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Chapter 7.2 Laminar Boundary Layers 

 

Boundary Layer Theory 

 

Introduction:   

 

       Boundary layer flows: External flows around streamlined bodies at 

high Re have viscous (shear and no-slip) effects confined close to 

the body surfaces and its wake but are nearly inviscid far from the 

body. 

       Applications of BL theory: aerodynamics (airplanes, rockets,  

       projectiles), hydrodynamics (ships, submarines, torpedoes),  

       transportation (automobiles, trucks, cycles), wind engineering  

       (buildings, bridges, water towers), and ocean engineering (buoys,  

       breakwaters, cables).  

 

Flat-Plate Momentum Integral Analysis & Laminar approximate 

solution 

 

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat 

plate fixed in a uniform stream of velocity ˆUi .   

 

 

 

 

 

 

 

 

 

 

Boundary-layer thickness arbitrarily defined by y = %99 (where, %99 is 

the value of y at u = 0.99U). Streamlines outside %99  will deflect an 

amount
* (the displacement thickness). Thus, the streamlines move 

outward from Hy =  at 0=x  to 
* +=== HYy at 1xx = . 
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Conservation of mass: 

CS

V ndA • =0=
0 0

H H

Udy udy


 
+

− +   

Assuming incompressible flow (constant density), this relation simplifies 

to 

( ) ( )   −+=−+==
Y Y Y

dyUuUYdyUuUudyUH
0 0 0

 

Note: 
*+= HY , we get the definition of displacement thickness:     

                                     dy
U

uY
 








−=

0
* 1  

       * ( a function of x only) is an important measure of effect of BL on 

external flow. To see this more clearly, consider an alternate derivation 

based on an equivalent discharge/flow rate argument: 

 

 =



 0*

udyUdy
 

 

 

Flowrate between * and  of inviscid flow=actual flowrate, i.e., 

inviscid flow rate about displacement body = equivalent viscous flow 

rate about actual body 

 







−==−




0

*

000

1

*

dy
U

u
udyUdyUdy

   

w/o BL - displacement effect=actual discharge 

For 3D flow, in addition it must also be explicitly required that 
* is a 

stream surface of the inviscid flow continued from outside of the BL. 

δ* Lam=/3 

δ 

δ* Turb=/8 

Inviscid flow about δ* body 
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Conservation of x-momentum: 

( ) ( )
0 0

H Y

x

CS

F D uV ndA U Udy u udy  = − = • = − +     

dyuHUDDrag
Y

−==
0

22  = Fluid force on plate = - Plate 

force on CV (fluid) 

Again, assuming constant density and using continuity: =
Y

dy
U

u
H

0  

dxdyuUdyuUD
x

w
Y

Y

  =−=
00

0

22 /   

dy
U

u

U

u

U

D Y








−==  1

02



 

where,   is the momentum thickness (a function of x only), an 

important measure of the drag. 

dxC
xxxU

D
C

x

fD ===
0

2

122 



( )
dx

d
xC

dx

d
C

U

C Df
w

f






2

2

1 2

===
 

  2

fC

dx

d
=


                    dx

d
Uw


 2=

 

  

 

 

 

 

 

 

 

 
 

Per unit span 

Special case 2D 

momentum integral 

equation for px = 0 



ME:5160  Chapter 7.2 

Professor Fred Stern     Fall 2023  4 

 

 

Simple velocity profile approximations: 

 

)//2( 22  yyUu −=  

 

u(0) = 0              no slip 

u(δ) = U             matching with outer flow 

uy(δ)=0  

 

Use velocity profile to get Cf() and () and then integrate momentum 

integral equation to get (Rex) 

 

δ* = δ/3  

θ = 2δ/15  

H= δ*/θ= 5/2 

0

2

2

1/2

* 1/2

1/2

1/2

2 /

2 /
2 2 (2 /15)

1 / 2

15

30

/ 5.5 / Re

Re /

/ 1.83 / Re

/ 0.73 / Re

1.46 / Re 2 ( )

w

y

f

x

x

x

x

D L f

u
U

y

U d d
C

U dx dx

dx
d

U

dx

U

x

Ux

x

x

C C L

   

  





 
















=


= =



 = = =

 =

=

=

=

=

=

= =

 

 

 

 

 

10% error, cf. Blasius 
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Boundary layer approximations, equations, and comments 
                
 

 

 

 

 

 

 

 

