
3. A large tank of liquid under pressure is drained through a smoothly contoured nozzle of area A. The 

mass flow rate �̇� is thought to depend on the nozzle area A, the liquid density 𝜌, the difference in height 

between the liquid surface and the nozzle h, the change in pressure ∆𝑝, and the gravitational 

acceleration g. Taking 𝜌, 𝐴, and 𝑔 as repeating variables, find an expression for the mass flow rate 𝑚 ̇ as 

a function of the other parameters in the problem in terms of dimensionless Pi groups 

 

 

 

 

 

 

 

 

 

 

 



Solution 2:  

 

 

 
 

 

 

 

(3) 

(1) 

(2) 

(2) 

(2) 



4. When small aerosol particles or microorganisms move through air or water, the Reynolds number is 

very small. The aerodynamic drag FD on an object in this condition is a function only of its speed V, some 

characteristic length scale L of the object, and fluid viscosity μ. Use dimensional analysis to generate a 

relationship for FD as a function of the independent variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Air discharge from a 2 in diameter nozzle and strikes a curved vane, which is in a vertical plane 

as shown in below figure. A stagnation tube connected to a water U-tube manometer is located in 

the free air jet. Determine the horizontal component of the force that the air jet exerts on the vane. 

Neglect the weight of the air and all friction. 

𝛾𝑤𝑎𝑎𝑡𝑒𝑟 : 62.4 𝑙𝑏/𝑓𝑡3 

 

 
 

Solution 1: 

KNOWN: Inlet and outlet diameter, Outlet flow angle, manometer height. 

FIND:  

- Force 𝑅𝑥  that requires to hold the plate stationary 

 

ASSUMPTIONS:  

Neglect weight of air 

Neglect friction loss 

 

𝑅𝑥 = �̇�𝑉1 − �̇�𝑉2 

Diameter of section ① and ② is same 

∴ |𝑉1| = |𝑉2| 

 

𝑉2 Direction is negative 𝑥 and has cos (30𝑜) 

 

∴ 𝑅𝑥 = �̇�𝑉1 − �̇�(−𝑉1𝑐𝑜𝑠30𝑜) 

 

𝑅𝑥 = �̇�𝑉1(1 + 𝑐𝑜𝑠30𝑜) 

 

Calculate 𝑉1 using Bernoulli equation (Apply stagnation point and section①) 

(1) 

(1) 

(2) 

(2) 



𝑃𝑠𝑡𝑎𝑔

𝜌𝑎𝑖𝑟
+

𝑉𝑠𝑡𝑎𝑔
2

2
=

𝑃1

𝜌𝑎𝑖𝑟
+

𝑉1
2

2
 

𝑃𝑠𝑡𝑎𝑔

𝜌𝑎𝑖𝑟
=

𝑃1

𝜌𝑎𝑖𝑟
+

𝑉1
2

2
 

From the manometer,  

𝑃𝑠𝑡𝑎𝑔 = 𝑃𝑎𝑡𝑚 + ℎ𝛾𝑤𝑎𝑡𝑒𝑟 

𝑃1 = 𝑃𝑎𝑡𝑚 

𝑃𝑎𝑡𝑚 + ℎ𝛾𝑤𝑎𝑡𝑒𝑟

𝜌𝑎𝑖𝑟
=

𝑃𝑎𝑡𝑚

𝜌𝑎𝑖𝑟
+

𝑉1
2

2
 

∴
𝑉1

2

2
=

ℎ𝛾𝑤𝑎𝑡𝑒𝑟

𝜌𝑎𝑖𝑟
,     𝑉1 = √2ℎ

𝛾𝑤𝑎𝑡𝑒𝑟

𝜌𝑎𝑖𝑟
     

 

Plug in 𝑉1 to the 𝑅𝑥 

𝑅𝑥 = �̇�𝑉1(1 + 𝑐𝑜𝑠30𝑜) = 𝜌𝑎𝑖𝑟

𝜋

4
(

2

12
)

2

𝑉1
2(1 + 𝑐𝑜𝑠30𝑜) 

𝑅𝑥 = 𝜌𝑎𝑖𝑟

𝜋

4
(

2

12
)

