Chapter 6: Viscous Flow in Ducts

6.4 Turbulent Flow in Pipes and Channels using meanvelocity correlations.

1. Smooth circular pipe

Recall laminar flow exact solution:

$$
f=\frac{8 \tau_{w}}{\rho u_{\text {ave }}^{2}}=64 / \operatorname{Re}_{d} \quad \quad \operatorname{Re}_{d}=\frac{u_{\text {ave }} d}{v} \leq 2000
$$

A turbulent flow "approximate" solution can be obtained simply by computing $u_{\text {ave }}$ based on log law.

$$
\frac{u}{u^{*}}=\frac{1}{\kappa} \ln \frac{y u^{*}}{v}+B
$$

Where:

$$
\begin{aligned}
u=u(y) ; \kappa & =0.41 ; B=5 ; u^{*}=\sqrt{\tau_{w} / \rho} ; y=R-r \\
V=u_{\text {ave }}= & \frac{Q}{A}=\frac{1}{\pi R^{2}} \int_{0}^{R} u^{*}\left[\frac{1}{\kappa} \ln \frac{y u^{*}}{v}+B\right] 2 \pi r d r \\
& =\frac{1}{2} u^{*}\left(\frac{2}{\kappa} \ln \frac{R u^{*}}{v}+2 B-\frac{3}{\kappa}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { } \\
& u_{m e}=\frac{1}{\pi R^{2}} \int_{0}^{R} u^{6}\left[k^{-1} \ln \frac{y u^{4}}{r}+B\right] 2 \pi r d v \quad y=R-v \\
& =\frac{2 u^{*}}{R^{2}} \int_{R}^{0}\left[K^{-1} \ln \frac{y y^{*}}{K}+B\right](y-R) d y \\
& =\frac{2 u^{t}}{R 2}\left[\int _ { R } ^ { 0 } \left[K^{-1} \operatorname{h} \frac{\left.\left.y \frac{x^{x}}{v}+B\right] y d y-\left.R\right|_{R} ^{0}\left[K-1 h \frac{y x^{4}}{v}+B\right] d y\right]}{(2)}\right.\right. \\
& x=\frac{y u^{2}}{v^{2}} \quad y=\frac{v}{u^{1}} x \quad d y=\frac{v}{u^{1}} d x \quad d x=\frac{u^{2}}{v} d y \quad y d y=\frac{v^{2}}{u^{2}} x d x \\
& \text { (1) }=\int_{\frac{k x^{4}}{v}}^{0}[x-1 h x+B] \frac{r^{2}}{u^{2}} x d x=\frac{v^{2}}{u+2} \int_{\frac{k x^{2}}{r}}^{0}\left(\frac{x}{x} h x+B x\right) d x \\
& =\frac{v^{2}}{u^{2+2}}\left[9 L^{-1}\left(\frac{k x^{2}}{2} \ln x-\frac{x^{2}}{4}\right)+\left.\frac{B x^{2}}{2}\right|_{\frac{k x^{4}}{x}} ^{0}\right. \\
& =\frac{\nu^{2}}{\psi^{2} x^{2}}\left[-k^{2}+\frac{R^{2} x^{2}}{2 x^{2}} \ln \frac{R x^{1}}{x}+\frac{R^{2} x^{2}}{4 x x^{2}}-\frac{B Q^{2} y^{2}}{2 x^{2}}\right] \\
& =-\frac{R^{2}}{Z x} \ln \frac{R x^{1}}{x}+\frac{R^{2}}{4 x}-\frac{B R^{2}}{2} \\
& \text { (2) }=-R \int_{\frac{R u^{*}}{v}}^{0}\left[q k^{-1} \ln x+B\right] \frac{V}{u^{+}} d x=-\frac{R v}{u^{+}}\left[K^{-1}(x \ln x-x)+\left.B x\right|_{R}\right. \\
& \frac{2 u^{t}}{D^{2}}\left[-\frac{R^{2}}{2 a_{x}} e \frac{R x^{2}}{V}+\frac{R^{2}}{H x^{2}}-\frac{B R^{2}}{2}\right. \\
& \left.+\frac{R X}{K} \ln \frac{R x^{2}}{r}-\frac{R^{2}}{\alpha x}+B R^{2}\right] \\
& =\frac{R \neq}{\pi}\left[\alpha^{-1}\left(\frac{R x^{x}}{\frac{2}{2}} \ln \frac{R x^{4}}{\gamma}-\frac{R y^{*}}{x}\right)+\frac{R R x^{4}}{\gamma}\right. \\
& =\frac{R^{2}}{K} \mu \frac{R u^{2}}{v}-\frac{R^{2}}{\alpha}+B R^{2} \\
& 2 u+\left[\frac{1}{2 \alpha} h \frac{R u t}{v}-\frac{3}{4 x}+B / 2\right] \\
& u^{+}\left[\alpha^{-1} \ln \frac{R x^{2}}{v}-\frac{3}{2 x}+3\right] \\
& \frac{1}{2} u^{2}\left[\frac{2}{\alpha} \ln \frac{R x}{v}-\frac{3}{\alpha}+2 B\right]=u \text { are }
\end{aligned}
$$

