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Chapter 7.2 Laminar Boundary Layers

Boundary Layer Theory
Introduction:

Boundary layer flows: External flows around streamlined bodies at
high Re have viscous (shear and no-slip) effects confined close to
the body surfaces and its wake but are nearly inviscid far from the
body.

Applications of BL theory: aerodynamics (airplanes, rockets,
projectiles), hydrodynamics (ships, submarines, torpedoes),
transportation (automobiles, trucks, cycles), wind engineering
(buildings, bridges, water towers), and ocean engineering (buoys,
breakwaters, cables).

Flat-Plate Momentum Integral Analysis & Laminar approximate
solution

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat
plate fixed in a uniform stream of velocity Ui .

oY
Constant ae? U
pressure 48 s\\ea//]
amiine QIR = |
y=H St"e/’/"‘Control Il
U Sl e ~<t—=0ggy
i | volume | |
| e ]
b/ U/
‘ | (y)
n_y Drag force D I
el i il No-sli
v —_—__—T——__—l - P Flat
0|« b " plate

Boundary-layer thickness arbitrarily defined by y = Oqqy, (Where, Oggy, iS
the value of y at u = 0.99U). Streamlines outside Jq, Will deflect an

amountd” (the displacement thickness). Thus, the streamlines move
outward fromy=H at x=0to y=Y==H +& at x=X,.
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Conservation of mass:
H H+s"
[ venta=0=—| pUdy+[ " pudy
CS
Assuming incompressible flow (constant density), this relation simplifies
to

Y Y Y
UH = [ udy=[ (U+u-U)dy=UY +| (u-U)dy
Note: Y = H + 5*, we get the definition of displacement thickness:
* u
S = jg (1——jdy
U
5*( a function of x only) is an important measure of effect of BL on

external flow. To see this more clearly, consider an alternate derivation
based on an equivalent discharge/flow rate argument:

A

6* Lam=4/3

o* Turb=5/8

o 1)
j Udy :J' udy
* 0
g_J
Inviscid flow about 6* body

Flowrate between & and & of inviscid flow=actual flowrate, i.e.,
inviscid flow rate about displacement body = equivalent viscous flow
rate about actual body

5 5 5 5
IUdy —IUdy = Iudy =0 = J(l— dey
0 0 0 0 U

w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that S isa
stream surface of the inviscid flow continued from outside of the BL.
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Conservation of x-momentum:
H Y
2 F=-D= [ puV endA=— "ol (Udy)+ [ pu(udy)
CS

Y
Drag=D = pU 2H —jo ,ouzdy: Fluid force on plate = - Plate
force on CV (fluid)

u
Again, assuming constant density and using continuity: M = IO Udy

= pU jou/Udy—ju dy = [y7dx

L—H j (1—U)dy

pu°
where, @ is the momentum thickness (a function of x only), an
important measure of the drag.

Cp = pr[zx 2)«(9 1IC dx Per unit span
Ci = 1TW = Cq i( CD):Z%
=~ pU? dx dx Special case 2D
2 momentum integral
do C; ,dé equation for px =0
T, =poU"—

dx 2 " dx

HHH i
0 Coordinate normal to the wall
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Simple velocity profile approximations:

u=UQy/s-y?15%)

u(0 =20 no slip
u@@)=U matching with outer flow
Uy(6)=0

Use velocity profile to get C+(5) and 6(8) and then integrate momentum
integral equation to get o(Rey)

0% =40/3
0 =26/15
H= 6*/6= 5/2

TW=,L18—U =u2U /o6

y=0
C, - 2uU /52 :2d49
1/2pU dx
15 pdx

= 21(25/15)
dx

s.0do =

~ 30pudx
pU
51x=55/Re’

Re, =Ux/v

5" 1 x=1.83/Re” ~
0/x=0.73/Re’*
C,=146/Re/*=2C, (L)

52

> 10% error, cf. Blasius
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Boundary layer approximations, equations, and comments

