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Chapter 2: Pressure Distribution in a Fluid 

 
Pressure and pressure gradient  

 

In fluid statics, as well as in fluid 

dynamics, the forces acting on a 

portion of fluid (CV) bounded by a 

CS are of two kinds: body forces 

and surface forces. 

 

Body Forces:  act on the entire body of the fluid (force      

  per unit volume). 

 

Surface Forces:  act at the CS and are due to the  

     surrounding medium (force/unit area- 

     stress). 

 

In general, the surface forces can be resolved into two 

components: one normal and one tangential to the surface.  

Considering a cubical fluid element, we see that the stress 

in a moving fluid comprises a 2nd order tensor. 
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Since by definition, a fluid cannot withstand a shear stress 

without moving (deformation), a stationary fluid must 

necessarily be completely free of shear stress (σij=0,  i ≠ 

j).  The only non-zero stress is the normal stress, which is 

referred to as pressure: 

 

σii=-p 

 

 
  

i.e.  normal stress (pressure) is isotropic.   

Or px = py = pz = pn = p   

n 

(one value at a point, 

independent of 

direction; p is a scalar) 

σn = -p, which is compressive, as it should be since 

fluid cannot withstand tension. (Sign convention 

based on the fact that p>0 and in the direction of –n) 
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This can be easily seen by considering the equilibrium of 

a wedge-shaped fluid element ∀= 10−9 mm3 
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Note:  For a fluid in motion, the normal stress is different 

on each face and not equal to p 

 

σxx ≠ σyy ≠ σzz ≠ -p 

 

By convention p is defined as the average of the normal 

stresses 

                              ( )
1 1

3 3
xx yy zz iip    = − + + = −  

The fluid element experiences a force on it because of the 

fluid pressure distribution if it varies spatially. 

 

Consider the net force in the x direction due to p(x,t). 

The result will be similar for dFy and dFz; consequently, 

we conclude: 

ˆˆ ˆ
press

p p p
dF i j k

x y z

   
= − − −  

   
 

Or:  pf −=   force per unit volume due to p(x,t). 

 

Note: if p=constant, 0=f . 

dx 

dz 

dy 
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Equilibrium of a fluid element 

 

Consider now a fluid element which is acted upon by both 

surface forces and a body force due to gravity 
= dg

grav
dF   or gf

grav
=  (per unit volume) 

 

Application of Newton’s law yields: = Fam  
( )

 +==

=

surface
f

body
ffa

dfad





 per unit d  

viscous
f

pressure
f

surface
f

kg
body

fkggandg
body

f

+=

−=−== ˆˆ           z            g 

 (includes 
viscous

f , since in general 
ij ij ijp  = − + ) 

 

V
z

V

y

V

x

V
viscous

f

p
pressure

f

2
2

2

2

2

2

2
=


















+




+




=

−=


  

For ρ, μ=constant, the viscous force will have this form (chapter 4). 
 

2a p g V  = − + +              with  VV
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This is called the Navier-Stokes equation and will be 

discussed further in Chapter 4.  Consider solving the N-S 

equation for p when a and V are known. 

 

( ) ),(2 txBVagp =+−=   

 

This is simply a first order PDE for p and can be solved 

readily.  For the general case (V and p unknown), one 

must solve the NS and continuity equations, which is a 

formidable task since the NS equations are a system of 2nd 

order nonlinear PDEs. 

We now consider the following special cases: 

 

1) Hydrostatics ( 0== Va ) 

 

2) Rigid body translation or rotation ( 02 = V ) 

 

3) Irrotational motion ( 0= V ) 

 

      For vector  
 



equationBernoulliequationEulerVV  0
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also, 
20 & . 0V V if const   =  = =  =  
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Case (1) Hydrostatic Pressure Distribution 

 

p g g k  = = −        z           g 

 

i.e. 0=



=





y

p

x

p
 and  

p
g

z



= −


  gdzdp −=  

 

or  −=−=−
2

1

)(
2

1
12

dzzggdzpp         

0
r surface searth'near constant 

2

0
0
















=

r

r
gg

  

 

liquids → ρ = constant (for one liquid) 

    p = -ρgz + constant 

 

gases → ρ = ρ(p,t) which is known from the equation  

    of state: p = ρRT → ρ = p/RT 

 

which can be integrated if T =T(z) is  

known as it is for the atmosphere. 
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Manometry 

 

Manometers are devices that use liquid columns for 

measuring differences in pressure.  A general procedure 

may be followed in working all manometer problems: 

 

1.)  Start at one end (or a meniscus if the circuit is 

continuous) and write the pressure there in an appropriate 

unit or symbol if it is unknown.  