Or:

$$
\begin{gathered}
\frac{V}{u^{*}}=2.44 \ln \frac{R u^{*}}{v}+1.34 \\
\begin{aligned}
f^{-1 / 2}= & 1.99 \log \left[\operatorname{Re}_{d} f^{1 / 2}\right]-1.02 \\
& =2 \log \left[\operatorname{Re}_{d} f^{1 / 2}\right]-0.8
\end{aligned}
\end{gathered}
$$

EFD Adjusted constants.
f only drops by a factor of 5 over $10^{4}<\mathrm{Re}<10^{8}$
Since f equation is implicit, it is not easy to see dependency on ρ, μ, V, and D

$$
\begin{aligned}
& f(\text { pipe })=0.316 \mathrm{Re}_{D}^{-1 / 4} \\
& h_{f}=\frac{\Delta p}{\gamma}=f \frac{L}{D} \frac{V^{2}}{2 g}
\end{aligned}
$$

$$
4000<\operatorname{Re}_{\mathrm{D}}<10^{5}
$$

Blasius (1911) power law
curve fit to data.

Turbulent Flow: $\Delta p=0.158 L \rho^{3 / 4} \mu^{1 / 4} D^{-5 / 4} V^{7 / 4}$
\checkmark Nearly quadratic (As expected)

Only slightly with μ

Drops with pipe diameter.

$$
=0.241 L \rho^{3 / 4} \mu^{1 / 4} D^{-4.75} Q^{1.75}
$$

Laminar flow: $\Delta p=8 \mu L Q / \pi R^{4}$
Δp (turbulent) decreases more sharply with D than Δp (laminar) for same Q ; therefore, increase D for smaller $\Delta p .2 \mathrm{D}$ decreases Δp by 27 for same Q .
$\frac{u_{\max }}{u^{*}}=\frac{u(r=0)}{u^{*}}=\frac{1}{\kappa} \ln \frac{R u^{*}}{v}+B$
Combine with
$\frac{V}{u^{*}}=\frac{1}{\kappa} \ln \frac{R u^{*}}{v}+B-\frac{3}{2 \kappa}$
$\Rightarrow \frac{V}{u^{*}}=\frac{u_{\max }}{u^{*}}-\frac{3}{2 \kappa} \Rightarrow V=u_{\max }-\frac{3 u^{*}}{2 \kappa} \Rightarrow \frac{u_{\max }}{V}=1+\frac{3 u^{*}}{2 \kappa V}$

Also
$\tau_{w}=\rho u^{* 2}$ and $f=\frac{\tau_{w}}{1 / 8 \rho V^{2}} \Rightarrow f=\frac{\rho u^{* 2}}{1 / 8 \rho V^{2}} \Rightarrow \frac{u^{*}}{V}=\sqrt{f / 8}$
$\Rightarrow \frac{u_{\max }}{V}=1+\frac{3 u^{*}}{2 \kappa V}=1+\frac{3}{2 \kappa} \sqrt{f / 8}=1+1.3 \sqrt{f}$

