ME:5160 (58:160) Intermediate Mechanics of Fluids

Fall 2022 - HW9 Solution

P6.39 By analogy with laminar shear, $\tau=\mu d u / d y$. T. V. Boussinesq in 1877 postulated that turbulent shear could also be related to the mean-velocity gradient τ turb $=\varepsilon d u / d y$, where ε is called the eddy viscosity and is much larger than μ. If the logarithmic-overlap law, Eq. (6.28), is valid with $\tau \approx \tau w$, show that $\varepsilon \approx \kappa \rho u^{*} y$.

Solution: Differentiate the log-law, Eq. (6.28), to find $d u / d y$, then introduce the eddy viscosity into the turbulent stress relation

$$
\text { If } \frac{u}{u^{*}}=\frac{1}{\kappa} \ln \left(\frac{y u^{*}}{v}\right)+B, \text { then } \frac{d u}{d y}=\frac{u^{*}}{\kappa y}
$$

Then, if $\tau \approx \tau_{w} \equiv \rho u^{*^{2}}=\varepsilon \frac{d u}{d y}=\varepsilon \frac{u^{*}}{\kappa y}$, solve for $\varepsilon=\kappa \rho u * y$ Ans.
Note that $\varepsilon / \mu=\kappa \mathrm{y}^{+}$, which is much larger than unity in the overlap region.

P6.40 Theodore von Kármán in 1930 theorized that turbulent shear could be represented by τ turb $=\varepsilon \mathrm{du} /$ dy where $\varepsilon=\rho \kappa^{2} \mathrm{y}^{2}|\mathrm{du} / \mathrm{dy}|$ is called the mixing-length eddy viscosity and $\kappa \approx 0.41$ is Kármán's dimensionless mixing-length constant [2,3]. Assuming that τ turb $\approx \tau w$ near the wall, show that this expression can be integrated to yield the logarithmic-overlap law, Eq. (6.28).

Solution: This is accomplished by straight substitution:

$$
\begin{aligned}
& \tau_{\text {turb }} \approx \tau_{\mathrm{w}}=\rho \mathrm{u}^{* 2}=\varepsilon \frac{\mathrm{du}}{\mathrm{dy}}=\left[\rho \kappa^{2} \mathrm{y}^{2}\left|\frac{\mathrm{du}}{\mathrm{dy}}\right|\right] \frac{\mathrm{du}}{\mathrm{dy}}, \text { solve for } \frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{u}^{*}}{\kappa y} \\
& \text { Integrate: } \int \mathrm{du}=\frac{\mathrm{u}^{*}}{\kappa} \int \frac{\mathrm{dy}}{\mathrm{y}}, \quad \text { or: } \mathbf{u}=\frac{\mathbf{u}^{*}}{\kappa} \ln (\mathrm{y})+\text { constant Ans. }
\end{aligned}
$$

To convert this to the exact form of Eq. (6.28) requires fitting to experimental data

P6.45 Oil, $\mathrm{SG}=0.88$ and $v=4 \mathrm{E}-5 \mathrm{~m}^{2} / \mathrm{s}$, flows at $400 \mathrm{gal} / \mathrm{min}$ through a 6 -inch asphalted castiron pipe. The pipe is 0.5 miles long (2640 ft) and slopes upward at 8° in the flow direction. Compute the head loss in feet and the pressure change.

Solution: First convert $400 \mathrm{gal} / \mathrm{min}=0.891 \mathrm{ft}^{3} / \mathrm{s}$ and $v=0.000431 \mathrm{ft}^{2} / \mathrm{s}$. For asphalted cast-iron, $\varepsilon=0.0004 \mathrm{ft}$, hence $\varepsilon / d=0.0004 / 0.5=0.0008$. Compute V, Red, and f :

$$
\begin{gathered}
V=\frac{0.891}{\pi(0.25)^{2}}=4.54 \frac{f t}{s} ; \quad R e_{d}=\frac{4.54(0.5)}{0.000431}=5271 ; \quad \text { calculate } \quad f_{\text {Moody }}=0.0377 \\
\text { then } h_{f}=f \frac{L}{d} \frac{V^{2}}{2 g}=0.0377\left(\frac{2640}{0.5}\right) \frac{(4.54)^{2}}{2(32.2)}=\mathbf{6 3 . 8} \mathbf{f t} \quad \text { Ans. (a) }
\end{gathered}
$$

If the pipe slopes upward at 8°, the pressure drop must balance both friction and gravity:
$\Delta p=\rho g\left(h_{f}+\Delta z\right)=0.88(62.4)\left[63.8+2640 \sin 8^{\circ}\right]=\mathbf{2 3 7 0 0} \frac{\mathbf{l b f}}{\mathbf{f t}^{2}} \quad$ Ans. (b)

P6.61 What level h must be maintained in Fig. P6.61 to deliver a flow rate of $0.015 \mathrm{ft}^{3} / \mathrm{s}$ through the $\frac{1}{2}$-in commercial-steel pipe?

Fig. P6.61

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94$ slug/ ft^{3} and $\mu=2.09 \mathrm{E}-5$ slug/ $\mathrm{ft} \cdot \mathrm{s}$. For commercial steel, take $\varepsilon \approx 0.00015 \mathrm{ft}$, or $\varepsilon / d=0.00015 /(0.5 / 12) \approx 0.0036$. Compute

$$
\begin{gathered}
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{0.015}{(\pi / 4)(0.5 / 12)^{2}}=11.0 \frac{\mathrm{ft}}{\mathrm{~s}} ; \\
\operatorname{Re}=\frac{\rho \mathrm{Vd}}{\mu}=\frac{1.94(11.0)(0.5 / 12)}{2.09 \mathrm{E}-5} \approx 42500 \quad \varepsilon / d=0.0036, \quad \mathrm{f}_{\text {Moody }} \approx 0.0301
\end{gathered}
$$

The energy equation, with $\mathrm{p}_{1}=\mathrm{p}_{2}$ and $\mathrm{V}_{1} \approx 0$, yields an expression for surface elevation:

$$
\mathrm{h}=\mathrm{h}_{\mathrm{f}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left(1+\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}}\right)=\frac{(11.0)^{2}}{2(32.2)}\left[1+0.0301\left(\frac{80}{0.5 / 12}\right)\right] \approx \mathbf{1 1 1} \mathbf{f t} \quad \text { Ans. }
$$

