
ME:5160 (58:160) Intermediate Mechanics of Fluids 

Fall 2023 – HW7 Solution 

 

*P4.91  Analyze fully developed laminar pipe flow for a power-law fluid, τ = C(dvz/dr)n, for n 

≠ 1, as in Prob. P1.46.  (a) Derive an expression for vz(r).  (b) For extra credit, plot the velocity 

profile shapes for n = 0.5, 1, and 2.  [Hint: In Eq. (4.140), replace μ(dvz/dr) by τ.] 

Solution:  (a) For the power-law fluid, Eq. (4.140) becomes 
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where B is a constant of integration.  Divide by r, take the nth root, and integrate again: 
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since B must be zero, to avoid a logarithmic singularity at the origin.  Integrate once more: 
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The final solution, analogous to Eq. (4.137) for newtonian Poiseuille flow, is 
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For n = 1, for which C = μ, this reduced to Eq. (4.141) for Poiseuille flow. 

(b) To plot as a comparison, let [(-dp/dz)/2C] equal unity and plot vz for n = 0.5, 1, and 2: 

 

 

 

Note that n = 0.5, which resembles a pseudoplastic fluid, Fig. 

1.9, is very flat, while n = 2, similar to a dilatant fluid, Fig. 

1.9, is very steep. 



P4.94 A long solid cylinder rotates steadily 

in a very viscous fluid, as in Fig. P4.94. 

Assuming laminar flow, solve the Navier-Stokes 

equation in polar coordinates to determine the 

resulting velocity distribution.  The fluid is at rest 

far from the cylinder.  [HINT:  the cylinder does 

not induce any radial motion.] 

 

 

Solution:   We already have the useful hint that vr = 0.  Continuity then tells us that  

(1/r)v/ = 0, hence v does not vary with .  Navier-Stokes then yields the flow.  From Eq. D.6, 

the tangential momentum relation, with p/ = 0  and v = f(r), we obtain Eq. (4.143): 

Rotating a cylinder in a large expanse of fluid sets up (eventually) a potential vortex flow. 
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P5.28 A simply supported beam of diameter D, length L, and modulus of elasticity E is subjected 

to a fluid crossflow of velocity V, density , and viscosity . Its center deflection  is assumed to 

be a function of all these variables. (a) Rewrite this proposed function in dimensionless form. (b) 

Suppose it is known that  is independent of , inversely proportional to E, and dependent only upon V 

2, not  and V separately. Simplify the dimensionless function accordingly 

Solution: Establish the variables and their dimensions: 

   = fcn(     ,   D  ,   L   ,    E    ,  V ,        ) 

{L}     {M/L3}  {L}   {L}  {M/LT2}   {L/T}   {M/LT} 

Then n = 7 and j = 3, hence we expect n − j = 7 − 3 = 4 Pi groups, capable of various arrangements 

and selected by the writer, as follows (a): 

Well-posed final result: . (a)Ans
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 (b) If  is unimportant and  proportional to E-1, then the Reynolds number (VD/) drops out, 

and we have already cleverly combined E with V2, which we can now slip out and turn upside 

down: 
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P5.20  A fixed cylinder of diameter D and length L, immersed in a stream flowing normal to its 

axis at velocity U, will experience zero average lift.  However, if the cylinder is rotating at angular velocity 

, a lift force F will arise.  The fluid density  is important, but viscosity is secondary and can be 

neglected.  Formulate this lift behavior as a dimensionless function. 

Solution:  No suggestion was given for the repeating variables, but for this type of problem (force 

coefficient, lift coefficient), we normally choose (, U, D) for the task.  List the dimensions: 

           
-1 -1 -2 -3{L} {L} {LT } {T } {MLT } {ML }

D L U F 
 

 

There are three dimensions (MLT), which we knew when we chose (, U, D).  Combining these 

three, separately, with F, , and L, we find this dimensionless function: 
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This is a correct solution for Chapter 5, but in Chapter 8 we will use the “official” function, with extra 

factors of (1/2): 
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P5.68 For the rotating-cylinder function of Prob. P5.20, if L >> D, the problem can be reduced 

to only two groups, F/(rU2LD) versus (WD/U).  Here are experimental data for a cylinder 30 cm 

in diameter and 2 m long, rotating in sea-level air, with U = 25 m/s. 

W, rev/min 0 3000 6000 9000 12000 15000 

F,  N 0 850 2260 2900 3120 3300 

(a) Reduce this data to the two dimensionless groups and make a plot.  (b) Use this plot to 

predict the lift of a cylinder with D = 5 cm, L = 80 cm, rotating at 3800 rev/min in water at U = 4 

m/s. 

Solution:   (a) In converting the data, the writer suggests using W in rad/s, not rev/min.  For sea-

level air, r = 1.2255 kg/m3.  Take, for example, the first data point, W = 3000 rpm x (2p/60) = 

314 rad/s, and F = 850 N. 
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
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Do this for the other four data points, and plot as follows.         Ans.(a) 

                   

(b) For water, take r = 998 kg/m3.  The new data are D = 5 cm, L = 80 cm, 3800 rev/min in water 

at U = 4 m/s.   Convert 3800 rev/min = 398 rad/s.  Compute the rotation Pi group: 

                      2

(398 / )(0.05 )
4.97

4 /

D rad s m

U m s
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Read the chart for P1.  The writer reads P1  2.8.   Thus we estimate the water lift force: 

        
2 2

1 (2.8)(998)(4) (0.8 )(0.05 ) 1788 .( )F U LD m m N N Ans b=  =   1800  

 

 

0

1

2

3

4

5

6

7

8

0 5 10 15 20

F/(U2LD) 

D/U 



C5.3 Reconsider the fully-developed drain-ing vertical oil-film problem (see Fig. P4.80) as an 

exercise in dimensional analysis. Let the vertical velocity be a function only of distance from the 

plate, fluid properties, gravity, and film thickness. That is, w = fcn(x, , , g, ). 

 

(a) Use the Pi theorem to rewrite this function in terms of dimensionless parameters.  

(b) Verify that the exact solution from Prob. 4.80 is consistent with your result in part (a). 

 

 

Solution: There are n = 6 variables and j = 3 dimensions (M, L, T), hence we expect only n − j 

= 6 − 3 = 3 Pi groups. The author selects (, g, ) as repeating variables, whence 
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Ans. (a)  

(b) The exact solution from Problem 4.80 can be written in just this form: 

 

Yes, the two forms of dimensionless function are the same. Ans. (b) 

 


