ME:5160 (58:160) Intermediate Mechanics of Fluids
 Fall 2023 - HW5 Solution

P3.60 Water at $20^{\circ} \mathrm{C}$ flows through the elbow in Fig. P3.60 and exits to the atmo-sphere. The pipe diameter is $D_{l}=10 \mathrm{~cm}$, while $D_{2}=3 \mathrm{~cm}$. At a weight flow rate of $150 \mathrm{~N} / \mathrm{s}$, the pressure $p_{1}=2.3 \mathrm{~atm}$ (gage).
Neglecting the weight of water and elbow, estimate the force on the flange bolts at section 1 .

Fig. P3.60

Solution: First, from the weight flow, compute $\mathrm{Q}=(150 \mathrm{~N} / \mathrm{s}) /\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)=0.0153$ $\mathrm{m}^{3} / \mathrm{s}$. Then the velocities at (1) and (2) follow from the known areas:

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~A}_{1}}=\frac{0.0153}{(\pi / 4)(0.1)^{2}}=1.95 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~A}_{2}}=\frac{0.0153}{(\pi / 4)(0.03)^{2}}=21.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The mass flow is $\rho \mathrm{A}_{1} \mathrm{~V}_{1}=(998)(\pi / 4)(0.1)^{2}(1.95) \approx 15.25 \mathrm{~kg} / \mathrm{s}$. Then the balance of forces in the x-direction is:

$$
\sum \mathrm{F}_{\mathrm{x}}=-\mathrm{F}_{\mathrm{bolts}}+\mathrm{p}_{1} \mathrm{~A}_{1}=\dot{\mathrm{m}} \mathrm{u}_{2}-\dot{\mathrm{m}} \mathrm{u}_{1}=\dot{\mathrm{m}}\left(-\mathrm{V}_{2} \cos 40^{\circ}-\mathrm{V}_{1}\right)
$$

solve for $\quad \mathrm{F}_{\mathrm{bolts}}=(2.3 \times 101350) \frac{\pi}{4}(0.1)^{2}+15.25\left(21.7 \cos 40^{\circ}+1.95\right) \approx \mathbf{2 1 0 0} \mathbf{N}$ Ans.

P3.88 The boat in Fig. P3.88 is jet-propelled by a pump which develops a volume flow rate Q and ejects water out the stern at velocity $V j$. If the boat drag force is $F=k V^{2}$, where k is a constant, develop a formula for the steady forward speed V of the boat.

Fig. P3. 88
Solution: Let the CV move to the left at boat speed V and enclose the boat and the pump's inlet and exit. Assume that the inlet forms an angle θ with the horizontal direction.

The inlet relative velocity is: $V_{r_{i}}=V_{\text {inlet }}+V$
The jet relative velocity is: $V_{r_{o}}=V_{j}+V$
Continuity gives:

$$
A_{\text {inlet }}\left(V_{\text {inlet }} \cos \theta+V\right)=A_{j}\left(V_{j}+V\right)=\dot{m}_{\text {pump }}
$$

Momentum balance in the x-direction gives:

$$
\begin{gathered}
\sum F_{x}=k V^{2}=\dot{m}_{\text {pump }}\left(\underline{V_{r_{o}}} \cdot \underline{n_{o}}+\underline{V_{r_{i}}} \cdot \underline{n_{i}}\right) \\
\underline{V_{r_{o}}} \cdot \underline{n_{o}}=V_{j}+V \quad \underline{V_{r_{i}}} \cdot \underline{n_{i}}=-\left(V_{\text {inlet }}+V \cos \theta\right) \\
k V^{2}=\dot{m}_{\text {pump }}\left(V_{j}+V-V_{\text {inlet }} \cos \theta-V\right)=\dot{m}_{\text {pump }}\left(V_{j}-V_{\text {inlet }} \cos \theta\right)
\end{gathered}
$$

Formula for V :

$$
V=\frac{1}{k} \sqrt{\dot{m}_{\text {pump }}\left(V_{j}-V_{\text {inlet }} \cos \theta\right)}
$$

If $V_{\text {inlet }} \cos \theta \ll V_{j} \rightarrow V=\frac{1}{k} \sqrt{\dot{m}_{\text {pump }} V_{j}}$

P3.180 Water at $20^{\circ} \mathrm{C}$ is pumped at $1500 \mathrm{gal} / \mathrm{min}$ from the lower to the upper reservoir, as in Fig. P3.180. Pipe friction losses are approximated by $h f \approx 27 V^{2} /(2 g)$, where V is the average velocity in the pipe. If the pump is 75 percent efficient, what horse-power is needed to drive it?