2D NS, =constant, neglect g 

 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈(𝑣𝑥𝑥 + 𝑣𝑦𝑦) 

 

Introduce non-dimensional variables that includes scales such that all 

variables are of O(1): 







/Re

Re

/

/

Re

/

2

0*

*

*

*

*

*

UL

U

pp
p

U
v

Uuu

LtUt

L

y
y

Lxx

=

−
=

=

=

=

=

=

 

 

 

 

 

𝑢 =  𝑣 =  0 

x 

y 
U, , 

𝑅𝑒𝑥 = 𝑈𝐿/𝜈 

𝑣∗ =
𝜈

𝑈
√𝑅𝑒 
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The NS equations become (drop *) 

 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +
1

𝑅𝑒
𝑢𝑥𝑥 + 𝑢𝑦𝑦 

1

𝑅𝑒
(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −𝑝𝑦 +

1

𝑅𝑒2
𝑣𝑥𝑥 +

1

𝑅𝑒
𝑣𝑦𝑦 

 

For large Re (BL assumptions) the underlined terms drop out and the BL 

equations are obtained.  

 

Therefore, y-momentum equation reduces to 

 
0

. . ( , )

( )

y

x t x

p

i e p p x t

p U UU

=

=

 = − +

 

 

2D BL equations: 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = (𝑈𝑡 + 𝑈𝑈𝑥) + 𝜈𝑢𝑦𝑦 

 

Note:  

 

(1) U(x,t), p(x,t) impressed on BL by the external flow. 

(2) 0
2

2

=




x
: i.e., longitudinal (or stream-wise) diffusion is 

neglected. 

(3) Due to (2), the equations are parabolic in x. Physically, this 

means all downstream influences are lost other than that 

contained in external flow. A marching solution is possible. 

 

 

 

From Euler/Bernoulli equation for 

external flow 
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(4) Boundary conditions 

 

 

 

 

 

 

 

 

 

          

           

           

          No slip: 𝑢(𝑥, 0, 𝑡) = 𝑣(𝑥, 0, 𝑡) = 0 

          Initial condition:  ( )0,, yxu  known  

          Inlet condition: ( )tyxu ,,0 given at 0x  

          Matching with outer flow: ( ) ( ), , ,u x t U x t =  

           

(5) When applying the boundary layer equations one must keep in 

mind the restrictions imposed on them due to the basic BL 

assumptions 

          → not applicable for thick BL or separated flows (although  

         they can be used to estimate occurrence of separation). 

 

(6) Curvilinear coordinates 

 

 

y 

x 

X0 

inlet 

Solution by 

marching 

matching 

No slip 

δ 
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         Although BL equations have been written in Cartesian    

         Coordinates, they apply to curved surfaces provided δ << R and 

         x, y are curvilinear coordinates measured along and normal to  

         the surface, respectively. In such a system we would find under  

         the BL assumptions 

               

2

y

u
p

R


=  

         Assume u is a linear function of y:  u Uy =         

 

              

2 2

2

2

( ) (0)
3

dp U y

dy R

U
p p

R





 


=

− 
 

         Or 

 

         2
;

3

p

U R






  therefore, we require δ << R 

 

(7) Practical use of the BL theory 

         For a given body geometry: 

(a) Inviscid theory gives p(x) → integration gives L and D = 0 

(b) BL theory gives → δ*(x), τw(x), θ(x),etc. and predicts 

separation if any 

(c) If separation present then no further information → must 

use inviscid models, BL equation in inverse mode, or NS 

equation. 

(d) If separation is absent, integration of τw(x) → frictional 

resistance and body + δ* , inviscid theory gives → p(x) for 

body + δ*, can go back to (b) for more accurate BL 

calculation including viscous – inviscid interaction 
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(8) Separation and shear stress 

         At the wall, 𝑢 = 𝑣 = 0 → 
1

yy xu p


=  

         1st derivative u gives τw → 
wyw u =  

 

         τw = 0 separation 

 

         2nd derivative u depends on 
xp   

 

 
 

 

 

 

 

 

 

 

Inflection point 
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Laminar Boundary Layer (𝑹𝒆𝒕𝒓𝒂𝒏𝒔 = 𝟓 × 𝟏𝟎
𝟓 − 𝟑 × 𝟏𝟎𝟔) - 

Similarity solutions (2D, steady, incompressible): method of reducing 

PDE to ODE by appropriate similarity transformation; also, as a result of 

transformation at least one coordinate lacks origin such that the solution 

collapses to same form at all length or time scales 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝑈𝑈𝑥 + 𝜈𝑢𝑦𝑦 