2

2ℎ
𝛾𝑤𝑎𝑡𝑒𝑟

𝜌𝑎𝑖𝑟

(1 + 𝑐𝑜𝑠30𝑜) 

𝑅𝑥 =
𝜋ℎ

2
(

2

12
)

2

𝛾𝑤𝑎𝑡𝑒𝑟(1 + 𝑐𝑜𝑠30𝑜) 

𝑅𝑥 =
𝜋(7/12)

2
(

2

12
)

2

62.4(1 + 𝑐𝑜𝑠30𝑜) 

𝑅𝑥 = 2.963 𝑙𝑏 

 

 

 

 

 

(2) 

(2) 



3. The viscous, incompressible flow between the parallel plates shown in Figure is caused by both 

the motion of the bottom plate and a constant pressure gradient 
𝜕𝑝

𝜕𝑥
. Assuming steady, 2D, and 

parallel flow and using differential analysis: (a) Show that the flow is fully developed using 

continuity equation; (b) Find the velocity profile 𝑢(𝑦) using Navier-Stokes equations with 

appropriate boundary conditions; (c) Find wall shear stress at bottom wall; and (d) Find the flow 

rate (hint: 𝑄 = ∫ 𝑉 ⋅ 𝑛 𝑑𝐴 and assume constant width w). Explicitly state all assumptions. 

 

 

 

 

𝜌𝑔𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) = 𝜌 (𝑢

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) 

𝜌𝑔𝑦 −
𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) = 𝜌 (𝑣

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) 

𝜌𝑔𝑧 −
𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) = 𝜌 (𝑤

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) 

 

 

 

 

 

 

 

 



Solution 3: 

KNOWN: Flow condition, Boundary condition 

FIND:  

- Show that the flow is fully developed 

- velocity profile 𝑢(𝑦) 

- Find wall shear stress at bottom wall 

- Find the flow rate 

 

ASSUMPTIONS:  

- steady: 
𝜕

𝜕𝑡
= 0 

- 2D flow: 𝑤 = 0;   
𝜕

𝜕𝑧
= 0 

- Parallel flow: 𝑣 = 𝑤 = 0 

- 
𝜕𝑝

𝜕𝑥
= constant 

 

ANALYSIS: 

 

(a) Continuity 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

𝜕𝑢

𝜕𝑥
+ 0 + 0 = 0    →     

𝜕𝑢

𝜕𝑥
= 0    →     𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 

(b) x-momentum equation 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜌𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) 

0 = −
𝜕𝑃

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑦2
 

𝜕2𝑢

𝜕𝑦2
=

1

𝜇

𝜕𝑝

𝜕𝑥
 

Integrate twice 

𝑢(𝑦) =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑦2 + 𝑐1𝑦 + 𝑐2 

 

(1) 

(1) 

(1.5) 

(1.5) 



Apply boundary conditions 

𝑦 = 0    →     𝑢 = 𝑈    →   𝑐2 = 𝑈 

𝑦 = 𝑏    →     𝑢 = 0    →     0 =
1

2𝜇
(

𝜕𝑝

𝜕𝑥
) 𝑏2 + 𝑐1𝑏 + 𝑈 →    𝑐1 = −

1

2𝜇
(

𝜕𝑝

𝜕𝑥
) 𝑏 −

𝑈

𝑏
    

 

Therefore,  

𝑢(𝑦) =
1

2𝜇
(

𝜕𝑝

𝜕𝑥
) (𝑦2 − 𝑏𝑦) + 𝑈 (1 −

𝑦

𝑏
) 

(c) Shear stress at bottom wall 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
=

1

2
(

𝜕𝑝

𝜕𝑥
) (2𝑦 − 𝑏) −

𝑈

𝑏
𝜇 

𝜏𝑤𝑎𝑙𝑙 = 𝜏(0) = −
𝑏

2
(

𝜕𝑝

𝜕𝑥
) −

𝑈

𝑏
𝜇 

(d) Flow rate 

𝑄 = ∫ 𝑉 ⋅ 𝑛 𝑑𝐴 = 𝑤 ∫ 𝑢(𝑦)𝑑𝑦
𝑏

0

=
𝑤

2𝜇
(

𝜕𝑝

𝜕𝑥
) (

1

3
𝑦3 −

𝑏

2
𝑦2)