 

2.)  Add to this the change in pressure (in the same unit) 

from one meniscus to the next (plus if the next meniscus 

is lower, minus if higher). 

 

3.)  Continue until the other end of the gage (or starting 

meniscus) is reached and equate the expression to the 

pressure at that point, known or unknown. 
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Hydrostatic forces on plane surfaces 

 

The force on a body due to a pressure distribution is: 
−=

A

dAnpF  

 

where for a plane surface n = constant and we need only 

consider |F| noting that its direction is always towards the 

surface: | |
A

F p dA=  . 

 

Consider a plane surface AB  entirely submerged in a 

liquid such that the plane of the surface intersects the free-

surface with an angle α.  The centroid of the surface is 

denoted ( yx, ). 

 

                             sinF yA pA = =  

Where p  is the pressure at the centroid. 
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To find the line of action of the force which we call the 

center of pressure (xcp, ycp) we equate the moment of the 

resultant force to that of the distributed force about any 

arbitrary axis. 

2sin

cp

A

A

y F ydF

y dA 

=

=




     Note: dAydF  sin=  
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I  = moment of inertia WRT horizontal centroidal axis 
→ sinF pA yA = =  

→   ( )2

sin sincpy yA y A I   = +  

→ 
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and similarly for xcp 
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Hydrostatic Forces on Curved Surfaces 

 

 
 

  

In general,     Horizontal Components: 

     

y

x

x

y y

A

F F i p n i dA

dA

F p dA

=  = − 

= −




 

dAx = projection of n dA onto a plane perpendicular to x direction 

dAy = projection of n dA onto a plane perpendicular to y direction 

 
The horizontal component of force acting on a curved 

surface is equal to the force acting on a vertical projection 

of that surface including both magnitude and line of action 

and can be determined by the methods developed for plane 

surfaces. 

 

 
 

Where h is the depth to any element area dA of the surface. 

The vertical component of force acting on a curved surface is 

equal to the net weight of the total column of fluid directly 

above the curved surface and has a line of action through the 

centroid of the fluid volume. 
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Example   Drum Gate 

 

 
h=R-Rcosθ=R(1-cosθ) 

( )1 cos

h

p h R  = = −  
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Same force as that on projection of gate 

onto vertical plane perpendicular 

direction 
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  𝐹𝑧 = −𝛾𝑙𝑅2 ∫ (1 − 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0
   

 

       = −𝛾𝑙𝑅2 (𝑠𝑖𝑛𝜃 −
𝜃
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4
sin2θ)
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       = −𝛾𝑙𝑅2
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= 𝛾𝑙 (

𝜋𝑅2

2
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Another approach: 

 

𝐹1 = 𝛾𝑙 [𝑅2 −
1

4
𝜋𝑅2] 

      = 𝛾𝑙𝑅2 [1 −
1

4
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𝜋𝑅2

2
+ 𝐹1 

𝐹 = 𝐹2 − 𝐹1 =
𝛾𝑙𝜋𝑅2
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Net weight of water above curved surface 
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Buoyancy and Stability 

 

Archimedes Principle 

 

)1()2( V
F

V
F

B
F −=  

= fluid weight above 2ABC – 

fluid weight above 1ADC 

 

= weight of fluid equivalent 

to the body volume 

 

 

In general, FB = ρg  (= submerged volume). 

 

The line of action is through the centroid of the displaced 

volume, which is called the center of buoyancy. 
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Example: Floating body in “dynamic” heave motion 

 

Weight of the block 0

wp

b

A

W Lb hg mg = = = 
 where 0  is 

displaced water volume by the block for initial static equilibrium 

position and   is the specific weight of the liquid. 
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Instantaneous displaced water volume: 

        0 wpyA =  −  

        
..

0VF m y B W  = = − =  −   

                 wpA y= −  
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0 :

y B
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..

0wpm y A y+ =  

                  

..

0
wpA

y y
m


+ =  

                

                 cos sinn ny A t B t = +   

   Use initial condition (
. .

0 0
0,t y y y y= = = ) to determine A 

and B: 

                       

.