 

BCs: 𝑢(𝑥, 0) = 𝑣(𝑥, 0) = 0 

         ( ) ( )xUxu =,       

          + inlet condition 

 

For Similarity  

( )
( ) ( )








=

xg

y
F

xU

yxu ,

  expect ( )xg related to ( )x  

Or in terms of stream function  : yu =  xv −=  

For similarity    ( ) ( ) ( ) fxgxU=         ( )xgy=      

 
'Ufu y ==    xv −= '( )x x xU gf Ug f Ug f= − + −  

BC:  

( ) 0)0(0)0()(00, === ffxUxu  

( )

( )

0)0(

0)0()()()()(

0)0(0)()(

)0()()()0()()(00,

=

=+

=−

+=

f

fxgxUxgxU

fxgxU

fxgxUfxgxUxv

xx

x

xx

 

( ) ( ) ( ) 1)()()(, === fxUfxUxUxu  

Write boundary layer equations in terms of   

yyyxyyxyxy UU  +=−  

 

𝑣 

𝑣 

 𝜈 
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Substitute 

gUfyy

''=  

2''' gUfyyy =  

ggUffU xxxy /'''  −=  

Assemble them together: 

 

( ) ( )( )

( )2'''

'''''''

gfUUU

gUffUgfUggfU
g

g
UffUUf

x

xxx
x

x





+=

−+−







−

 

'''

2

''2''2' f
g

U
UUffggUffUUfUU xxxx +=−−

 

( ) '''

2

''2' f
g

U
UUffUg

g

U
fUU xxx +=−

 

 

( ) ( ) 01 2'
2

''''' =−++ fU
g

ffUg
g

f xx
  

 

 

Where for similarity C1 and C2 are constant or function  only 

 

• i.e., for a chosen pair of C1 and C2→ ( )xU , ( )xg  can be found        

(Potential flow is NOT known a priori) 

• Then solution of ( ) 01 2'

2

''

1

''' =−++ fCffCf  gives ( )f →

( )yxu ,  , 
( )'' 0

w

w

Ufu

y g


 


= =


, , *,, H, Cf, CD 

 

C1 C2 

 𝜈 

 𝜈 

 

  

𝜈 

𝜈 𝜈 
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The Blasius Solution for Flat-Plate Flow 

          U=constant→ 0=xU → 02 =C  

          Then xgg
U

C


=1  

         
( )

U

C
g

dx

d 12 2
=

              ( )   21

12 UxCxg =  

     Let 11 =C , then ( )
U

x
xg

2
=              x

U
y




2
=  

 

02/1 ''''' =+ fff  

( ) ( ) ,000 ' == ff ( ) 1' =f  

 

Solutions by series technique or numerical 

 

 
 

99.0=
U

u
 when 5.3=   →  

x
x Re

5
=


   



Ux
x =Re  

( )
U

x
dfdy

U

u 


2
11

0
'

0
*




−=







−=       →     

x
x Re

7208.1*

=


  

 

( ) 


 d
U

x
ffdy

U

u

U

u 2
11 '

0
'

0 


−=







−=     →   

x
x Re

664.0
=


 

Blasius equations 

for Flat Plate 

Boundary Layer 

 

 
 

  

 

𝜈 
𝜈 

2𝜈𝑥 
2𝜈𝑥 

 

 

 

2𝜈𝑥 

2𝜈𝑥 

𝜈 

𝜈 
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So,  59.2
*

== H



 

( )

Ux

Uf

y

u

w

w





2

0''

=



=       →     x

U

C
x

w
f






===

Re

664.0

2

1 2  

L

L

fD
L

dx
C

LU

D
C

Re

328.1

2

1 02

=== 


 ;      


UL
L =Re ; 

 

               
𝑣

𝑈
=
𝜂𝑓′−𝑓

√2𝑅𝑒𝑥
≪ 1            for    1Re x  

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜈 

2𝜈𝑥 
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 CD ReL 

Oseen 3-226 (3rd 

edition,vicous 

flows) 

<1 

Blasius  100<Re<Retr~3

×106 

 

LE Higher 

order      

correction      

  

LLDC Re/3.2Re/328.1 +=  

 

 

 

 

Rex small therefore local breakdown of BL approximation 

Similar breakdown occurs at Trailing edge. 

