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Chapter 6: Viscous Flow in Ducts

6.4 Turbulent Flow in Pipes and Channels using mean-
velocity correlations.

1. Smooth circular pipe

Recall laminar flow exact solution:

8
TZW =64/Rey Rey = Uaved < 5000

Pave 9,

f:

A turbulent flow “approximate” solution can be obtained
simply by computing uave based on log law.

u u
— —Iny +B
u x Vv

Where:
u=u(y); k=041; B=5; u" =,/t,/p; y=R—7r
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Or:

*

Vo oaamRY 134

* —

u Y

f % =1.99log[Re, f"?]-1.02
=2log[Re, f*?]-0.8 ~_,
EFD Adjusted constants.
f only drops by a factor of 5 over 10* < Re < 108

Since f equation is implicit, it 1S not easy to see
dependency on p, i, V, and D

N -1/4 4000 < Rep < 10°
f (pipe) =0.316Rep Blasius (1911) power law

curve fit to data.

2
hy = Ap _ L v
4 D 2¢
Turbulent Flow: Ap = 0.158Lp3/*ut/4p=>/4y7/4
¥ Nearly quadratic
I I (As expected)

Only slightly ~ Drops with pipe

Nearly linear with diameter.

—_ 0-241L,03/4,Ul/4 D—4.75Q1.75

Laminar flow: Ap = 8uLQ/mR*
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Ap (turbulent) decreases more sharply with D than

Ap (laminar) for same Q; therefore, increase D for smaller
Ap. 2D decreases Ap by 27 for same Q.

= 1, Ru
umfx :u(r : O):—In—u+B
u u K L

Combine with
V 1, Ru 3
=—In +

— =—In—+B-—
u K v K
:>V* = mac _ 3 :>V:umax—3u — Uma g, SU
u u 2K K V 2V
Also
*2 *
) T jo 8 u
T, = and f=—"Y—=f = =—=,/1/8
w= A 1/8pV* 1/8pV* ~V
u__ 3u”
—

3
=1+—=1+—,/Ff/8=1+1.3/f
V 2V 2K

Or:

V 1
For Turbulent Flow: |, —~ k+13yf)

m

Y A L L LI )

J94 o LT 98

Recall laminar flow:
V /Uy =05
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TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY

Re— 4 x 10° 2.3 x 104 1.1 x 10° 1.1 x 10° 3.2 x 10°
1 1 1 1
m—> = e — S e
B 6.0 6.6 7.0 8.8 10.0
V[ Viax — 0.791 0.807 0.817 0.850 0.865

source: Schlichting (36). Used with permission of the McGraw-Hill Companies.

Power law fit to velocity profile:

_— m

B el B

. " m = m(Re)
11
10
a

LS

7\
6
siu.‘ 10° 105

pVD
H

Re=

MFIGURE 8.7 Exponent, #, for power-law velocity profiles.
(Adapted from Ref. 1.)

10
Laminar =
’
7 U
P
Turbulent <=
|
‘I[ HFIGURE B.18
) 0.4 L0 'Typical laminar flow and
7 turbulent Now velocity
Vv profiles.
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2. Turbulent Flow in Rough circular pipe

U*=f(y"k") f = f(Reg,k/d)

Ut= l In y+ +B— AB(k+) +«—— | og law shifts downward.
K

which leads to three roughness regimes:

1. kK"<4 hydraulically smooth
2. 4<k*<60 transitional roughness (Rre dependence)
3. k">60 full rough (no Re dependence)

¢-1/2 _ _2log k/d N 2.51 Moody diagram
3.7 Red f -1/2

6.9 k/d 111 Approximate explicit
~-18log ﬁ*’ 37 formula
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Values of (Vd) for water at 60°F (velocily, ft's x diameler, in)