Or:
For Turbulent Flow: $\frac{V}{u_{\text {max }}}=(1+1.3 \sqrt{f})^{-1}$

Recall laminar flow:
$V / u_{\max }=0.5$

TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND RATIO OF MEAN TO MAXIMUM VELOCITY

$\mathbf{R e} \rightarrow$	$\mathbf{4} \times \mathbf{1 0}^{\mathbf{3}}$	$\mathbf{2 . 3} \times \mathbf{1 0}^{\mathbf{4}}$	$\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{5}}$	$\mathbf{1 . 1} \times \mathbf{1 0 ^ { 6 }}$	$\mathbf{3 . 2} \times \mathbf{1 0 ^ { 6 }}$
$m \rightarrow$	$\frac{1}{6.0}$	$\frac{1}{6.6}$	$\frac{1}{7.0}$	$\frac{1}{8.8}$	$\frac{1}{10.0}$
$\bar{V} / V_{\max } \rightarrow$	0.791	0.807	0.817	0.850	0.865

source: Schlichting (36). Used with permission of the McGraw-Hill Companies.
Power law fit to velocity profile:

$$
\frac{\bar{u}}{\overline{u_{\max }}}=\left(1-\frac{r}{r_{o}}\right)^{m}
$$

$$
\mathrm{m}=\mathrm{m}(\mathrm{Re})
$$

- FI G U R E 8.17 Exponent, n, for power-law velocity profiles. (Adapted from Ref. 1.)

2. Turbulent Flow in Rough circular pipe

$$
\begin{array}{ll}
U^{+} & =f\left(y^{+}, k^{+}\right)
\end{array} f=f\left(\operatorname{Re}_{d}, k / d\right)
$$

which leads to three roughness regimes:

1. $\mathrm{k}^{+}<4 \quad$ hydraulically smooth
2. $4<\mathrm{k}^{+}<60$ transitional roughness (Re dependence)
3. $\mathrm{k}^{+}>60$ full rough (no Re dependence)

$$
\begin{aligned}
f^{-1 / 2} & =-2 \log \left[\frac{k / d}{3.7}+\frac{2.51}{\operatorname{Re}_{d} f^{-1 / 2}}\right] \quad \text { Moody diagram } \\
& \sim-1.8 \log \left[\frac{6.9}{\operatorname{Re}_{d}}+\left(\frac{k / d}{3.7}\right)^{1.11}\right] \begin{array}{l}
\text { Approximate explicit } \\
\text { formula }
\end{array}
\end{aligned}
$$

Fig. 6.12 Effect of wall roughness on turbulent pipe flow. (a) The logarithmic overlap
velocity profile shifts down and to the right; (b) experiments with sand-grain roughness by
Nikuradse [7] show a systematic increase of the turbulent friction factor with the roughness
ratio.

There are basically four types of problems involved with uniform flow in a single pipe:

1. Determine the head loss, given the kind and size of pipe along with the flow rate, $\mathrm{Q}=\mathrm{A} * \mathrm{~V}$
2. Determine the flow rate, given the head, kind, and size of pipe.
3. Determine the pipe diameter, given the type of pipe, head, and flow rate.
4. Determine the pipe length, given $\mathrm{Q}, \mathrm{d}, \mathrm{h}_{\mathrm{f}}, \mathrm{k}_{\mathrm{s}}, \mu, \mathrm{g}$
5. Determine the head loss.

The first problem of head loss is solved readily by obtaining f from the Moody diagram, using values of Re and $\mathrm{k}_{s} / \mathrm{D}$ computed from the given data. The head loss h_{f} is then computed from the Darcy-Weisbach equation.

$$
\begin{aligned}
& \mathrm{f}=\mathrm{f}\left(\operatorname{Re}_{\mathrm{D}}, \mathrm{k}_{s} / \mathrm{D}\right) \\
& \begin{aligned}
h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g} & =\Delta h \quad \Delta h=\left(z_{1}-z_{2}\right)+\left(\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}\right) \\
& =\Delta\left(\frac{p}{\gamma}+z\right)
\end{aligned} \\
& \operatorname{Re}_{\mathrm{D}}=\operatorname{Re}_{\mathrm{D}}(\mathrm{~V}, \mathrm{D})
\end{aligned}
$$