From triple – deck theory the correction is 

+2.661/ 8/7ReL
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Falkner-Skan Wedge Flows 

( ) 01 2'

2

''

1

''' =−++ fCffCf                

( ) ( ) ,000 ' == ff     ( ) 1' =f              

   
( )

xUg
g

C


=1      xU
g

C


2

2 =      (Blasius Solution: C2=0, C1=1) 

 

Consider   ( ) xxx UgUggUg 22 2 +=  

                               xxx UgUgUgg 2222 −+=  

                               ( ) xx UgUgg 22 −=  

                                   212 CC  −=  

Hence →   ( ) ( )21

2 2 CCUg x −= ,       xU
g

C


2

2 =  

     Choose C1=1 and C2 arbitrary=C,  

 

Integrate                   ( )xCUg −= 22   

Combine                    xC

C

U

U x 1

2 −
=

 

 

kx
C

C
U +

−
= ln

2
ln

 

 

Then                               ( ) ( )CCkxxU −= 2
 

( )
( )

C

C

x
k

C
xg −

−
−

= 2

1
2

 

 

 

 

( )ff =  

( )xgy=  

( )'fUu =  

Similarity 

form of BL 

eq. 

 

xUgC 2=  

  

  

 
 

 

 

 

𝜈 𝜈 

2𝜈 𝜈 

𝜈 

𝜈 

𝜈 

𝜈 

𝜈 
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Change constants 

( ) mkxxU =  

x

Um
y

g

y




2

1+
==  

          ( ) 01 2'''''' =−++ ffff  ,    1

2

+
=

m

m


, 



−
=

2
m

 

( ) ( ) 000 ' == ff                    ( ) 1' =f  

Solutions for 0.119884.0 −   

 

            Separation ( 0=w ) 

Solutions show many commonly observed characteristics of BL flow: 

• The parameter   is a measure of the pressure gradient, dxdp . 

For 0 , 0dxdp and the pressure gradient is favorable. For 

0 , the 0dxdp  and the pressure gradient is adverse. 

• Negative  solutions drop away from Blasius profiles as separation 

approached 

• Positive  solutions squeeze closer to wall due to flow acceleration 

• Accelerated flow: max near wall 

• Decelerated flow: max moves toward 2  

 

 

 𝜈 
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Momentum Integral Equation 

 

Historically similarity and other AFD methods used for idealized flows 

and momentum integral methods for practical applications, including 

pressure gradients. 

 

Momentum integral equation, which is valid for both laminar and 

turbulent flow: 

( )( )dyUu
y



=

−+
0

continuityequation  momentum of form BL  

( )
dx

dU

U
H

dx

d
C

U
f

w 




++== 2

2

1
2  

 

 













−=

=









−=













0

*

*

0

1

;

;1

dy
U

u

H

dy
U

u

U

u

 

Momentum: 
y

p

x
vuuu yx




+












−=+





1
 

The pressure gradient is evaluated form the outer potential flow using 

Bernoulli equation 

21
constant

2
p U+ =  

02
2

1
=+ xx UUp   

xx UUp =−  

For flat plate equation→ 0=
dx

dU
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(𝑢 − 𝑈) (𝑢𝑥 + 𝑣𝑦)⏟      
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦

= 𝑢𝑢𝑥 + 𝑢𝑣𝑦 − 𝑈𝑢𝑥 − 𝑈𝑣𝑦 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 − 𝑈𝑈𝑥 −
1

𝜌
𝜏𝑦

⏟                
0

+ 𝑢𝑢𝑥 + 𝑢𝑣𝑦 − 𝑈𝑢𝑥 + 𝑈𝑣𝑦⏟                
0

= 0 

−
1

𝜌
𝜏𝑦 = −2𝑢𝑢𝑥 − 𝑣𝑢𝑦 + 𝑈𝑈𝑥 − 𝑢𝑣𝑦 + 𝑈𝑢𝑥 + 𝑈𝑣𝑦

=
𝜕

𝜕𝑥
(𝑢𝑈 − 𝑢2) + (𝑈 − 𝑢)𝑈𝑥 +

𝜕

𝜕𝑦
(𝑣𝑈 + 𝑣𝑢) 

( ) ( ) ( ) 
 




 −+−+−



=−−=−

0 0
0

0

/)(
1

vuvUdyuUUdyuUu
x

dy xwy 


 

( )

*2

00

2

2

1







xxx

x
w

UUUU

dyuUUdy
U

u

U

u
U

x

++

=







−+








−




= 



 