000
ol 02 04 06 081 2 4 6 8 10 20 <0 60 80 100 200 400 600 80O 1000 2000 4000 60(; 10,000
‘ | Values of (Vd) for atmospheric air at 60°F l | I ! i l ] | | [ ] i
£000 80,000
2z 4 6810 20 40 L l]m 200 400 1600 800 10001 2000 4000 16000 100001 20000 | 40000 60000 100000
LV 7 e B I MR W N
0.09 -Laminar-Critical ”l | {E”
i flow T zonef Transition
0.08 =i 20! iad Complete turbulence, rough pipes
0.07 SNENERA - 0.05
S 0.04
0.06 |-HH-H =
Y <1 = 0.03
R e
0.05 % Y TN = 0.02
Ptz SN =
j_\\\o Z N RNNED! Ry 0.015
0.04 R\ & SR
T [o\7 B\ Ne - e 0.01 ~
% 27T NS ma w|=
3 >IN & S = B 0008 =
== - g
— - ~ 0.006 =1
I 0.03 Reerl, o= ‘ )
= : H : 0004 2
3 2 L e - 4
ke 2 0 0002 %
S - 3 3
2 0.02 - S R ] 0.001
= R 0.0008
~ s 0.0006
i~ (™= ™
ET TR S 0.0004
0015 oS =T ESE
% oL R T 0.0002
Pes TN Mimn== SHARTRN 0.0001
N L Ss L R
i R i ] 0.000,05
0.009 %N: H
0.008 = (=il 0,000,01

Reynolds number Re = ‘:—fi

103 2(103)3 456 8]04 2(104)3 4 56 8105 2(105)3 456 8]06 2(106)3 4 56 8107 2([07\)3 456 810S'

€

€%
i 0.000,001 7
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There are basically four types of problems involved with
uniform flow in a single pipe:

1. Determine the head loss, given the kind and size of pipe
along with the flow rate, Q = A*V

2. Determine the flow rate, given the head, kind, and size of
pipe.

3. Determine the pipe diameter, given the type of pipe, head,
and flow rate.

4. Determine the pipe length, given Q, d, hs, ks, u, g

1. Determine the head loss.
The first problem of head loss is solved readily by obtaining f
from the Moody diagram, using values of Re and ks/D
computed from the given data. The head loss hs is then
computed from the Darcy-Weisbach equation.

f = f(Rep, ki/D)

2
hf:fLV_:Ah Ah2(21—22)+(&—&j
D 2¢g y v

A

Rep = ReD(V, D)
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2. Determine the flow rate.

The second problem of flow rate is solved by trial, using a
successive approximation procedure. This is because both
Re and f(Re) depend on the unknown velocity, V. The
solution is as follows:

1) solve for V using an assumed value for f and the Darcy-
Weisbach equation.

v :|:29hf le L2
L/D

H—/

known from note sign.
given data.

2) using V compute Re
3) obtain a new value for f = f(Re, ks/D) and repeat as
above until convergence

D3/2 Zghf 1/2
fl/2:
Or can use Re y [ 1

scale on Moody Diagram

1) compute re f¥2 and ks/D
2) read f
2
3)solve V from h; =f LV®
D 29

4)Q=VA



058:0160 Chapter 6-part4
Professor Fred Stern  Fall 2023 10

3. Determine the size of the pipe.

The third problem of pipe size is solved by trial, using a
successive approximation procedure. This is because hs, f,
and Q all depend on the unknown diameter D. The solution
procedure is as follows:

1) solve for D using an assumed value for f and the Darcy-
Weisbach equation along with the definition of Q

8|_Q2 1/5

D=|: - :| -f1/5
n ghy
H—/

known from
given data.