0
0 cos sinn n

n

y
y y t t 


= +  

Where  

                             
wp

n

A

m


 =  

 

     period           
2

2
wp

m
T

A




 
= =

                         Spar Buoy 

 

T is tuned to decrease response to ambient waves: we can 

increase T by increasing block mass m and/or decreasing 

waterline area wpA . 
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Stability of Immersed and Floating Bodies 
 

Here we’ll consider transverse stability.  In actual applications 

both transverse and longitudinal stability are important. 

 

Immersed Bodies 

 

 

Static equilibrium requires:   == 0Mand0Fv  

 

M = 0 requires that the centers of gravity and buoyancy 

coincide, i.e., C = G and body is neutrally stable 

 

If C is above G, then the body is stable (righting moment when 

heeled) 

 

If G is above C, then the body is unstable (heeling moment 

when heeled) 

 

 

 

 

 

Stable Neutral Unstable 
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Floating Bodies 

 

For a floating body the situation is more complicated since the 

center of buoyancy will generally shift when the body is rotated 

depending upon the shape of the body and the position in which 

it is floating. 

 

     Positive GM      Negative GM  

 

The center of buoyancy (centroid of the displaced volume) shifts 

laterally to the right for the case shown because part of the 

original buoyant volume AOB is transferred to a new buoyant 

volume EOD. 

 

The point of intersection of the lines of action of the buoyant force 

before and after heel is called the metacenter M and the distance 

GM is called the metacentric height.  If GM is positive, that is, if 

M is above G, then the ship is stable; however, if GM is negative, 

the ship is unstable. 
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 = small heel angle 

CCx =  = lateral displacement 

  of C 

C = center of buoyancy 

i.e., centroid of displaced  

volume V 

 

 

 

 

Solve for GM:  find x  using 

(1) basic definition for centroid of V; and 

(2) trigonometry 

 

(1) Basic definition of centroid of volume V 
 

  == ii VxVxdVx  moment about center plane 
 

Vx  = moment V before heel – moment of VAOB  

+ moment of VEOD 

  = 0 due to symmetry of  

   original V about y axis 

   i.e., ship center plane 
 

xV ( x)dV xdV
AOB EOD

= − − +     

 

dV = ydA = x tan  dA (tan  = y/x) 
 

2 2xV x tan dA x tan dA
AOB EOD

=  +    
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= dAxtanVx 2  

  ship waterplane area 

 

   moment of inertia of ship waterplane  

   about z axis O-O; i.e., IOO 

 

IOO = moment of inertia of waterplane  

     area about center plane axis 

 

(2) Trigonometry 

 

=


==

=

tanCM
V

Itan
xCC

ItanVx

OO

OO

 

 

  CM = IOO / V 

 

  GM = CM – CG 

 

  GM = CG
V

IOO −    

 

GM > 0  Stable 

 

GM < 0  Unstable 
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Note: recall that dFM
o

= , 

where d is the perpendicular 

distance from O to the line of 

action of F . 

 

      

=

=

sinGM

GZM G  

Roll: The “dynamic” rotation of a ship about the 

longitudinal axis through the center of gravity. 

 

Consider symmetrical ship heeled to a very small angle θ.  

Solve for the subsequent motion due only to hydrostatic 

and gravitational forces. 

 

 
 

( ) −= gijFb  ˆsinˆcos  

bg FrM =  

( ) ( )
( )

( )

kGM

kGMGC

kCCGC

ijiCCjGCM g

ˆsin

ˆsin

ˆcossin

ˆsinˆcosˆˆ

=

+−=

+−=

−+−=









   

Note: tan=CC’/CM=GZ/GM=sin/cos 

CC’cos=CMsin 

O 

F 

( g = Δ=displacement) 

 

 

d  CM 
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 −=
..
IM

G
   

 

 I = mass moment of inertia about long axis through G 
..
 = angular acceleration 
 

 

 

 

 

 

 

 

 

m
Ik =  definition of radius of gyration 

 

m
Ik =2   Imk =2   

2k

gGM

I

GM
=


 

 

The solution to this equation is,  

ttt
n

n

o

no





 sin

.

cos)( +=  

where  
o

 = the initial heel angle 

   

n
  = natural frequency 

  2

gGM

k
=   

k

gGM
=  

 

 

0 for no initial 

velocity 

..
sin 0

..
: 0

I GM

GM
for small

I

GM g GM mgGM

I I I

 

  



+  =


+ =

 
= =
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Simple (undamped) harmonic oscillation: 

 

 The period of the motion is 
n

T


2
=  

gGM

k
T

2
=  

 

Note that large GM decreases the period of roll, which 

would make for an uncomfortable boat ride (high 

frequency oscillation). 