 

( )
dx

dU

Udx

dC f 1
2

2

*


++=  

( )
dx

dU

U
H

dx

dC f 
++= 2

2
, 



 *

=H  

( ) xxf
w U

U
HC

U







++== 2

2

1
2

 

 

Historically two approaches for solving the momentum integral equation 

for specified potential flow U(x): 

 

1. Guessed Profiles 

2. Empirical Correlations 

 

Best approach is to use empirical correlations to get integral parameters 

(, *,, H, Cf, CD) after which use these to get velocity profile u/U 

0 
0 

 𝑣𝑈 − 𝑣𝑢 
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Thwaites Method 

Multiply momentum integral equation by 

U
 

( )H
dx

dU

dx

dU

U

w ++= 2
2












 

 

The equation is dimensionless and, LHS and H can be correlated with 

pressure gradient parameter 
dx

dU






2

= as shear and shape-factor 

correlations 

 

( )

( )

0.62

5
*

0

( 0.09)

/ (0.25 )

w

i

i

i

S
U

H H a

 
 



   
=

= = +

= = = −
 

 

ai = (2, 4.14, -83.5, 854, -3337, 4576) 

 

Note 

 









=







 2

2

1

dx

d
U

dx

dU
 

 

Substitute above into momentum integral equation 

 

( )H
dx

d
US ++








= 2

2

1
)(

2





  

( )
( )  ( )


FHS

dx

Ud
U x =+−= 22

/
 

 

( ) 0.45 6F  = −  based on AFD and EFD 

 

 

  

 

 

𝜈 

𝜈 𝜈 

𝜈 

𝜈 
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Define 

 2

=z so that 
dx

dU
z=  

dx

dU
z

dx

dz
U 645.0645.0 −=−=   

45.06 =+
dx

dU
z

dx

dz
U  

i.e., ( ) 45.0
1 6

5
=zU

dx

d

U
 

CdxUzU
x

+= 
0

56 45.0             

➔ +=

x

dxU
U

0

5

6

2

0

2 45.0 


 

0)0(0 ==x  and U(x) known from potential flow solution 

 

Complete solution: 

 

( )
dx

dU






2

==
 

( )



S

U

w =  

( ) H=*
 

 

Accuracy: mild px  5% and strong adverse px (w near 0)  15% 
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i. Pohlhausen Velocity Profile: 

( ) 432  dcbaf
U

u
+++==  with 




y
=  

a, b, c, d determined from boundary conditions 

1) 0=y → u = 0, xyy U
U

u


−=  

2) =y → Uu = , 0=yu , 0=yyu  

No slip is automatically satisfied. 

 

( )

( ) ( )3

43

1
6

22








−=

+−=

G

F

→ ( ) ( ) GF
U

u
+= , 1212 −  

U
p

dx

dU
x







 22

−==   

pressure gradient parameter related to  

 

( ) 












 
+


−==

9072945315

37 2

  

 

Profiles are fairly realistic, except near separation.  In guessed profile 

methods u/U directly used to solve momentum integral equation 

numerically, but accuracy not as good as empirical correlation methods; 

therefore, use Thwaites’s method to get  etc., and then use  to get  

and plot u/U. 

 

 

 

 

 

 

(experiment: separation  = -5) 

separation 
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ii. Howarth linearly decelerating flow (example of exact 

solution of steady state 2D boundary layer)  

 

 
 

Howarth proposed a linearly decelerating external velocity distribution  









−=

L

x
UxU 1)( 0

 as a theoretical model for laminar boundary layer study. 

Use Thwaites’s method to compute:  

a) Xsep 

b) 







= 1.0

L

x
C f

 

Note Ux = -U0/L 

 

Solution 












−








−=








−









−

=

−

 11075.01

1

45.0
6

00

5

5

06

6

0

2

L

x

U

L
dx

L

x
U

L

x
U

x



 

 

can be evaluated for given L, ReL  

 

(Note: 
Lx

x

=→=

=→=



    ,00
) 

 












−








−−==

−

11075.0

62

L

x

dx

dU




  
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123.009.0 =−=
L

X sep

sep  

 

 3% higher than exact solution =0.1199 

 









= 1.0

L

x
C f

→i.e. just before separation 

 

( )

0.0661

1
0.099 Re

2

2(0.099)

Re

f

f

S C

C









= −

= =

=

 

 

Compute Re in terms if ReL 

 

( ) 