__ , Upup

2D NS, p=constant, neglect g

Uy +v, =0

+ uu, + = 1ap+ +
Ur + Ul + vu, = o V(Uyy uyy)
10p
Ve +uvy +vvy, = —;a + V(VUxx + Vyy)

Introduce non-dimensional variables that includes scales such that all
variables are of O(1):

X =x/L
y*=%\/R_e
t"=tU/L
u=u/U
*_V\/R—
v —E e
* p_po
P =
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The NS equations become (drop *)

uy +v, =0
1
U +uux+vuy = —Dx +R—euxx +uyy
1 1 1
E(Ut + UV, + va) = —py + vax + Evyy

For large Re (BL assumptions) the underlined terms drop out and the BL
equations are obtained.

Therefore, y-momentum equation reduces to

p, =0

Le.p=p(xt)
= p, =—p(, +UU ) From Euler/Bernoulli equation for
external flow

2D BL equations:
Uy +v, =0
ur + uuy +vuy, = (U + UU,) +vuy,

Note:

(1) U(x,1), p(x,t) impressed on BL by the external flow.

2
0
(2) 8—2 =0:je, longitudinal (or stream-wise) diffusion is
X
neglected.

(3) Due to (2), the equations are parabolic in x. Physically, this
means all downstream influences are lost other than that
contained in external flow. A marching solution is possible.
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(4) Boundary conditions

matching
inlet
/&/ )
:> Solution by
5 marching
T y
X
.

Xo \

No slip

No slip: u(x,0,t) = v(x,0,t) =0

Initial condition: u(x, y,0) known

Inlet condition: u(XO,y,t)given at X,
Matching with outer flow: u(x,o,t)=U(xt)

(5) When applying the boundary layer equations one must keep in
mind the restrictions imposed on them due to the basic BL
assumptions
— not applicable for thick BL or separated flows (although
they can be used to estimate occurrence of separation).

(6) Curvilinear coordinates
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Although BL equations have been written in Cartesian
Coordinates, they apply to curved surfaces provided & << R and
X, y are curvilinear coordinates measured along and normal to
the surface, respectively. In such a system we would find under
the BL assumptions

_pu’
R
Assume u is a linear function of y: U= UY/5

Py

dp  pU?%y?
dy Ro?

P(6) - p(0) o
Or

pU°s
3R

Ap o
m_
pU? 3R

» therefore, we require 6 << R

(7) Practical use of the BL theory

For a given body geometry:

(@) Inviscid theory gives p(x) — integration gives L and D =0

(b) BL theory gives — J7(x), w(x), O(x),etc. and predicts
separation if any

(c) Ifseparation present then no further information — must
use inviscid models, BL equation in inverse mode, or NS
equation.

(d) If separation is absent, integration of z,(x) — frictional
resistance and body + §°, inviscid theory gives — p(x) for
body + 6%, can go back to (b) for more accurate BL
calculation including viscous — inviscid interaction
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(8) Separation and shear stress
1
Atthewall u=v=0— u,==p,
y7]
1 derivative u gives tw — 7y, = tly "
7w = 0 separation
2" derivative u depends on p,
dp
A e N
d U
i
%" u
&
4
i, N
| PI
<_/Backflow
Inflection point W

(c) Weak adverse
gradient:

dU<

0
dx

dp
dx

No separation,
PI in the flow

>0

(d) Critical adverse
gradient:

Zero slope
at the wall:

Separation

(e) Excessive adverse
gradient:

Backflow
at the wall:

Separated
flow region
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Laminar Boundary Layer (Re;qns = 5 X 10° — 3 x 10°) -
Similarity solutions (2D, steady, incompressible): method of reducing
PDE to ODE by appropriate similarity transformation; also, as a result of
transformation at least one coordinate lacks origin such that the solution
collapses to same form at all length or time scales
Uy +v, =0
uuy + vu,, = UUy +vuy,,