 

Earlier we found that GM should be positive if a ship is to 

have transverse stability and, generally speaking, the 

stability is increased for larger positive GM.  However, the 

present example shows that one encounters a “design 

tradeoff” since large GM decreases the period of roll, 

which makes for an uncomfortable ride. 
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Parametric Roll: 

 

The periodicity of the encounter wave causes variations of 

the metacentric height i.e. GM=GM (t). Therefore: 
..

( ) 0I GM t +  =  

 

0 1Assuming ( ) cos( ) :GM t GM GM t= +  

( )0 1

..
cos( ) 0I GM GM t  +  + =   

( )2 2
..

cos( ) 0n n eC t    + + =  

where 

0 21

0

; ; ; ; and encounter wave freq.n e

gGM GM
C mg I mk

k GM
 = =  = = =    

 

By changing of variables ( et = ): 

( )
..

( ) 1 cos ( ) 0C     + + =   and  
2

2

n

e





=  

This ordinary 2nd order differential equation where the 

restoring moment varies sinusoidally, is known as the 

Mathieu equation. This equation gives unbounded 

solution (i.e. it is unstable) when   
22

2

2 1
0,1, 2,3,..

2

n

e

n
n






+ 
= = = 

 
 

For the principle parametric roll resonance, n=0   i.e., 
2 2

2 2 2e n n e

e n

T T
T T

 
 = =   =  
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Case (2) Rigid Body Translation or Rotation 

 

In rigid body motion, all particles are in combined 

translation and/or rotation and there is no relative motion 

between particles; consequently, there are no strains or 

strain rates, and the viscous term drops out of the N-S 

equation ( )02 = V . 
 

( )agp −=   
 

from which we see that p  acts in the direction of ( )ag − , 

and lines of constant pressure must be perpendicular to this 

direction (by definition, f  is perpendicular to f = 

constant). 

 

 

 

 

 

 

 

 

 

Motion of a point P in a rigid body translating and rotating 

relative inertial reference frame xyz, which is a 

simplification of the more general case for the equations 

for the absolute velocity and acceleration of a particle P 

that is in motion relative to a moving coordinate system. 

Rigid body of 

fluid translating 

or rotating 
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The general case of rigid body translation/rotation is as 

shown.  If the center of rotation is at O where 0VV = , the 

velocity of any arbitrary point P is: 
 

00 rVV +=  
 

Where (V  and  0V are the absolute velocities of the points P 

and 0, respectively)   = the angular velocity vector 

 

and the acceleration is: 
 


( )




3
2

1

00

0
r

dt

d
r

dt

Vd
a

dt

Vd



++==  

1 = acceleration of O 

 

2 = centripetal acceleration since directed from P 

towards, and perpendicular to, the axis of rotation 

through O 
 

3  = tangential acceleration (tangent to path of P when 
d

dt

  is parallel to the plane of Ω and 0r )  

 

Usually, all these terms are not present simultaneously.  In 

fact, fluids can rarely move in rigid body motion unless 

restrained by confining walls.  Here we consider (1) rigid 

body acceleration and (2) rigid body rotation, as an 

introduction to pressure variation in a moving fluid. 
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(1)  Uniform Linear Acceleration 

   

   

   

   

   

                                   

 

 

                                                              

p=constant  

( ) =−= agp   Constant 

 

 

     x

p
a

x



= −

           

     1. 0xa         p  increase in +x 

     2. 0xa        p  decrease in +x 

 

( )z

p
g a

z



= − +


     

1. 0za                      p  decrease in +z 

2. gaanda zz  0   p decrease in +z but slower than g 

3. 0 | |z za and a g     p  increase in +z 

( ) ^^

iakag
xz

++−= 
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unit vector in the direction of p : 

 
( )

( )
1

2 2 2
| |

z x

z x

g a k a ip
s

p
g a a

+ +
= ==


 + +
 

   

 

lines of constant pressure are perpendicular to p . 