( ) 2/12
1

2
1

2
1

0

2

2

0

6

0

2

Re77.0Re
257.0

099.02

Re257.0ReRe

Re

257.0

Re

0661.0
0661.0

0661.011.01075.0

−−

−

==

==

=

==

=−−=

LLf

LL

L

L

C

L

L

U

L

L

U

L

U

L












 

 

 

 

 

 

 

To complete 

solution must 

specify ReL 
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Consider the complex potential 

( ) ier
a

z
a

zF 222

22
==  

( )   2cos
2

Re 2r
a

zF ==  

( )   2sin
2

Im 2r
a

zF ==  

Orthogonal rectangular hyperbolas 

 

 : asymptotes y = ± x 

 

 : asymptotes x=0, y=0 











2sin

2cos

ˆ
1

ˆ

arv

arv

e
r

eV

r

rr

−=

=

+==

0
2

 


 (flow direction as shown) 

 

( ) ( )
( ) ( ) jvvivv

jivjivV

rr

r

ˆcossinˆsincos

ˆcosˆsinˆsinˆcos









++−

=+−++=
 

Potential flow slips along surface: (consider 
90= ) 

 

1) determine a such that 0Uvr = at r=L, 
90=  

   00)902cos( UaLUaLvr −=== , i.e. 
L

U
a 0−=  

2) let ( ) rvxU = at x=L-r: 

( )

)1()()()(:

)()902cos(

0
0

L

x
UxL

L

U
xLaxUOr

xUxLavr

−=−=−−=

=−=
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Boundary layer with pressure gradient   

 

vu
y

u

y
p

x
vuuu

vu

yx

yx

−



=




+




−=+

=+








1
)/(

0

 

 

The pressure gradient term has a large influence on the solution. In 

particular, adverse pressure gradient (i.e. increasing pressure) can cause 

flow separation. Recall that the y momentum equation subject to the 

boundary layer assumptions reduced to 

 

py= 0 i.e., p = pe = constant across BL. 

 

That is, pressure (which drives BL equations) is given by external 

inviscid flow solution which in many cases is also irrotational. Consider 

a typical inviscid flow solution (chapter 8) 
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Even without solving the BL equations we can deduce information about 

the shape of the velocity profiles just by evaluating the BL equations at 

the wall (y = 0) 
2

2

e  - U

e

e e

pu

y x

p dU
where

x dx






=

 


=



 

 

which shows that the curvature of the velocity profile at the wall is 

related to the pressure gradient. 

 

Effect of Pressure Gradient on Velocity Profiles 

Point of inflection: a point where a graph changes between concave 

upward and concave downward. 

The point of inflection is basically the location where second derivative 

of u  is zero, i.e., 0
2

2

=




y

u
 

 

(a) favorable gradient: px<0, Ux>0, uyy<0 

 

 
No point of inflection i.e. curvature is negative all across the BL and BL 

is very resistant to separation.  Note uyy()<0 in order for u to merge 

smoothly with U. 
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(b) zero gradient: px = Ux = uyy = 0 

 
 

 

 

 

 

(c) weak adverse gradient:  px>0, Ux<0, uyy>0 

 

 
PI in flow, still no separation 
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(d) critical adverse gradient: px>0, Ux<0, uyy>0, uy = 0 

 

 

PI in flow, incipient separation 

 

(e) excessive adverse gradient: px>0, Ux<0, uyy>0, uy < 0 

 

 

 
 

PI in flow, backflow near wall i.e. separated flow region 

 

i.e. main flow breaks away or separates from the wall: large increase in 

drag and loss of performance: 

 Hseparation = 3.5 laminar          

               = 2.4 turbulent          

τw < 0 
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3-D Integral methods 

 

Momentum integral methods perform well (i.e. compare well with 

experimental data) for a large class of both laminar and turbulent 2D 

flows. However, for 3D flows they do not, primarily due to the inability 

of correlating the cross flow velocity components. 

 

 
 

The cross flow is driven by 
z

p




, which is imposed on BL from the 

outer potential flow U(x,z). 

 

3-D boundary layer equations 

 

equations closure   

;0

);()/(

);()/(

+

=++





−+




−=++





−+




−=++

zyx

yyzyx

yyzyx

wvu

wv
y

wp
z

wwvwuw

vu
y

up
x

wuvuuu





 

Differential methods have been developed for this reason as well as for 

extensions to more complex and non-thin boundary layer flows. 

 