BCs: u(x,0) = v(x,0) =0
u(x,0)=U(x)

+ inlet condition

u(x,y) _ F[ y

For Similarity U(X) @j expect Q(X) related to 5(X)

Or in terms of stream function ¥ : U=V, V=—V,
For similarity ¥ =U (X)g (X)f (77) n= Y/g(x)
U= wy :Uf | v = _WX :_(ngf +ngf _ngﬂf)

BC:
u(x,0)=0=U(x)f'(0)=0= f'(0)=0
v(%,0)=0=U,(x)g(x) f (0)+U (x)g,(x) f (0)
—-U(x)g,(x)x0x f'(0)=0
= (U, (09(x) +U (0)g,(x)f (0) =0
= £(0)=0
u(x,0)=U(x)=U(x) f'(c0) =U (x)= f'(e0) =1
Write boundary layer equations in terms of ¥/
v~ =UU, +vp
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Substitute
Wy =Uf /g

iy =0 [3
v, =U,f —Uf 9, /9

Assemble them together:

(Uf'{uxf'—%]—(ung +Ug, f —Ugf Juf ' /g)

=UU, +v(U f'"/gz)

U
'R
Uu, f? —%(Ug)x ff' =UU, +v% fr

Uu,f?-UU ff -U®g /g ff =UU, +v—

£ 2 (Ug ), +5-U |- f7)=0

C1 CZ

Where for similarity C; and C; are constant or function n only

e i.e., for a chosen pair of C; and C,-> U (X) g(x) can be found
(Potential flow is NOT known a priori)

e Then solution of T +C, ff " +C2(1— f'z):O gives f(’?)%

u(x,y) mu%“ _AT(0) 5 %0 H. Cr Co
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The Blasius Solution for Flat-Plate Flow
U=constant-> Ux =0 -> Cz =0

Then Cl =799X
d 2C
0%)=T7 ) g(x)=[2cxu}?

2 U
Let C; =1 then Q(X):\/%{ |:> n= Nﬁc

E f +1/2 ff " 0 Blasius equations

for Flat Plate

f(0)= f (O) O f ( ): Boundary Layer

Solutions by series technique or numerical

%w\u Atanin Yoo

Vi
tv-l-.., N~ MW..; k /‘J )
an Tl 4- t

) | g2
e
< Lo, &

Y 099 35 5 2= Re —%
U _ oo when =350 2 ﬁ X =

o 1.7208

2 _
_fo( jd _Iol f)d\/ = x JRe
o ulu o . 2 Q:0.664
TR TR RN




ME:5160

Professor Fred Stern

Fall 2023

Chapter 7.2
13

*

)
So,

—=H =259
0

Ty = H

ou

_ 1t (0)