2. Determine the flow rate.

The second problem of flow rate is solved by trial, using a successive approximation procedure. This is because both Re and $f(\operatorname{Re})$ depend on the unknown velocity, V. The solution is as follows:

1) solve for V using an assumed value for f and the DarcyWeisbach equation.

$$
\mathrm{V}=\underbrace{\left[\frac{2 \mathrm{gh}_{\mathrm{f}}}{\mathrm{~L} / \mathrm{D}}\right]^{1 / 2}}_{\begin{array}{c}
\text { known from } \\
\text { given data. }
\end{array}} \cdot \mathrm{f}_{\text {note sign. }}^{\text {i/2 }}
$$

2) using V compute Re
3) obtain a new value for $f=f\left(\operatorname{Re}, k_{s} / D\right)$ and repeat as above until convergence

Or can use $\operatorname{Re} f^{1 / 2}=\frac{D^{3 / 2}}{v}\left(\frac{2 g h_{f}}{L}\right)^{1 / 2}$
scale on Moody Diagram

1) compute Ref $f^{1 / 2}$ and k_{s} / D
2) read f
3) solve V from $h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}$
4) $Q=V A$
3. Determine the size of the pipe.

The third problem of pipe size is solved by trial, using a successive approximation procedure. This is because $\mathrm{h}_{\mathrm{f}}, \mathrm{f}$, and Q all depend on the unknown diameter D . The solution procedure is as follows:

1) solve for D using an assumed value for f and the DarcyWeisbach equation along with the definition of Q

$$
\mathrm{D}=\underbrace{\left[\frac{8 \mathrm{LQ}^{2}}{\pi^{2} \mathrm{gh}_{\mathrm{f}}}\right]^{1 / 5}} \cdot \mathrm{f}^{1 / 5}
$$

known from given data.
2) using D compute Re and $\mathrm{k}_{s} / \mathrm{D}$
3) obtain a new value of $f=f\left(\operatorname{Re}, k_{s} / D\right)$ and repeat as above until convergence
4. Determine the pipe length.

The fourth problem of pipe length is solved by obtaining f from the Moody diagram, using values of Re and $\mathrm{k}_{s} / \mathrm{D}$ computed from the given data. Then using given $\mathrm{h}_{\mathrm{f}}, \mathrm{V}, \mathrm{D}$, and calculated f to solve L from $L=\frac{2 g}{V^{2}} \frac{D h_{f}}{f}$.

10.5 Flow at Pipe Inlets and Losses From Fittings

For real pipe systems in addition to friction head loss these are additional so called minor losses due to

1. entrance and exit effects
2. expansions and contractions
3. bends, elbows, tees, and other fittings 4. valves (open or partially closed)
can be
large
effect

For such complex geometries we must rely on experimental data to obtain a loss coefficient

$$
\mathrm{K}=\frac{\mathrm{h}_{\mathrm{m}}}{\frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}} \text { head loss due to minor losses }
$$

In general,

$$
\mathrm{K}=\mathrm{K}(\text { geometry, } \mathrm{Re}, \varepsilon / \mathrm{D})
$$

dependence usually not known

Loss coefficient data is supplied by manufacturers and also listed in handbooks. The data are for turbulent flow conditions but seldom given in terms of Re.

Modified Energy Equation to Include Minor Losses:

$$
\begin{array}{r}
\frac{\mathrm{p}_{1}}{\gamma}+\mathrm{z}_{1}+\frac{1}{2 \mathrm{~g}} \alpha_{1} \mathrm{~V}_{1}^{2}+\mathrm{h}_{\mathrm{p}}=\frac{\mathrm{p}_{2}}{\gamma}+\mathrm{Z}_{2}+\frac{1}{2 \mathrm{~g}} \alpha_{2} \mathrm{~V}_{2}^{2}+\mathrm{h}_{\mathrm{t}}+\mathrm{h}_{\mathrm{f}}+\sum_{\mathrm{m}} \mathrm{~h}_{\mathrm{n}} \\
\mathrm{~h}_{\mathrm{m}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}
\end{array}
$$

Note: $\Sigma \mathrm{h}_{\mathrm{m}}$ does not include pipe friction and e.g. in elbows and tees, this must be added to h_{f}.