2) using D compute Re and ks/D

3) obtain a new value of f = f(Re, ki/D) and repeat as above
until convergence

4. Determine the pipe length.

The fourth problem of pipe length is solved by obtaining f

from the Moody diagram, using values of Re and ks/D

computed from the given data. Then using given hs, V, D,
_2g Dy

and calculated f to solve L from L_\? g
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10.5 Flow at Pipe Inlets and [osses From Fittings
For real pipe systems in addition to friction head loss these
are additional so called minor losses due to

1. entrance and exit effects

. . can be
2. expansions and contractions laree
3. bends, elbows, tees, and other fittings <
, . effect
4. valves (open or partially closed) )

For such complex geometries we must rely on experimental
data to obtain a loss coefficient

1]' 111

K= —2'\\ head loss due to minor losses

2¢g
In general,

K = K(geometry, Re, €/D)
-
dependence usually
not known

Loss coefficient data 1s supplied by manufacturers and also
listed in handbooks. The data are for turbulent flow
conditions but seldom given in terms of Re.
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Modified Energy Equation to Include Minor Losses:

1 1 5
Pi. o +2—0L1V12 +h, P2 +5-0,V3 +h +h; +3h,

Y g Y 2g /2
v

hm =K—
2g

Note: Xh,, does not include pipe friction and e.g. in elbows
and tees, this must be added to hs.

1. Flow1in a ben_d:

- N 1o 1ép
\ R A 4
N, ‘;S . .
\ & ) p er
8 ve \ / \ centrifu
-y \ acceler:
ek ‘ " G >
”H‘"F‘\J f} < 6w
&=0. /
1.e. o > 0 which 1s an adverse pressure gradient in r
@

direction. The slower moving fluid near wall responds first
and a swirling flow pattern results.

Q This swirling flow represents an
¢ o energy loss which must be added
Q to the hy.
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Also, flow separation can result due to adverse longitudinal
pressure gradients which will result in additional losses.

A AL Chea

TN
S \\‘

oy 1o \Sa LY

This shows potential flow is not a good approximate in
internal flows (except possibly near entrance)
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2. Valves: enormous losses
3. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K= 1
i.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual
'\—.v_f

theory for expansion:

. (2
(Vl B Vq )2 O
h, = =
2g
from continuity, momentum, and energy
(assuming p = p; 1n separation pockets)
d>) h
— KSE = ].__2 = 2111
D V]
2g
no theory for contraction:
d? A
KSC = .42— 1_ i - -
1l 2 i ) o
D™ N
—_— Vina,  Camivido

from experiment
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Minor losses in pipe flow are a major part in calculating the flow, pressure, or
Ligquid moving through pipes carries
momentum and energy due to the forces acting upon it such as pressure and
gravity. Just as certain aspects of the system can increase the fluids energy, there
are components of the system that act against the fluid and reduce its energy,
velocity, or momentum. Friction and minor losses in pipes are major contributing

factors.

energy reduction in piping systems.

If the contraction or expansion is gradual the losses are
quite different. A gradual expansion is called a diffuser.
Diffusers are designed with the intent of raising the static
pressure.

v _P27Ps
C, = T
;p\d
B [ A, Bernoulli and
C i A, continuity equation
hm 1 \ :
K=—7"-=C Pt C, Energy equation
VTA 1dea
2g

Actually very complex flow and

C, = C, (geometry, inlet flow conditions)

i.e., fully developed (long pipe) reduces C,

thin boundary layer (short pipe) high C,

(more uniform inlet profile)


https://en.wikipedia.org/wiki/Pipe_flow
https://en.wikipedia.org/wiki/Piping
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—————— Control volume

___z= |

v, b

(1) {
5
(2

I Figure 8.27 Control volume used to calculate the loss coefficient for a
sudden expansion.
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0.4}~

0.2

0 0.2 0.4 0.6 0.8 1.0 Figure 8.26 Loss coefficient for
AyJAy a sudden expansion (Ref. 10).

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated in Fig.
8.27, the fluid leaves the smaller pipe and initially forms a jet-type structure as it enters the larger
pipe. Within a few diameters downstream of the expansion, the jet becomes dispersed across the
pipe, and fully developed flow becomes established again. In this process [between sections (2) and
(3)] a portion of the kinetic energy of the fluid is dissipated as a result of viscous effects. A square-
edged exit is the limiting case with A, /A, = 0.