. 0.664

4

/ > 1 2 Re X
oy Y- 2vx/U E U X
D — = - -
1 21 Re Bk Re ,
!
v i
=1L «1 for Re, >>1
U J2Rey
2
TABLE 4-1
Numerical solution of the Blasius flat-plate
relation, Eq. (4-45) L
n fln) f'im) f'(n) y
7
0.0 0.0 0.0 0.46960 ] g
0.1 0.00235 0.04696 0.46956 e !
0.2 0.00939 0.00391 0.46931 i i
0.3 0.02113 0.14081 0.46861 oaeee L :
0.4 0.03755 0.18761 0.46725 : R B
05 0.05864 0.23423 0.46503 ra
45° T
0.6 0.08439 028058  0.46173 . L |
0.7 0.11474 0.32653 0.45718 0 T S T r
0.8 0.14967 037196  0.45119 —
0.9 0.18911 041672 0.44363 . = 5%
1.0 0.23299 0.46063 0.43438 .
1.1 0.28121 0.50354 0.42337
12 033366 054525 0.41057 =
13 0.39021 0.58559 0.39598 ,
14 0.45072 0.62439 0.37969 ! o o
15 0.51503 0.66147 0.36180 o ;({u"‘
16 0.58296 0.69670 034249 el
1.7 0.65430 0.72993 0.32195 4 o Symbol fe, X 1072
1.8 0.72887 0.76106 0.30045 + 08
1.9 0.80644 079000  0.27825 4 — 2 o .
2.0 0.88680 0.81669 0.25567 ¢
x
22 105495 0.86330  0.21058 o o 18—
24 1.23153 0.90107  0.16756 A2 N
26 1.41482 0.93060 0.12861 o 1 2 3 & &5 & 7 8
2.8 1.60328 0.95288 0.09511 fia- /U
3.0 1.79557 0.96905 0.06771 h
32 1.99058 0.98037 0.04637 16)
34 218747 0.98797 0.03054 FIGURE 44
3.6 2.38559 0.99289 0.01933 The Blasius solution for the flat-plate boundary layer: (a) numerical solution of Eq, (4-45); (h)
38 2.58450 0.99594 0.01176 comparison of f = u/U with experiments by Liepmann (1943).
40 278388 0.99777 0.00687
42 2.98355 0.99882  0.00386
44 3.18338 0.99940  0.00208
4.6 3.38329 0.99970  0.00108
48 3.58325 099986  0.00054
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order Reynolds number Re, = é’%
correction

Cp =1.328/./Re| +2.3/Re|.

™.

Similar breakdown occurs at Trailing edge.
From triple — deck theory the correction is
+2.661/Re{/®

e

S

Rex small therefore local breakdown of BL approximation

10 p—
| oo
u ,:E”’w
| Us /
08— iy
//
/ !
06 - /| !
/ R |
as v’
Tnedry o 1gxs | |
A Blasius o 3paxipF
® S40x105
¢ FZBxI0¥
22
/ s
H 2 Us
/ : WVT—x
) :
¢ 10 20 a0 40 50 % g i

Fig. 7.9. Velocity distribution in the laminar boundary layer on o flat plabe at zero incidence,

ag measured by Nikuradse [20]

o M =
Cp— T . - !
F= Selsst i ——  Theary frandtl
0005 |——~a<_ Theory Blasius o
R I~y 7t 1ot %q_:,
2,003+ _$ I ] - furbitent,
lominar | 1]
0.082- T~
B,
- Ty,
Fig. 7.10. Local coefficient 0.001 4—— L
of skin friction on a flat ] q
plate at zero incidence in |
incompressible flow, deter- 0.0005 -+ o e
mined from direct measure- + o fadirect skip (Ficlion measurement
ment of shearing stress by 0.0003 from . velocily profite
Liepmann and Dhawan 00002 @ Dirgct skip friction measurement, X = 28.6cm
[6, ].8] ’ e ] rd o ' p r , X =86cm
Theory : laminar from eqn. (7.32); =
turbulent from eqn. {(21.12) 20007 J— | l 1. ! | 1 | § ! ; 1 l
04 2 3 456 8W0° 2 4 56 & 110°

|
g

Upo X
R=3—
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Falkner Skan Wedge Flows f= () ~
f"+Cff +C,[1-f?)=0 R Similarity
R 1
, 2 U/U - f (77)/

9 9
C = (Ug) C,=5-U (Blasius Solution: C2=0, C;=1)

x

Consider (ng)x =2Ugg, +g°U
=2Ugg, +29°U, —g°U
= Zg(ug)x - gzux
=2vC, —vC,

Hence > (ng)x :V(2C1 _Cz), C, :%Ux
Choose Ci1=1 and C; arbitrary=C,

Integrate Ug? =v(2—C)x
u C E
Combine U 2_C X
CZQZUX/V W“‘AB&.C‘QJW'\—
C o
INU =——Inx+k U"‘)%’
2—c | _—~
_
Then U (X)= kx©/(2=¢)
< )= v(2-C) ;¢
k
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Change constants

U(x)=kx"
_y Im+1U
=N 2 wx
£ ff 4 Bl £2)=0, ﬂ=%,m=%
f(0)=f'(0)=0 f'(o0)=1

Solutions for —0.19884< £ <1.0

f
Separation (z,, =0)
Solutions show many commonly observed characteristics of BL flow:
e The parameter £ is a measure of the pressure gradient, dp/dx .