1. Flow in a bend:

i.e. $\frac{\partial \mathrm{p}}{\partial \mathrm{r}}>0$ which is an adverse pressure gradient in r direction. The slower moving fluid near wall responds first and a swirling flow pattern results.

This swirling flow represents an energy loss which must be added to the h_{L}.

Also, flow separation can result due to adverse longitudinal pressure gradients which will result in additional losses.

This shows potential flow is not a good approximate in internal flows (except possibly near entrance)
2. Valves: enormous losses
3. Entrances: depends on rounding of entrance
4. Exit (to a large reservoir): $\mathrm{K}=1$
i.e., all velocity head is lost
5. Contractions and Expansions $\underbrace{\text { sudden or gradual }}$ theory for expansion:

$$
\mathrm{h}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}}{2 \mathrm{~g}}
$$

from continuity, momentum, and energy (assuming $\mathrm{p}=\mathrm{p}_{1}$ in separation pockets)

$$
\Rightarrow K_{\mathrm{SE}}=\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2}=\frac{\mathrm{h}_{\mathrm{m}}}{\mathrm{~V}_{1}^{2} / 2 \mathrm{~g}}
$$

no theory for contraction:

$$
\mathrm{K}_{\mathrm{SC}}=.42\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)
$$

from experiment

If the contraction or expansion is gradual the losses are quite different. A gradual expansion is called a diffuser. Diffusers are designed with the intent of raising the static pressure.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\frac{1}{2} \rho \mathrm{~V}_{1}^{2}} \\
& \mathrm{C}_{\mathrm{p}_{\text {itatal }}}=1-\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right)^{2} \quad \begin{array}{l}
\text { Bernoulli and } \\
\text { continuity equation }
\end{array} \\
& \mathrm{K}=\frac{\mathrm{h}_{\mathrm{m}}}{\mathrm{~V}^{2} / 2 \mathrm{~g}}=\mathrm{C}_{\mathrm{p}_{\mathrm{p}_{\text {iteal }}}}-\mathrm{C}_{\mathrm{p}} \quad \text { Energy equation }
\end{aligned}
$$

Actually very complex flow and

$$
\begin{aligned}
& C_{p}=C_{p} \text { (geometry, inlet flow conditions) } \\
& \text { i.e., fully developed (long pipe) reduces } C_{p} \\
& \text { thin boundary layer (short pipe) high } \mathrm{C}_{\mathrm{p}} \\
& \text { (more uniform inlet profile) }
\end{aligned}
$$

Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity. Just as certain aspects of the system can increase the fluids energy, there are components of the system that act against the fluid and reduce its energy, velocity, or momentum. Friction and minor losses in pipes are major contributing factors.

Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like to know $h_{L}=h_{L}\left(V_{1}, V_{2}\right)$. Analytic solution to exact problem is
 extremely difficult due to the occurrence of flow separations and turbulence. However, if the assumption is made that the pressure in the separation region remains approximately constant and at the value at the point of separation, i.e., p_{1}, an approximate solution for h_{L} is possible:

Apply Energy Eq from 1-2 $\left(\alpha_{1}=\alpha_{2}=1\right)$
$\frac{\mathrm{p}_{1}}{\gamma}+\mathrm{z}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{p}_{2}}{\gamma}+\mathrm{z}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{L}}$
Momentum eq. For CV shown (shear stress neglected)