A sudden expansion is one of the few components (perhaps the only one) for which the loss
coefficient can be obtained by means of a simple analysis. To do this we consider the continuity
and momentum equations for the control volume shown in Fig. 8.27 and the energy equation
applied between (2) and (3). We assume that the flow is uniform at sections (1), (2), and (3) and the
pressure is constant across the left side of the control volume (p, = pp = P. = p1)- The resulting
three governing equations (mass, momentum, and energy) are

AV = A3V
DiAs — pA; = pAsVs(Vs — V)

W loss coefficient and

v @ sudden 2 2
ion can &+ZL=&+&+]%
heoretically y 2 v 28

s These can be combined to give the loss coefficient, K, = h;/ (V3/2g), as

r=(1-2)
L= A,

where we have used the fact that A, = A;. This result, plotted in Fig. 8.26, is in good agreement
with experimental data. As with so many minor loss situations, it is not the viscous effects directly

(i.e., the wall shear stress) that cause the loss. Rather, it is the dissipation of kinetic energy (anot
type of viscous effect) as the fluid decelerates inefficiently. S
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Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like
to know h. = h(V1,V2). Analytic solution to exact problem is
extremely difficult due
to the occurrence of
flow separations and
turbulence. However, if
the assumption is made
that the pressure in the
separation region
remains approximately
constant and at the
value at the point of
separation, i.e., p1, an approximate solution for h. is possible:

Apply Energy Eq from 1-2 (o1 = a2 = 1)

2 2

&+zl+v—1_&+zz+v—2+hL

Y 29 vy 29
Momentum eg. For CV shown (shear stress neglected)

2R =pA; —pA, -Wsing =3 puV-A

/ =pVi(-V1A;) +pV, (V,A,)
vA,L Az =pV5 A, —pVPA

Wsinao

next divide momentum equation by yA;
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- P1 Py
YA -T2 (Z,-2,)=
Y oy #-2,) g 9gA, gA,

— 7
~—

Vz2 _V12 A _ V12 Al A _1
A,

from energy equation

V_22_V_12_|_h _V22_V12 Al
29 29 - g g A,
2 2
h Ve V(oA
29 29 A,
)
1,2 9 s Ay continuity eq.
— AL_ Vo
2ViV, | A2 M
1 2
h, =—|[V, -V
= 5glVail
If V, << Vy,
h =\
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Flow separation
at corner

(a)
4 T Ideal full recovery V3
V2 of kinetic energy 2
PV2 O
L e
- i
P = .
Actual P3
x X X3 X
(b)

[ Figure 8.23 Flow pattern and pressure distribution for a sharp-edged entrance.

0.6 Sharp-edged

entrance \ /
0.5¢ \»
E—

0.4

Kk, 03

0 0.05 0.1 i Figure 8.24 Entrance loss coefficient
as a function of rounding of the inlet edge
(Data from Ref. 9).

o)~
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0.4
K

0.2

N e V2
0 0.2 0.4 0.6 0.8
AglAy

L0 = Figure 8.25 Loss coefficient for
a sudden contraction (Ref. 10).

14
Vg
1.0
0.8

1
o6Hl—f— h=K 5,
04— n,
=)
0.2

A
22 fixed
1

A
V2
0

00 30 60 90

6, degrees

180

120 150

B Figure 8.28 Loss coefficient for a typical conical diffuser (Ref. 5).

1.0
b b
Separated flow
a a
Secondary
06 flow
\90"
KL
(Y T g, S SR
0.2
0
0 2 4 6 8 10 12
RID

[ Figure 8.29 Character of the flow in a 90° bend and the associated loss

coefficient (Ref. 5).

Guide |vanes

-
S
=

Wy

(a) (b)

K, =02

I Figure 8,30 Character of the flow in a 90°
mitered bend and the associated loss coefficient:
(a) without guide vanes, (b) with guide vanes.
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i
FIGURE 10. 10
Flow characteristics at a Limit of boundary layer
pipe infet (not io scale).

