ME:5160 (58:160) Intermediate Mechanics of Fluids
 Fall 2023 - HW6 Solution

P3.150 In Prob. 3.60 find the torque caused around flange 1 if the center point of exit 2 is 1.2 m directly below the flange center.

Fig. P3. 60

Solution: The CV encloses the elbow and cuts through flange (1). Recall from Prob. 3.60 that $\mathrm{D}_{1}=10 \mathrm{~cm}, \mathrm{D}_{2}=3 \mathrm{~cm}$, weight flow $=150 \mathrm{~N} / \mathrm{s}$, whence $\mathrm{V}_{1}=1.95 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}_{2}=$ $21.7 \mathrm{~m} / \mathrm{s}$. Let " O " be in the center of flange (1). Then $\mathbf{r}_{\mathbf{0}}=-1.2 \mathbf{j}$ and $\mathbf{r}_{\mathbf{0 1}}=0$. The pressure at (1) passes through O, thus causes no torque. The moment relation is:
$\sum \mathrm{M}_{\mathrm{O}}=\mathbf{T}_{\mathrm{O}}=\dot{\mathrm{m}}\left[\left(\mathbf{r}_{\mathrm{O} 2} \times \mathbf{V}_{2}\right)-\left(\mathbf{r}_{\mathrm{O} 1} \times \mathbf{V}_{1}\right)\right]=\left(\frac{150}{9.81} \frac{\mathrm{~kg}}{\mathrm{~s}}\right)[(-1.2 \mathbf{j}) \times(-16.6 \mathbf{i}-13.9 \mathbf{j})]$
or: $\mathbf{T}_{\mathrm{O}}=-305 \mathbf{k N} \cdot \mathrm{~m}$ Ans.
*P4.79 Study the combined effect of the two viscous flows in Fig. 4.12. That is, find $u(y)$ when the upper plate moves at speed V and there is also a constant pressure gradient ($d p / d x$). Is superposition possible? If so, explain why. Plot representative velocity profiles for (a) zero, (b) positive, and (c) negative pressure gradients for the same upper-wall speed V.

Fig. 4.16

Solution:

$$
\begin{aligned}
& \therefore 0=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& \Rightarrow \mu \frac{d^{2} u}{d y^{2}}=\frac{\partial p}{\partial x}
\end{aligned}
$$

Integrate twice:

$$
u=\left(\frac{1}{\mu} \frac{\partial p}{\partial x}\right) \frac{y^{2}}{2}+C_{1} y+C_{2}
$$

Boundary conditions:

$$
\begin{gathered}
\text { at } y=-h: u(-h)=0 \\
\text { at } y=+h: u(+h)=V \\
\therefore \quad C_{1}=\frac{V}{2 h}, \quad C_{2}=\frac{V}{2}-\left(\frac{1}{\mu} \frac{\partial p}{\partial x}\right) \frac{h^{2}}{2}
\end{gathered}
$$

Combined solution is

$$
\begin{aligned}
\therefore u & =\left(\frac{1}{\mu} \frac{\partial p}{\partial x}\right) \frac{y^{2}}{2}+\frac{V}{2 h} y+\frac{V}{2}-\left(\frac{1}{\mu} \frac{\partial p}{\partial x}\right) \frac{h^{2}}{2} \\
u & =\frac{\mathrm{V}}{2}\left(1+\frac{\mathrm{y}}{\mathrm{~h}}\right)+\frac{\mathrm{h}^{2}}{2 \mu}\left(-\frac{\mathrm{dp}}{\mathrm{dx}}\right)\left(1-\frac{\mathrm{y}^{2}}{\mathrm{~h}^{2}}\right)
\end{aligned}
$$

The superposition is quite valid because the convective acceleration is zero, hence what remains is linear: $\nabla \mathrm{p}=\mu \nabla^{2} \mathbf{V}$. Three representative velocity profiles are plotted at right for various (dp/dx).

*P4.37 A viscous liquid of constant density and viscosity falls due to gravity between two parallel plates a distance 2 h apart, as in the figure. The flow is fully developed, that is, $w=w(x)$ only. There are no pressure gradients, only gravity. Set up and solve the NavierStokes equation for the velocity profile $\mathrm{w}(\mathrm{x})$.

Solution: Only the z-component of Navier-Stokes is relevant

$$
\rho \frac{d w}{d t}=0=\rho g+\mu \frac{d^{2} w}{d x^{2}}, \quad \text { or: } w^{\prime \prime}=-\frac{\rho g}{\mu}, \quad w(-h)=w(+h)=0
$$

The solution is very similar to Eqs. (4.142) to (4.143) of the text:

$$
w=\frac{\rho \mathbf{g}}{\mathbf{2} \mu}\left(\mathbf{h}^{2}-\mathbf{x}^{2}\right) \quad \text { Ans. }
$$

P4.88 The viscous oil in Fig. P4.88 is set into steady motion by a concentric inner cylinder moving axially at velocity U inside a fixed outer cylinder. Assuming constant pressure and density and a purely axial fluid motion, solve Eqs. (4.38) for the fluid velocity distribution $v z(r)$. What are the proper boundary conditions?

