2}}{\rho g}+\frac{\alpha_{2}}{2 g} V_{2}+z_{2}+h_{L}, \quad \frac{\partial P}{\partial z}=\frac{P_{2}-P_{1}}{L}
$$

3. Solution:

ASSUMPTIONS:

1. Steady flow $\left(\frac{\partial}{\partial t}=0\right)$
2. Incompressible flow ($\rho=$ constant)
3. Purely axial flow ($\mathrm{vr}=\mathrm{v} \theta=0$)
4. Circumferentially symmetric flow, so properties do not vary with $\theta\left(\frac{\partial}{\partial \theta}=0\right)$
5. Constant pressure gradient $(\partial p / \partial \mathrm{z}=\mathrm{k})$
(a)

Continuity:

$$
\begin{gathered}
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(v_{z}\right)=0 \\
0(3)+0(3)+\frac{\partial v_{z}}{\partial z}=0
\end{gathered}
$$

z-momentum:

$$
\begin{array}{r}
\rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=\rho g_{z}-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right] \\
\rho(0(1)+0(3)+0(3,4)+0(\text { continuity }))=\rho g \sin \theta-k(5)+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+0(4)+0(\text { continuity })\right]
\end{array}
$$

$$
\frac{\mu}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=k-\rho g \sin \theta
$$

(b) Integrate

$$
\begin{gathered}
\frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=\frac{k-\rho g \sin \theta}{\mu} r \\
r \frac{\partial v_{z}}{\partial r}=\frac{k-\rho g \sin \theta}{2 \mu} r^{2}+C_{1} \\
\frac{\partial v_{z}}{\partial r}=\frac{k-\rho g \sin \theta}{2 \mu} r+\frac{C_{1}}{r} \\
\therefore v_{z}(r)=\frac{k-\rho g \sin \theta}{4 \mu} r^{2}+C_{1} \ln (r)+C_{2}
\end{gathered}
$$

Apply two boundary conditions

$$
\begin{gathered}
v_{z}(a)=0 \rightarrow \frac{k-\rho g \sin \theta}{4 \mu} a^{2}+C_{1} \ln (a)+C_{2}=0 \\
\left.\frac{\partial v_{z}}{\partial r}\right|_{r=0}=0 \rightarrow \frac{k-\rho g \sin \theta}{2 \mu}(0)+\frac{C_{1}}{(0)}=0 \\
\therefore C_{1}=0 \\
\therefore C_{2}=-\frac{k-\rho g \sin \theta}{4 \mu} a^{2}
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\therefore v_{z}(r)=\frac{k-\rho g \sin \theta}{4 \mu} r^{2}-\frac{k-\rho g \sin \theta}{4 \mu} a^{2}=\frac{k-\rho g \sin \theta}{4 \mu}\left(r^{2}-a^{2}\right) \\
=\frac{1}{4 \mu}\left(\frac{\partial P}{\partial z}-\rho g \sin \theta\right)\left(r^{2}-a^{2}\right)
\end{gathered}
$$

(c) Wall shear stress at the pipe wall

$$
\begin{aligned}
& \tau_{\text {wall }}=-\left.\mu \frac{\partial v_{z}}{\partial r}\right|_{r=a} \\
& \mu \frac{\partial v_{z}}{\partial r}=-\frac{k-\rho g \sin \theta}{2} r
\end{aligned}
$$

Apply

$$
\begin{gathered}
r=a \\
\therefore \tau_{\text {wall }}=-\frac{(k-\rho g \sin \theta) a}{2}=-\frac{a}{2}\left(\frac{\partial P}{\partial z}-\rho g \sin \theta\right)++1
\end{gathered}
$$

(d) Head loss between Point 1 and 2.

$$
\frac{p_{1}}{\rho g}+\frac{\alpha_{1}}{2 g} V_{1}+z_{1}=\frac{p_{2}}{\rho g}+\frac{\alpha_{2}}{2 g} V_{2}+z_{2}+h_{L}
$$

Fully developed flow and $\alpha_{1}=\alpha_{2}$. So dynamic pressure terms in both side are cancelled.

$$
\begin{aligned}
& \frac{p_{1}}{\rho g}+z_{1}=\frac{p_{2}}{\rho g}+z_{2}+h_{L} \\
& h_{L}=\frac{p_{1}-p_{2}}{\rho g}+z_{1}-z_{2}
\end{aligned}
$$