For >0, dp/dx < Oand the pressure gradient is favorable. For

B<0,the dp/dx >0 and the pressure gradient is adverse.

e Negative Ssolutions drop away from Blasius profiles as separation
approached
e Positive Ssolutions squeeze closer to wall due to flow acceleration

e Accelerated flow: Tmax near wall

e Decelerated flow: Tmax moves toward 5/ 2
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~
b i et 0=-bh
= .
e wdi .. seg t o el

tEnag o, e Sk 1S N
L E__%wﬁtma"""\- , WM = :

| /3 = = 08%KY (g"'\(wh.’kw\) 7 s | : S A0

Accelerated | |
flows | Accelerated flows

1.0 |-~ l== = Sam ot 1.0 B=1.0

\z R 7 \‘/ Sy

08 =10 08 L
% g = /ﬁ RO.O ded fl

£ 06 — B=0.0 06 4 etar ows

' N ~— B=—0.1 ' p=—0.1 |
0.4 //ég< T s 0.4 ~s--01e

/ LT B =—0.198838" . & f=—0.198838
Retarded flows '<
0.2 / 0.2 // AN \N
NI
0.0 0.0
053 = S0 i g T8 O N0 R e AT e
_ [uti+m) ., [u+m)
/=Y. S =Y 2vx
(a) (b)
FIGURE 4-11

(a) Velocity profiles and (b) shear-stress profiles for the Falkner-Skan equation.
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Momentum Integral Equation

Historically similarity and other AFD methods used for idealized flows
and momentum integral methods for practical applications, including
pressure gradients.

Momentum integral equation, which is valid for both laminar and
turbulent flow:
0.0)

[ (BL formof momentumequation + (u —U )continuity )y
y=0

pUc dx U dx
Y du
For flat plate equation> —_ =0

dx
5
0= jg(l—gjdy;
UL U
5
91
5
« u
5 =[1--1|d
(J,( ij

M uu, +vu 0 (pj—l— 1oz
omentum: X y - — | — -
oX\p) poy

The pressure gradient is evaluated form the outer potential flow using
Bernoulli equation

H:

p+%pu ? = constant
1

pX +§p2UUX =0

— Py =pUU,
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(u—U) (u, + vy) = ul, +uv, — Uu, — Uy,
_.v_._/
Continuity
uu, + vu, — UU, —;Ty + uu, +uvy, —Uu, + Uv, =0
0

0
1
_Ery = —2uu, — VU, +UU, — Uy, + Uu, + va

d 0
_ 2 e
5 (wU —u®)+ (U —wU, + 3y (vU + vu) ,

0
I—;rydy— (e —w) p=— IU(U—U)dy+UxI(U—U)dy+(1&/v;)\o
0 0

0

Tw @ 2 u o0 B
{u jU (1—Ujdy+uxg(u —u)dy} =

p "l b

U260, +2UU ,0+U,5

C;

“r 299, gy st Y

2  dx U dx

Ct do 6 dU 5
— = +(2+H)> ", H=2
2 dx + ) dx 0
Tw 1

0
0 ECf —49)(+(2+H)UUX

Historically two approaches for solving the momentum integral equation
for specified potential flow U(x):

1. Guessed Profiles
2. Empirical Correlations

Best approach is to use empirical correlations to get integral parameters
(8, 0*,0, H, Cy, Cp) after which use these to get velocity profile u/U
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Thwaites Method

uo
Multiply momentum integral equation by —,~
7,0 _Uodo 60° dU

= + (2+H)
ud vV odx Vo dx

The equation is dimensionless and, LHS and H can be correlated with
2
pressure gradient parameter A =%Z—li as shear and shape-factor

correlations

ZVU_Q = 5(2) = (1+0.00)°%

H=56"/6=H (z):iai(o.zs—z)i

ai= (2, 4.14, -83.5, 854, -3337, 4576)