0

𝑏

+ 𝑤𝑈 (𝑦 −
1

2𝑏
𝑦2)

0

𝑏

 

𝑄 =
𝑤

2𝜇
(

𝜕𝑝

𝜕𝑥
) (

1

3
𝑏3 −

1

2
𝑏3) + 𝑤𝑈 (𝑏 −

1

2
𝑏) = −

𝑤

12𝜇
(

𝜕𝑝

𝜕𝑥
) 𝑏3 +

𝑤

2
𝑈𝑏 

 

 

 

 

 

 

 

 

 

(2) 

(1.5) 

(1.5) 



Consider natural convection in a rotating, fluid-filled enclosure. The average wall shear stress 

𝜏 in the enclosure is assumed to be a function of rotation rate 𝛺, enclosure height H, density 𝜌, 

temperature difference Δ𝑇, viscosity 𝜇, thermal expansion coefficient 𝛽, and gravity acceleration 

g. Rewrite this relationship as a dimensionless function. Use the following repeating variables: 

𝜌, 𝐻, 𝛺, and 𝛽. 

 

 



 

 

Π = 

Π = 

KNOWN: dimensional parameters 

FIND: Pi groups 

 
 
 

+1 

ASSUMPTIONS: the problem is only a function of the given dimensional variables 

ANALYSIS: 

𝜏 = 𝑓(𝜌, 𝐻, Ω, 𝛽, 𝜇, ∆𝑇, 𝑔) 

𝑛 = 8 

 
 

+0.5 

 

𝜏 = {𝑀𝐿−1𝑇−2}; 𝜌 = {𝑀𝐿−3}; 𝐻 = {𝐿}; 𝛺 = {𝑇−1}; 

+1 

𝛽 = {Θ−1}; 𝜇 = {𝑀𝐿−1𝑇−1}; Δ𝑇 = {Θ}; 𝑔 = {𝐿𝑇−2} 
 

𝑗 = 4 → 𝑘 = 𝑛 − 𝑗 = 4 +1 
 

The repeating variables are 𝜌, 𝐻, Ω, and 𝛽; adding each remaining variable in turn, we find 

the Pi groups: 

Π1 = 𝜌𝑎𝐻𝑏 Ω𝑐𝛽𝑑𝑟 = {(𝑀𝐿−3)𝑎(𝐿)𝑏(𝑇−1)𝑐(Θ−1)𝑑(𝑀𝐿−1𝑇−2)} = {𝑀0𝐿0𝑇0Θ0} 

𝑎 = −1; 𝑏 = −2; 𝑐 = −2; 𝑑 = 0 

 
+0.5 

𝜏 
 

 

1 𝜌𝐻2Ω2 

 
+0.5 

 

Π2 = 𝜌𝑎𝐻𝑏 Ω𝑐𝛽𝑑𝜇 = {(𝑀𝐿−3)𝑎(𝐿)𝑏(𝑇−1)𝑐(Θ−1)𝑑(𝑀𝐿−1𝑇−1)} = {𝑀0𝐿0𝑇0Θ0} 

𝑎 = −1; 𝑏 = −2; 𝑐 = −1; 𝑑 = 0 

+0.5 

𝜇 
 

 

2  𝜌𝐻2Ω 

 

+0.5 

 

Π3 = 𝜌𝑎𝐻𝑏 Ω𝑐𝛽𝑑Δ𝑇 = {(𝑀𝐿−3)𝑎(𝐿)𝑏(𝑇−1)𝑐(Θ−1)𝑑(Θ)} = {𝑀0𝐿0𝑇0Θ0} 

𝑎 = 0; 𝑏 = 0; 𝑐 = 0; 𝑑 = 1 

Π3 = 𝛽Δ𝑇 
+0.5 

Π4 = 𝜌𝑎𝐻𝑏 Ω𝑐𝛽𝑑𝑔 = {(𝑀𝐿−3)𝑎(𝐿)𝑏(𝑇−1)𝑐(Θ−1)𝑑(𝐿𝑇−2)} = {𝑀0𝐿0𝑇0Θ0} +0.5 