 

                      
( )

( )
1

22 2

x z

x z

a k g a i
n s j

a g a

− +
=  =

 + +
 

   

unit vector in direction of p=constant 

 

angle between n  and x axes: 

 

)(
tan 1

z

x

ag

a

+
= −  

 

The pressure variation in the direction of 𝛻𝑃 is greater 
than in ordinary hydrostatics; that is: 

 
1

2 2 2( )x z

dp
p s a g a

ds
G

  =   = + +    which is > ρg 

 

pressuregageGs

Gsp





=

+= constant
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(3) Rigid Body Rotation 
 

Consider a cylindrical tank of liquid rotating at a constant 

rate Ω = Ω k : 

 

 

( )agp −=   

( ) 2

0

^
ra r r e=     = −   

( ) rerkgagp ˆˆ 2+−=−=   

i.e.   
2p

r
r




= 


  
p

g
z




= −


 

integrate with respect to r: czfrp ++= )(
2

22
  

integrate with respect to z: ( )p f r gz C= + − +    

Cgzzf +−= )(  

 

 

The constant is determined by specifying the pressure at 

one point; say, p = p0 at (r,z) = (0,0). 

22

0
2

+−= rgzpp


  

(Note: Pressure is linear in z and parabolic in r) 

Constant
2

22 +−= gzrp 
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Curves of constant pressure p=p1 are given by: 

 
2 2

20 1

2

p p r
z a br

g g

− 
= + = +  

which are paraboloids of revolution, concave upward, 

with their minimum points on the axis of rotation. 

 

The unit vector in the direction of p  is: 

  2/1222

2

)()(

ˆˆ
ˆ

+

+−
=

rg

erkg
s r




 

2tan
dz g

slope of s
rdr

 = = −


 

r
g

z

r

dr
dz

g
ln

22

=


−→=


−  

i.e., 






 
−=

g

z
Cr

2

1
exp  equation of p  surfaces 

The position of the free surface is found, as it is for linear 

acceleration, by conserving the volume of fluid.   

 

θ 

s  

r 

z 
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Case (3) Pressure Distribution in Irrotational Flow; 

Bernoulli Equation 

Navier-Stokes for constant property incompressible flow: 

 

2 2ˆ( ) ( )

( ) ( ) ( )

a p gk V p z V

V
V V p z V V

t

    

  

= − − +  = − + + 

 
+  = − + +    −      

 

Viscous term=0 for =constant and =0, i.e., potential flow 

solutions also solutions NS under such conditions!  But cannot 

satisfy no slip condition and suffers from D'Alembert's paradox 

that drag = 0. 

 
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached 

in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for 

incompressible and inviscid potential flow – the drag force is zero on a body moving with constant 

velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial 

drag on bodies moving relative to fluids, such as air and water, especially at high velocities 

corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox. 

 

1. Assuming inviscid flow: =0 and using vector identity 

 𝑉 ⋅ ∇𝑉 =
1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉) 

 

𝜌 [
𝜕𝑉

𝜕𝑡
+ (

1

2
∇𝑉 ⋅ 𝑉 − 𝑉 × (∇ × 𝑉))]=−∇(p + γz) Euler Equation 

 

VVVVgz
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t

V
==








+++



 2

2

2


    (𝜔 ≠ 0) 

 

 

http://en.wikipedia.org/wiki/D'Alembert's_paradox
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2. Assuming inviscid, incompressible, and steady flow: =0, 

=constant, 0=




t
 

gz
pV

B

VB

++=

=




2

2
 

Consider:  

 

B perpendicular B= constant 

 

V B =     perpendicular V and   
 

Therefore, B=constant contains streamlines and vortex 

lines: 
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3. Assuming inviscid, incompressible, steady and irrotational 

flow: =0, =constant, 0=




t
, =0 

 

0=B  B= constant (everywhere same constant) 

 
2

2

V p
gz B


+ + =

 

 
4. Unsteady inviscid, incompressible, and irrotational flow: 

=0, =constant, =0, i.e., potential flow 
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B(t)= time dependent constant 
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Larger speed/density or smaller R require larger pressure 

gradient or elevation gradient normal to streamline. 

 

Highlights Bernoulli equation can be obtained by 

integration of the Euler equation along a streamline. 
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Flow Patterns: Streamlines, Streaklines, Pathlines 
 

1) A streamline is a line everywhere tangent to the 

velocity vector at a given instant. 

2) A pathline is the actual path traveled by a given fluid 

particle. 

                     
 

3) A streakline is the locus of particles which have earlier 

passed through a particular point. 
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Note: 

1. For steady flow, all 3 coincide. 

2. For unsteady flow, ψ(t) pattern changes with time, 

whereas pathlines and streaklines are generated as 

the passage of time. 