Note
Uodo _1,d (0
YV dx 2 dx| 9

Substitute above into momentum integral equation

S(A) =%u %(%ZJ+1(2+ H)

d(2/U,)
dx

U =2[S- A2+ H)A]=F(1)

F(1)=0.45-64 based on AFD and EFD
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0 du
Define L= sothat A=z —
4 dx
UE=O.45—61=O.45—62d—U
dx dx
UE+6zd—U:O.45
dx dx
1 d 6
ie., ——(zU " )=0.45
.€ U5 dx( )

6 115
zU"” =0.45[U dx+C
0

0.45v ¥
30 =0+ Jusdx
0

Gy (X =0) =0 and U(x) known from potential flow solution

Complete solution:

2
1:,1(9):9_d_u
v dx
7,0
0 =S(1)
5 =6H(A)

Accuracy: mild px +5% and strong adverse px (tw near 0) +15%



ME:5160 Chapter 7.2
Professor Fred Stern  Fall 2023 22

. Pohlhausen Velocity Profile:

5: f(n)=an+bn®+cn’ +dn* with 77=%

a, b, ¢, d determined from boundary conditions

1) y=0>u=0,uy, =—HUX
v

2)y=0>u=U,u,=0,u, =0
No slip is automatically satisfied.

separation
F(n)=2n-217°+n* ’
G(n) () >—=F(n)+AG(n), -12< A <12
(77 - 6( _77) (experiment: Aseparation = -5)
2 2
AV, o
v dx ,UU

pressure gradient parameter related to

/1=/1(A):[37 A A ]A

-+
315 945 9072

Profiles are fairly realistic, except near separation. In guessed profile
methods u/U directly used to solve momentum integral equation
numerically, but accuracy not as good as empirical correlation methods;
therefore, use Thwaites’s method to get A, etc., and then use A to get A
and plot u/U.
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ii.  Howarth linearly decelerating flow (example of exact
solution of steady state 2D boundary layer)

Al & ——— :
¥t Vi\=s T Y- bevts &
I Vi D T T
w N 5 e b+ ¢uvnas
> » LR = < ‘
—~ -~ s . C\‘:;' ~ AS (-k\l
- R S . — — P —
NS /L Y
]
| PR | h L 4 > bodnpiomt,
AP’ &
Fia s W Z7%)

v

Howarth proposed a linearly decelerating external velocity distribution
U (x) :uo(l—%j as a theoretical model for laminar boundary layer study.

Use Thwaites’s method to compute:
a) Xsep

b) ch:o.lj

Note Uy = -Uo/L

Solution

X 5 —6
or =2V jug(l—ﬁ) dx =0.075"= (1-% -1
) L U L

X
oi{1-7) °

can be evaluated for given L, Re.

0=0—->x=0,
(Note:
f=0—>XxX=L

2 -6
ﬁze_d_uz_om{(l_zj _1}
v dx L
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X
Asgp =—0.09 = — =0.123
L
3% higher than exact solution =0.1199

C; (E = 0.1) —i.e. just before separation

A =-0.0661

S(2)=0.099 = %cf Re,

_ 2(0.099)

Cf
Re,

Compute Reg in terms if Re.

67 =0075" [1-0.1)° ~1]- O.O6613—L

UO 0
2
9_2 :0.0661‘/1' _ 0.0661
L 0 eL
6 0.257
L ReL%

Re, :§ReL = 0.257Re 2
~2(0.099)

= Re, 72 = 0.77Re "2
0.257

To complete
solution must

/ specify Re.
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Consider the complex potential

F(z)=ﬂzz :Qrzezie
2 2
@= Re[F(Z)]=%r200529

v = Im[F(z)]:%rzsin 26

Orthogonal rectangular hyperbolas
@: asymptotes y = £ X

y . asymptotes x=0, y=0
V=Vp=gp8 + %%ée

V, =arcos 260

\V, =—arsin 26

P.‘,‘.;;\.l\ "‘/.us

;‘r ‘ e

} %SQSO(ﬂO

L Fted

n»

v = Lao?T & AMGR.

