# ME:5160 (58:160) Intermediate Mechanics of Fluids <br> Fall 2023 - HW11 Solution 

P7.6 For the laminar parabolic boundary-layer profile of Eq. (7.6), compute the shape factor "H" and compare with the exact Blasius-theory result, Eq. (7.31).

Solution: Given the profile approximation $\mathrm{u} / \mathrm{U} \approx 2 \eta-\eta^{2}$, where $\eta=\mathrm{y} / \delta$, compute

$$
\begin{aligned}
\theta & =\int_{0}^{\delta} \frac{\mathrm{u}}{\mathrm{U}}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}=\delta \int_{0}^{1}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) \mathrm{d} \eta=\frac{2}{15} \delta \\
\delta^{*} & =\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}=\delta \int_{0}^{1}\left(1-2 \eta+\eta^{2}\right) \mathrm{d} \eta=\frac{1}{3} \delta
\end{aligned}
$$

Hence $\mathrm{H}=\delta^{*} / \theta=(\delta / 3) /(2 \delta / 15) \approx \mathbf{2 . 5 0}$ (compared to 2.59 for Blasius solution)

P7.10 Repeat Prob. P7.9, using a trigonometric profile approximation:

$$
\frac{u}{U} \approx \sin \left(\frac{\pi y}{2 \delta}\right)
$$

Does this profile satisfy the conditions of laminar flat plate flow?
Solution: Again carry out the integrations of Sec. 7.2:

$$
\begin{aligned}
\theta & =\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\left(\frac{4-\pi}{2 \pi}\right) \delta \approx 0.1366 \delta \\
\delta^{*} & =\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y=\frac{\pi-2}{\pi} \delta \approx 0.3634 \delta \\
H & =\frac{\delta^{*}}{\theta}=\frac{2 \pi-4}{4-\pi} \approx 3.66
\end{aligned}
$$

Ans.

This is a good approximation. The velocity profile has $u=0$ at the wall, $u=U$ at $y=\delta$, and, for $d p / d x=0$, a flat plate, it has $\partial^{2} u / \partial y^{2}=0$ at the wall, as required from momentum.
To find the skin friction and $\delta$, we need to integrate the boundary layer integral relation:

$$
\tau_{w}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\frac{\pi}{2} \frac{\mu U}{\delta}=\rho U^{2} \frac{d \theta}{d x}=0.1366 \rho U^{2} \frac{d \delta}{d x}
$$

Separate the variables and integrate to obtain

$$
\delta d \delta=\frac{\pi}{2(0.1366)} \frac{d x}{\rho U} ; \text { Integrate }: \delta^{2}=\frac{\pi}{(0.1366)} \frac{x}{\rho U}+\text { const }
$$

Assuming that $\delta=0$ at $x=0$, the constant $=0$. We obtain the final approximations:

$$
\frac{\delta}{x} \approx \frac{4.8}{\sqrt{\operatorname{Re}_{x}}} \quad \text { and } \quad c_{f}=\frac{\theta}{x} \approx \frac{0.655}{\sqrt{\operatorname{Re}_{x}}} \text { Ans. }
$$

Good accuracy! The sine wave is an excellent approximation to the Blasius profile.

P7.19 Air at $20^{\circ} \mathrm{C}$ and 1 atm flows at $50 \mathrm{ft} / \mathrm{s}$ past a thin flat plate whose area $(b L)$ is $24 \mathrm{ft}^{2}$. If the total friction drag is 0.3 lbf , what are the length and width of the plate?

Solution: For air at $20^{\circ} \mathrm{C}$ and 1 atm , take $\rho=0.00238$ slug $/ \mathrm{ft}^{3}$ and $\mu=3.76 \mathrm{E}-7$ slug/ $\mathrm{ft}-\mathrm{s}$. Low speed air, not too big a plate: Guess laminar flow and check this later. Use Eq. (7.27):

$$
\begin{aligned}
& C_{D}=\frac{1.328}{\sqrt{\mathrm{Re}_{L}}}(\text { one side }) \text { hence } F=C_{D} \frac{\rho}{2} V^{2} 2 b L, \text { where } b L=24 \mathrm{ft}^{2} \\
& \text { Apply data }: F=0.3 \mathrm{lbf}=\frac{1.328 \sqrt{3.76 E-7}}{\sqrt{(0.00238)(50) L}}\left(\frac{0.00238}{2}\right)(50)^{2} 2 b L \\
& \text { Solve: } b \sqrt{L}=21.36=\frac{24}{L} \sqrt{L}, \quad \text { or }: \sqrt{L}=1.12 \quad L=\mathbf{1 . 2 6} \mathrm{ft}, b=\mathbf{1 9 . 0} \mathrm{ft} \text { Ans. }
\end{aligned}
$$

Check the Reynolds number: $\operatorname{Re}_{L}=(0.00238)(50)(1.26) /(3.76 \mathrm{E}-7)=399,000$. Laminar, OK.

P7.27 Air at $20^{\circ} \mathrm{C}$ and 1 atm flows at $3 \mathrm{~m} / \mathrm{s}$ past a sharp flat plate 2 m wide and 1 m long. (a) What is the wall shear stress at the end of the plate? (b) What is the air velocity at a point 4.5 mm normal to the end of the plate? (c) What is the total friction drag on the plate?