Region of developing flow Fully developed flow
(nonuniform flow) (uniform flow)
1o %D =0 .
| xD=45 ~
08} Cles EI SN Re = 388.000

FIGURE 10. 11 D= .

Distribution of velocity 06 _;\‘“‘ wpe | o Turbulent

md pressure in the inlet U4k 3 405 avgiz oy L

region of a pipe [Barbin | \l/ ﬂ oW

and Jones (3)]. 0.2 I kY L

fa) Velocity distribution. \ 1 P T S R TR
(B Pressure distribution. 0.5 1.1 1.2 1.3 o 5 10 15 20 25 30
D
()

FIGURE 10, 12

Flow ar a sharp-edged
inler.

FIGURE 10.13

Flow pattern in an
elbow.

Bl o e R
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TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
b rid K. )"
Pipe entrance N 0.0 0.50
0.1 0.12
h, =K, V?/2g r(r >0.2 0.03
Kc Ke
Contraction DDy 8 =60 #=180° 2)
Dy 0.0 0.08 0.50
—,—ﬁ\_jf‘@ 020 0.8 0.49
Dy i 0.40 0.07 0.42
—t 060  0.06 0.27
0.80 0.06 0.20
hy = KcVif2g 0.90 0.06 0.10
'K.I.‘,' Kg
Expansion » D/D, 8=20" 0=180° (2)
: 0.0 1.00

¥
%L"e L] 020 030 0.87
Tt 040 025 0.70

0.60 0.15 0.41
h, = KeV3/2g 0.80 0.10 0.15
Vanes Without
VANEs K, =11 (37)
90° miter bend
With
vanes Ky = 0.2 (37
rid (3)
and
= 5
90° smooth ] Ky = 0.33 (19)
bend 2 0.19
o 4 0.16
6 0.21
8 0.28
10 0.32
Globe valve —wide open K, =100 (37)
Angle valve—wide open K.= 50
Gate valve—wide open K,= 02
Gate valve —half open K.= 56
Thnlaaded Return bend K,= 22
.pl,pc Tee
fittings straight-through flow K= 04
side-outlet flow K= 18
90° elbow Ky= 09

457 elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditioni1
Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.
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HOURE10.14 Steeper gradient in the EGL due to
EGL and HGL at g turbulence produced at the entrance
sharp-edged pipe
Lenfrance.
EGL
Drop in the HGL
due to high
velocity in flow
just downstream
iy due to
—— entrance
-:A__-’—::.*-.'r:- p2
2
hy due to partially
closed valve
GURE 10.15 — =Ll Aa o

ead losses in a pipe.
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. Fig. 6.24 Examples of multiple-

- pipe systems: (@) pipes in series;
| {b) pipes in parallel; (c) the three-
eservoir junction problem.

Chapter 6-part4
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Fig. 6.25 Schematic of a piping
network.

il

Pipe Networks

The ultimate case of a multipipe system is the piping network illustrated i

Fig. 6.25. This might represent a water supply system for an apartment or
subdivision or even & city. This network is quite complex algebraically bue

follows the same basic rules:

1. The net flow into any junction must be zero.

2. The net pressure change around any closed loop must be zero. In other
words, the HGL at each junction must have one and only one elevation.

3. All pressure changes must satisfy the Moody and minor-loss friction 1
correlations. i

By supplying these rules to each junction and independent loop in the network, ome
obtains a set of simultancous equations for the flow rates in cach pipe leg and the
HGL (or pressure) at each junction. Solution may then be obtained by numerical
iteration, as first developed in a bhand calculation technique by Prof. Hardy Cross s
1936 (17). Computer solution of pipe network problems is now quite common and
is covered in at least one specialized text [18). Network analysis is quite useful ﬁ:,’
real water distribution systems if well calibrated with the actual system head loss data