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{s}}=\mathrm{p}_{1} \mathrm{~A}_{2}-\mathrm{p}_{2} \mathrm{~A}_{2}-\underbrace{\mathrm{W} \sin \alpha}=\sum \rho \mathrm{u} \underline{\mathrm{~V}} \cdot \underline{\mathrm{~A}} \\
& \underbrace{\gamma \mathrm{~A}_{2} \mathrm{~L} \frac{\Delta \mathrm{z}}{\mathrm{~L}}}_{\text {Wsin } \alpha}=\rho \mathrm{V}_{2}=\rho \mathrm{V}_{2}\left(-\mathrm{V}_{1} \mathrm{~A}_{1}\right)+\rho \mathrm{V}_{2}\left(\mathrm{~V}_{2} \mathrm{~A}_{2}\right)
\end{aligned}
$$

next divide momentum equation by $\gamma \mathrm{A}_{2}$
$\div \gamma \mathrm{A}_{2} \quad \underbrace{\frac{p_{1}}{\gamma}-\frac{p_{2}}{\gamma}-\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)}=\frac{\mathrm{V}_{2}^{2}}{\mathrm{~g}}-\frac{\mathrm{V}_{1}^{2}}{\mathrm{~g}} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{~g}} \frac{\mathrm{~A}_{1}}{A_{2}}\left(\frac{\mathrm{~A}_{1}}{A_{2}}-1\right)$
from energy equation
\Downarrow
$\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}+h_{L}=\frac{V_{2}^{2}}{g}-\frac{V_{1}^{2}}{g} \frac{A_{1}}{A_{2}}$
$\mathrm{h}_{\mathrm{L}}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}\left(1-\frac{2 \mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)$
$\mathrm{h}_{\mathrm{L}}=\frac{1}{2 \mathrm{~g}}[\mathrm{~V}_{2}^{2}+\mathrm{V}_{1}^{2}-\underbrace{2 \mathrm{~V}_{1}^{2} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}}_{-2 \mathrm{~V}_{1} \mathrm{~V}_{2}}]\left\{\begin{array}{l}\text { continuity eq. } \\ \mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2} \\ \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{V_{2}}{V_{1}}\end{array}\right.$
$h_{L}=\frac{1}{2 g}\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right]^{2}$
If $V_{2} \ll V_{1}$,

$$
\mathrm{h}_{\mathrm{L}}=\frac{1}{2 \mathrm{~g}} \mathrm{~V}_{1}^{2}
$$

FIGURE 10.10
Flow characteristics at a pipe inlet (not to scale).

(b)

FIGURE 10.11
Distribution of velocity and pressure in the inlet region of a pipe [Barbin and Jones (3)].
(a) Velocity distribution. (b) Pressure distribution.
(a)

Turbulent flow

FIGURE 10.12
Flow at a sharp-edged inlet.

,

FIGURE 10.13
Flow pattern in an elbow.

TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Description	Sketch	Additional Data		\boldsymbol{K}	Source
	\bigcirc	r / d		K_{e}	(2)*
Pipe entrance	${ }_{d}{ }^{\text {V }}$	0.0		0.50	
		0.1		0.12	
$h_{L}=K_{e} V^{2} / 2 g$	r ${ }_{r}$	>0.2		0.03	
Contraction		D_{2} / D_{1}	K_{C}	K_{C}	(2)
			$\theta=60^{\circ}$	$\theta=180^{\circ}$	
	D_{2}	0.0	0.08	0.50	
	$\cdots+1{ }^{V_{2}}$	0.20	0.08	0.49	
		0.40	0.07	0.42	
	± 1	0.60	0.06	0.27	
		0.80	0.06	0.20	
$h_{L}=K_{C} V_{2}^{2} / 2 g$		0.90	0.06	0.10	
Expansion		D_{1} / D_{2}	$\begin{gathered} K_{E} \\ \theta=20^{\circ} \end{gathered}$	$\begin{gathered} K_{E} \\ \theta=180^{\circ} \end{gathered}$	(2)
				1.00	
		0.20	0.30	0.87	
		0.40	0.25	0.70	
		0.60	0.15	0.41	
$h_{L}=K_{E} V_{1}^{2} / 2 g$		0.80	0.10	0.15	
90° miter bend		Without vanes	$K_{b}=1.1$		(37)
		With vanes	$K_{b}=0.2$		(37)
$\begin{aligned} & 90^{\circ} \text { smooth } \\ & \text { bend } \end{aligned}$		r / d			(5)and(19)
	d -	$K_{b}=0.35$			
	-	2		0.19	
	-	4		0.16	
		6		0.21	
		8		0.28	
		10		0.32	
Threaded pipe fittings	Globe valve -wide open	$K_{\nu}=10.0$			(37)
	Angle valve - wide open		$=5.0$		
	Gate valve-wide open		$=0.2$		
	Gate valve--half open		$=5.6$		
	Return bend	$K_{b}=2.2$			
	Tee				
	straight-through flow		$=0.4$		
	side-outlet flow		$=1.8$		
	90° elbow		$=0.9$		
	45° elbow		$=0.4$		

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditionis Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.