~

~
Co = —an 8T > as”

direction as shown)

=

V =V, (cosd +sin )+ vy(-sin & +cosdf )=

(v, c0SO—Vysin @) + (v, sin @ +vy coso)]

A

Potential flow slips along surface: (consider & = 90°)

1) determine a such that V, =Ugatr=L, & =90°

v. =aLcos@x90)=U, = aL = U, i.e. a:—U—LO

2) let U (X)=V, at x=L-r:

= v, =a(L-x)cos(2x90) =U (x)

Or: U(x)=-a(L-X) =U—L°(L—X) =Uo(1—%)
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Boundary layer with pressure gradient

Uy +Vvy =0

Uuy +Vuy, :—g(p/p)+£@

OX p oy

The pressure gradient term has a large influence on the solution. In
particular, adverse pressure gradient (i.e. increasing pressure) can cause
flow separation. Recall that the y momentum equation subject to the
boundary layer assumptions reduced to

py=0i.e., p = pe = constant across BL.
That is, pressure (which drives BL equations) is given by external

inviscid flow solution which in many cases is also irrotational. Consider
a typical inviscid flow solution (chapter 8)

<’_—\>y 4
&M sm;; % %..; (évww sinbiake)

( o»ﬁv‘m& .«m Mm)vi\
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Even without solving the BL equations we can deduce information about
the shape of the velocity profiles just by evaluating the BL equations at

the wall (y = 0)
ou_op.
P T ox
where P _ -pU, a,
OX dx

which shows that the curvature of the velocity profile at the wall is
related to the pressure gradient.

Effect of Pressure Gradient on Velocity Profiles

Point of inflection: a point where a graph changes between concave
upward and concave downward.

The point of inflection is basically the location where second derivative
o°u 0
of U is zero, i.e., y—

(a) favorable gradient: px<0, Ux>0, uyy<0

No point of inflection i.e. curvature is negative all across the BL and BL

IS very resistant to separation. Note uyy(5)<0 in order for u to merge
smoothly with U.
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(b) zero gradient: px=Ux=uy =0

D b
==
¢‘/‘Qt’:r = pair £ =

)

(c) weak adverse gradient: px>0, Ux<0, uyy>0
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Pl in flow, still no separation
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(d) critical adverse gradient: px>0, Ux<0, uy>0, uy =0

w

%A
7
e
24 P
Z.k)=/‘*<’}—§:o

Pl in flow, incipient separation

(e) excessive adverse gradient: px>0, Ux<0, uy>0, uy <0

——
\34\5 -

Tw<0
| B

%
U

Pl in flow, backflow near wall i.e. separated flow region

I.e. main flow breaks away or separates from the wall: large increase in
drag and loss of performance:
Hseparation = 3.5 laminar

= 2.4 turbulent
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3-D Integral methods

Momentum integral methods perform well (i.e. compare well with
experimental data) for a large class of both laminar and turbulent 2D
flows. However, for 3D flows they do not, primarily due to the inability
of correlating the cross flow velocity components.

P =

4 ‘/’;’ x
-
The cross flow is driven by Z—p which is imposed on BL from the
Z

outer potential flow U(x,2).

3-D boundary layer equations

Uly +VUy +WU, :-ai(p/,o)+19uyy —%(u’v’);
X

0
UWy +VWy, +WW, =—§(p/p)+19w —@(V );

Uy +Vy +W; =0;

+ closureequations

Differential methods have been developed for this reason as well as for
extensions to more complex and non-thin boundary layer flows.