Express $p_{1}-p_{2}$ using pressure gradient

$$
\begin{gathered}
\frac{\partial P}{\partial z}=k=\frac{p_{2}-p_{1}}{L} \\
p_{1}-p_{2}=-L k \\
\therefore h_{L}=-\frac{L}{\rho g} \frac{\partial P}{\partial z}+L \sin \theta
\end{gathered}
$$

Alternatively,

$$
h_{L}=\frac{2 \tau_{w}}{\rho g} \frac{L}{a}=-\frac{2 L}{\rho g a} \frac{a}{2}\left(\frac{\partial P}{\partial z}-\rho g \sin \theta\right)=-\frac{L}{\rho g} \frac{\partial P}{\partial z}+L \sin \theta
$$

As wind blows over a chimney, vortices are shedding in the wake as shown in the Figure below. The dimensional shedding frequency f depends on chimney diameter D, chimney length L, wind velocity V, and air kinematic viscosity v. (a) Find dimensionless f which depends on dimensionless groups. If a $1 / 10^{\text {th }}$ scale model were to be tested in a wind tunnel and full dynamic similarity was required: (b) what air velocity would be necessary in the wind tunnel compared to the wind velocity experienced by the full-scale chimney?; (c) what shedding frequency would be observed in the wind tunnel compared to the shedding frequency generated by the full-scale chimney?

Solution 4:

ASSUMPTIONS: the problem is only a function of the above dimensional variables
ANALYSIS:
(a)

$$
\left.\begin{array}{c}
f=f c n(D, L, V, v) ; \mathrm{n}==5 \\
f=\left\{T^{-1}\right\} \quad D=\{L\} \quad \begin{array}{c}
L=\{L\} \quad V=\left\{L T^{-1}\right\} \quad v=\left\{L^{2} T^{-1}\right\} ; \quad \mathrm{j}=2 \\
\therefore k=n-j=3 \quad(0.5) \\
\text { repeating variables }=D, V
\end{array} \\
\pi_{1}=f D^{a_{1}} V^{b_{1}}=\left\{\left(T^{-1}\right)(L)^{a_{1}}\left(L T^{-1}\right)^{b_{1}}\right\}=\left\{L^{0} T^{0}\right\} \\
a_{1}=1 ; b_{1}=-1
\end{array} \pi_{1}=\frac{f D}{V} \quad \begin{array}{c}
\pi_{2}=\frac{L}{D} \\
\pi_{2}=L D^{a_{2}} V^{b_{2}}=\left\{(L)(L)^{a_{2}}\left(L T^{-1}\right)^{b_{2}}\right\}=\left\{L^{0} T^{0}\right\} \\
a_{2}=-1 ; b_{2}=0
\end{array}\right] \begin{gathered}
\text { (1.5) } \\
\pi_{3}=v D^{a_{3} V^{b_{3}}=\left\{\left(L^{2} T^{-1}\right)(L)^{a_{3}}\left(L T^{-1}\right)^{b_{3}}\right\}=\left\{L^{0} T^{0}\right\}} \\
a_{3}=-1 ; b_{3}=-1 \\
\pi_{3}=\frac{v}{V D} \\
\frac{f D}{V}=f c n\left(\frac{L}{D}, \frac{v}{V D}\right)
\end{gathered}
$$

(b)

$$
\begin{gathered}
\frac{v_{m}}{V_{m} D_{m}}=\frac{v_{p}}{V_{p} D_{p}}, \quad \frac{V_{m}}{V_{p}}=\frac{v_{m}}{v_{p}} \frac{D_{p}}{D_{m}} \\
\frac{V_{m}}{V_{p}}=(1)(10)=10
\end{gathered}
$$

(c)

$$
\begin{gather*}
\frac{f_{m} D_{m}}{V_{m}}=\frac{f_{p} D_{p}}{V_{p}}, \quad \frac{f_{m}}{f_{p}}=\frac{D_{p}}{D_{m}} \frac{V_{m}}{V_{p}} \\
\frac{f_{m}}{f_{p}}=(10)(10)=100 \tag{2}
\end{gather*}
$$