Fig. P4.88

Solution: If $\mathrm{vz}=\mathrm{fcn}(\mathrm{r})$ only, the z-momentum equation (Appendix E) reduces to:

$$
\rho \frac{\mathrm{dv}_{\mathrm{z}}}{\mathrm{dt}}=-\frac{\partial \mathrm{p}}{\partial \mathrm{z}}+\rho \mathrm{g}_{\mathrm{z}}+\mu \nabla^{2} \mathrm{v}_{\mathrm{z}}, \quad \text { or: } \quad 0=0+0+\frac{\mu}{\mathrm{r}} \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \frac{\mathrm{dv}_{\mathrm{z}}}{\mathrm{dr}}\right)
$$

The solution is $\quad \mathrm{vz}=\mathrm{C} 1 \ln (\mathrm{r})+\mathrm{C} 2, \quad$ subject to $\mathrm{vz}(\mathrm{a})=\mathrm{U}$ and $\mathrm{vz}(\mathrm{b})=0$
Solve for $\quad \mathrm{C} 1=\mathrm{U} / \ln (\mathrm{a} / \mathrm{b})$ and $\mathrm{C} 2=-\mathrm{C} 1 \ln (\mathrm{~b})$
The final solution is: $\quad \mathbf{v}_{\mathbf{z}}=\mathbf{U} \frac{\ln (\mathbf{r} / \mathbf{b})}{\ln (\mathbf{a} / \mathbf{b})}$ Ans.

C4.1 In a certain medical application, water at room temperature and pressure flows through a rectangular channel of length $L=10 \mathrm{~cm}$, width $s=1 \mathrm{~cm}$, and gap thickness
$b=0.3 \mathrm{~mm}$. The volume flow is sinusoidal, with amplitude $\mathrm{Qo}=0.5 \mathrm{ml} / \mathrm{s}$ and frequency $f=20 \mathrm{~Hz}$, that is, $\mathrm{Q}=\mathrm{Q} \sin (2 \pi \mathrm{ft})$.
(a) Calculate the maximum Reynolds number $\mathrm{Re}=\mathrm{Vb} / v$, based on maximum average velocity and gap thickness. Channel flow remains laminar for $\mathrm{Re}<2000$, otherwise it will be turbulent. Is this flow laminar or turbulent?
(b) Assume quasi-steady flow, that is, solve as if the flow were steady at any given $\mathrm{Q}(\mathrm{t})$. Find an expression for streamwise velocity u as a function of $y, \mu, \mathrm{dp} / \mathrm{dx}$, and b, where $\mathrm{dp} / \mathrm{dx}$ is the pressure gradient required to drive the flow through the channel at flow rate Q . Also estimate the maximum magnitude of velocity component u.
(c) Find an analytic expression for flow rate $\mathrm{Q}(\mathrm{t})$ as a function of $\mathrm{dp} / \mathrm{dx}$.
(d) Estimate the wall shear stress $\tau \mathrm{w}$ as a function of $\mathrm{Q}, \mathrm{f}, \mu, b, s$, and time t.
(e) Finally, use the given numbers to estimate the wall shear amplitude, $\tau \mathrm{wo}$, in Pa .

Solution: (a) Maximum flow rate is the amplitude, $\mathrm{Qo}=0.5 \mathrm{ml} / \mathrm{s}$, hence average velocity $\mathrm{V}=$ Q/A:

$$
\begin{aligned}
V=\frac{Q}{b s}= & \frac{0.5 E-6 \mathrm{~m}^{3} / \mathrm{s}}{(0.0003 \mathrm{~m})(0.01 \mathrm{~m})}=0.167 \mathrm{~m} / \mathrm{s} \\
\mathrm{Re}_{\max } & =\frac{V b}{v}=\frac{(0.167)(0.0003)}{(0.001 / 998)} \\
& =\mathbf{5 0} \text { (laminar) Ans. (a) }
\end{aligned}
$$

(b, c) The quasi-steady analysis is just like Eqs. (4.137-4.139) of the text, with "h" $=\mathrm{b} / 2$:

$$
u=\frac{-1}{2 \mu} \frac{d p}{d x}\left(\frac{b^{2}}{4}-y^{2}\right), \quad u_{\max }=\frac{-1}{2 \mu} \frac{d p}{d x} \frac{b^{2}}{4}, \quad Q_{\max }=\frac{2}{3} u_{\max } b s=\frac{-s b^{3}}{12 \mu} \frac{d p}{d x} \quad \text { Ans. (b, c) }
$$

(e) For our given numerical values, the amplitude of wall shear stress is:

$$
\tau_{w o}=\frac{6 \mu Q_{o}}{s b^{2}}=\frac{6(0.001)(0.5 E-6)}{(0.01)(0.0003)^{2}}=3.3 \text { Pa Ans. (e) }
$$