 

Streamline 

 

By definition we must have 0= drV  which upon 

expansion yields the equation of the streamlines for a given 

time 1
tt =  

ds
w

dz

v

dy

u

dx
===          s= integration parameter 

 

So if (u,v,w) known, integrate with respect to s for t=t1 with 

IC (x0,y0,z0,t1) at s=0 and then eliminate s.  

 

Pathline 

 

The pathline is defined by integration of the relationship 

between velocity and displacement. 

w
dt

dz
v

dt

dy
u

dt

dx
===          

Integrate u,v,w with respect to t using IC (
0

,
0

,
0

,
0

tzyx ) then 

eliminate t. 
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Streakline 

 

To find the streakline, use the integrated result for the 

pathline retaining time as a parameter. Now, find the 

integration constant which causes the pathline to pass 

through ( 000 ,, zyx ) for a sequence of times t . Then 

eliminate  . 

 

Example: an idealized velocity distribution is given 

by: 

 

0      
21

      
1

=
+

=
+

= w
t

y
v

t

x
u  

 

calculate and plot: 1) the streamlines 2) the pathlines 3) the 

streaklines which pass through (
0

,
0

,
0

zyx ) at t=0. 

 

1.) First, note that since w=0 there is no motion in the 

z direction and the flow is 2-D 

02
       

01
      :)

0
,

0
(at         0

)
21

exp(
2

      )
1

exp(
1

21
       

1

yCxCyxs

t
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y
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t

x
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=

+
=

+
=

+
=

 

 

and eliminating s 
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This is the equation of the streamlines which pass 

through ( 00
, yx ) for all times t. 

 
2.) To find the pathlines we integrate  

02
      

01
    :)

0
,

0
(),(      0

2
1
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1

yCxCyxyxt
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now eliminate t between the equations for (x, y) 

2
1

)]1

0

(21[
0

−+=
x

x
yy  

 

This is the pathline through (
00

, yx ) at t=0 and does not 

coincide with the streamline at t=0. 
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3.) To find the streakline, we use the pathline 

equations to find the family of particles that have 

passed through the point (
0

,
0

yx ) for all times t . 
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The Stream Function 

Powerful tool for 2-D flow in which V is obtained by 

differentiation of a scalar   which automatically satisfies 

the continuity equation. 

 
Note for 2D flow  

∇ × 𝑉 = (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 ) = (0, 0, 𝜔𝑧) 

 

  

 

boundary conditions (4 required):  
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Irrotational Flow  

 

.      :on  

.      :on  

equation Laplacelinear order  2nd      02
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Ψ and φ are orthogonal. 
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Geometric Interpretation of   

 

Besides its importance mathematically   also has 

important geometric significance. 

 

 = constant = streamline 

Recall definition of a streamline: 

 

streamline a along     0   i.e.

 with    compare

0

ˆˆ           0V

=

+−=+=

=−

=

+==





d

udyvdxdy
y

dx
x

d

vdxudy

v

dy

u

dx

jdyidxdrdr

 

 

Or  =constant along a streamline and curves of constant   

are the flow streamlines. If we know  (x, y) then we can 

plot  = constant curves to show streamlines. 
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𝑢 =
𝜕𝜓

𝜕𝑦
,  𝑣 = −

𝜕𝜓

𝜕𝑥
 

Physical Interpretation 
.

ˆ ˆ ˆ ˆ      ( ).( ) 1

      

      

y x

dQ V ndA

dy dx
i j i j ds

y x ds ds

dy dx

d

 

 



=

 
= − −  

 

= +

=

 

(i.e., dQ per unit span equal 𝑑ψ)  

 

i.e., change in d  is volume flux and across streamline 0=dQ . 

12

2

1

2

1

21
.  −=== →

ddAnVQ  

Consider flow between two streamlines: 

 

 

( 𝑑𝐴 = 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎  𝑑𝑠 × 1  with 2D unit tangent 

and normal vectors) 
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Incompressible Plane Flow in Polar Coordinates 
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as before     0  along a streamline  and  

volume flux  change in stream function
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Incompressible axisymmetric flow 
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 and streamline a along  0  before as
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 :continuity
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Generalization 

 

Steady plane compressible flow: 

 

streamline a isconstant  and   0  i.e.   0)(
1

0
11

 with     compare

0        Alongside

function stream flow lecompressib              :define
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Now: 
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Change in   is equivalent to the mass flux.  