Solution: For at $20^{\circ} \mathrm{C}$ and 1 atm , take $\rho=1.2 \mathrm{~kg} / \mathrm{m} 3$ and $\mu=1.8 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$. Check the Reynolds number to see if the flow is laminar or turbulent:

$$
\operatorname{Re}_{L}=\frac{\rho U L}{\mu}=\frac{(1.2)(3.0)(1.0)}{1.8 \mathrm{E}-5}=200,000 \quad \text { Laminar }
$$

We can proceed with our laminar-flow formulas:
$c_{f, x=L}=\frac{0.664}{\sqrt{\operatorname{Re}_{L}}}=\frac{0.664}{\sqrt{200000}}=0.00148 ; \tau_{w}=c_{f} \frac{\rho}{2} U^{2}=(0.00148)\left(\frac{1.2}{2}\right)(3)^{2}=\mathbf{0 . 0 0 8 0}$ Pa Ans. $(a)$
At $y=4.5 \mathrm{~mm}$, the Blasius $\eta=y \sqrt{\frac{U}{v x}}=(0.0045 m) \sqrt{\frac{3.0}{(1.5 E-5)(1.0)}}=2.01$
Table 7.1: at $\eta=2.0, \operatorname{read} \frac{u}{U} \approx 0.63$, hence $u=(0.63)(3.0) \approx \mathbf{1 . 8 9} \frac{\mathrm{m}}{\mathrm{s}}$ Ans. $(b)$
Finally, compute the drag for both sides of the plate, $A=2 b L$ :
$C_{D}=\frac{1.328}{\sqrt{200,000}}=0.00297$,
or : $\quad F=C_{D} \frac{\rho}{2} U^{2}(2 b L)=(0.00297)\left(\frac{1.2}{2}\right)(3.0)^{2}[2(2.0)(1.0)]=\mathbf{0 . 0 6 4} N \quad$ Ans. $(c)$

NOTE: For part $(b)$, we never had to compute the boundary layer thickness, $\delta \approx 11.2 \mathrm{~mm}$.

P7.33 An alternate analysis of turbulent flat-plate flow was given by Prandtl in 1927, using a wall shear-stress formula from pipe flow

$$
\tau_{w}=0.0225 \rho U^{2}\left(\frac{v}{U \delta}\right)^{1 / 4}
$$

Show that this formula can be combined with Eqs. (7.32) and (7.40) to derive the following relations for turbulent flat-plate flow.

$$
\frac{\delta}{x}=\frac{0.37}{\operatorname{Re}_{x}^{1 / 5}} \quad c_{f}=\frac{0.0577}{\operatorname{Re}_{x}^{1 / 5}} \quad C_{D}=\frac{0.072}{\operatorname{Re}_{L}^{1 / 5}}
$$

These formulas are limited to $\operatorname{Re}_{x}$ between $5 \times 10^{5}$ and $10^{7}$.

Solution: Use Prandtl's correlation for the left hand side of Eq. (7.32) in the text:

$$
\begin{gathered}
\tau_{\mathrm{w}} \approx 0.0225 \rho \mathrm{U}^{2}(\nu / \mathrm{U} \delta)^{1 / 4}=\rho \mathrm{U}^{2} \frac{\mathrm{~d} \theta}{\mathrm{dx}} \approx \rho \mathrm{U}^{2} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{7}{72} \delta\right), \quad \text { cancel } \rho \mathrm{U}^{2} \text { and rearrange: } \\
\delta^{1 / 4} \mathrm{~d} \delta=0.2314(v / \mathrm{U})^{1 / 4} \mathrm{dx}, \quad \text { Integrate: } \quad \frac{4}{5} \delta^{5 / 4}=0.2314(v / \mathrm{U})^{1 / 4} \mathrm{x}
\end{gathered}
$$

Take the $(5 / 4)^{\text {th }}$ root of both sides and rearrange for the final thickness result:

$$
\delta \approx 0.37(v / \mathrm{U})^{1 / 5} \mathrm{x}^{4 / 5}, \quad \text { or: } \frac{\delta}{\mathbf{x}} \approx \frac{\mathbf{0 . 3 7}}{\mathbf{R e}_{\mathbf{x}}^{1 / 5}} \text { Ans. (a) }
$$

Substitute $\delta(\mathrm{x})$ into $\tau_{\mathrm{w}}: \quad \mathrm{C}_{\mathrm{f}} \approx \frac{2(0.0225)}{(0.37)^{1 / 4}}\left(\frac{v}{\mathrm{Ux}}\right)^{1 / 5}, \quad$ or $\quad \mathbf{C}_{\mathrm{f}} \approx \frac{\mathbf{0 . 0 5 7 7}}{\mathbf{R e}_{\mathbf{x}}^{1 / 5}}$ Ans. (b)
Finally, $\mathrm{C}_{\mathrm{D}}=\int_{0}^{1} \mathrm{C}_{\mathrm{f}} \mathrm{d}\left(\frac{\mathrm{x}}{\mathrm{L}}\right)=\frac{5}{4} \mathrm{C}_{\mathrm{f}}($ at $\mathrm{x}=\mathrm{L}) \approx \frac{\mathbf{0 . 0 7 2}}{\mathbf{R e}_{\mathrm{L}}^{\mathbf{1 / 5}}}$ Ans. (c)