FIGURE 10.14
EGL and HGL at a sharp-edged pipe entrance.

[GURE 10.15
ead losses in a pipe.

Multiple Pye Systems

(a)

(b)

Fig. 6.24 Examples of multiplepipe systems: (a) pipes in series; (b) pipes in parallel; (c) the threereservoir junction problem.

(c)

$$
\begin{aligned}
& \text { Pyen - in Sevin } \\
& Q_{1}=Q_{2}=Q_{3} \\
& \begin{array}{l}
v_{1} D_{1}^{2}=V_{2} D_{2}^{2}=v_{3} D_{3}^{2} \Rightarrow \frac{V_{2}{ }^{2}}{2 g}=\frac{v_{1}^{2} D_{1}^{4}}{2 g \Delta_{2}^{4}} \\
\Delta h_{\Delta B}=\Delta h_{1}+\Delta h_{2}+\Delta h_{3}
\end{array} \\
& \frac{v_{3}{ }^{2}}{z g}=\frac{v_{1}^{2} O_{1}{ }^{4}}{2 D_{3}{ }^{4}} \\
& +\frac{V_{3}^{2}}{2 g}\left(\frac{f_{3} L_{3}}{D_{3}}+\sum K_{3}\right) \\
& =\frac{V_{1}^{2}}{2 g}\left(\frac{S_{1} L_{1}}{\theta_{1}}+\sum K_{1}\right)+\frac{V_{1}^{2}}{2 g} \frac{D_{1}^{4}}{D_{2} 4}\left(\frac{f_{2} L_{2}}{D_{2}}+\sum K_{2}\right)+\frac{V_{1}^{2} D_{1}^{4}}{\sum_{\gamma} D_{3}}+\left(\frac{f_{3}^{2} D_{3}}{D_{3}}+\sum K_{3}\right) \\
& =\frac{V_{1}^{2}}{2 g}\left[\alpha_{1} f_{1}+\alpha_{2} f_{2}+\alpha_{3} f_{3}+\alpha_{0}\right] \\
& \alpha_{1}=L_{1} / D_{1} \quad \alpha_{2}=\frac{L_{2}}{D_{2}} \frac{D_{1}^{4}}{D_{2}{ }^{4}} \quad \alpha_{3}=\frac{L_{2}}{D_{3}} \frac{D_{1}{ }^{4}}{D_{3}{ }^{4}} \\
& \alpha_{0}=\Sigma k_{1}+\frac{D_{1}^{4}}{D_{2}^{4}} \Sigma k_{2}+\frac{D_{1}^{4}}{D_{3}^{4}} \Sigma k_{3} \\
& 4 \text { given: emhuata rats } \\
& \Delta K A B \text { grem: tenter or pen sirgle tiqu wethed } \\
& \text { forsitn } Q \text { r } D
\end{aligned}
$$

Threa Resenvoir Pyre Junction

$$
Q_{1}+Q_{2}+Q_{3}=0 \quad \text { ouen ntoro }<0
$$

$$
h_{s}=z_{5}+\frac{p_{5}}{\gamma}
$$

$$
\Delta h_{1}=f_{1} \frac{L_{1}}{o_{1}} \frac{v_{1}^{2}}{z g}=z_{1}-h_{5}
$$

$$
\Delta u_{2}=f_{2} \frac{L_{2}}{D_{2}} \frac{v_{2}^{2}}{2 g}=z_{2}-h_{5}
$$

$$
\Delta h_{3}=f_{3} \frac{L_{3}}{O_{3}} \frac{v_{3}^{2}}{2 g}=z_{3}-h_{5}
$$

guens h_{j} : solve V_{i} eraluate $\sum Q_{i}=0$ itenta