Solution: First evaluate the average velocity in the pipe and the friction head loss:

$$
\mathrm{Q}=\frac{1500}{448.8}=3.34 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}, \quad \text { so } \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{3.34}{\pi(3 / 12)^{2}}=17.0 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \text { and } \quad \mathrm{h}_{\mathrm{f}}=27 \frac{(17.0)^{2}}{2(32.2)} \approx \mathbf{1 2 1} \mathbf{f t}
$$

Then apply the steady flow energy equation:

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{p}} \\
& \text { or: } 0+0+50=0+0+150+121-\mathrm{h}_{\mathrm{p}}
\end{aligned}
$$

Thus $\mathrm{h}_{\mathrm{p}}=221 \mathrm{ft}$, so $\mathrm{P}_{\mathrm{pump}}=\frac{\gamma \mathrm{Qh}_{\mathrm{p}}}{\eta}=\frac{(62.4)(3.34)(221)}{0.75}$

$$
=61600 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \approx \mathbf{1 1 2} \mathbf{~ h p} \quad \text { Ans. }
$$

P3.184 The large turbine in Fig. P3.184 diverts the river flow under a dam as shown. System friction losses are $h f=3.5 V^{2} /(2 g)$, where V is the average velocity in the supply pipe. For what river flow rate in $\mathrm{m}^{3} / \mathrm{s}$ will the power extracted be 25 MW ? Which of the t wo possible solutions has a better "conversion efficiency"?

Solution: The flow rate is the unknown, with the turbine power known:

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\text {turb }}, \quad \text { or: } 0+0+50=0+0+10+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\text {turb }} \\
& \text { where } \mathrm{h}_{\mathrm{f}}=3.5 \mathrm{~V}_{\text {pipe }}^{2} /(2 \mathrm{~g}) \text { and } \mathrm{h}_{\mathrm{p}}=\mathrm{P}_{\mathrm{p}} /(\gamma \mathrm{Q}) \text { and } \quad \mathrm{V}_{\text {pipe }}=\frac{\mathrm{Q}}{(\pi / 4) \mathrm{D}_{\text {pipe }}^{2}}
\end{aligned}
$$

Introduce the given numerical data (e.g. Dpipe $=4 \mathrm{~m}$, Ppump $=25 \mathrm{E} 6 \mathrm{~W})$ and solve:

$$
Q^{3}-35410 Q+2.261 \mathrm{E} 6=0, \quad \text { with roots } Q=+76.5,+137.9, \text { and }-214.4 \mathrm{~m}^{3} / \mathrm{s}
$$

The negative Q is nonsense. The large $\mathrm{Q}\left(137.9 \mathrm{~m}^{3} / \mathrm{s}\right)$ gives large friction loss, $\mathrm{hf} \approx 21.5 \mathrm{~m}$. The smaller Q ($76.5 \mathrm{~m}^{3} / \mathrm{s}$) gives $\mathrm{hf} \approx 6.6 \mathrm{~m}$, about right.
Select Qriver $\approx 76.5 \mathrm{~m}^{3} / \mathrm{s}$. Ans.

P4.2 Flow through the converging nozzle in Fig. P4.2 can be approximated by the one-dimensional velocity distribution

$$
u \approx V_{\mathrm{o}}\left(1+\frac{2 x}{L}\right) \quad v \approx 0 \quad w \approx 0
$$

Fig. P4.2
(a) Find a general expression for the fluid acceleration in the nozzle. (b) For the specific case V o $=10 \mathrm{ft} / \mathrm{s}$ and $L=6 \mathrm{in}$, compute the acceleration, in g 's, at the entrance and at the exit.

Solution: Here we have only the single 'one-dimensional' convective acceleration:

$$
\frac{d u}{d t}=u \frac{\partial u}{\partial x}=\left[V_{o}\left(1+\frac{2 x}{L}\right)\right] \frac{2 V_{o}}{L}=\frac{\mathbf{2} \mathbf{V}_{\mathbf{0}}^{\mathbf{2}}}{\mathbf{L}}\left(\mathbf{1}+\frac{\mathbf{2 \mathbf { x }}}{\mathbf{L}}\right) \quad \text { Ans. (a) }
$$

For $L=6^{\prime \prime}$ and $V_{o}=10 \frac{f t}{s}, \quad \frac{d u}{d t}=\frac{2(10)^{2}}{6 / 12}\left(1+\frac{2 x}{6 / 12}\right)=400(1+4 x)$, with x in feet

At $\mathrm{x}=0, \mathrm{du} / \mathrm{dt}=\mathbf{4 0 0} \mathrm{ft} / \mathrm{s}^{2}(12 \mathrm{~g} ’ \mathrm{~s})$; at $\mathrm{x}=\mathrm{L}=0.5 \mathrm{ft}, \mathrm{du} / \mathrm{dt}=\mathbf{1 2 0 0} \mathrm{ft} / \mathrm{s}^{2}(37 \mathrm{~g} ’ \mathrm{~s}) . \quad$ Ans. (b)

P4.27 A frictionless, incompressible steady-flow field is given by

$$
\mathbf{V}=2 x y \mathbf{i}-y^{2} \mathbf{j}
$$

in arbitrary units. Let the density be $\rho 0=$ constant and neglect gravity. Find an expression for the pressure gradient in the x direction.

Solution: For this (gravity-free) velocity, the momentum equation is

$$
\rho\left(\mathrm{u} \frac{\partial \mathbf{V}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathbf{V}}{\partial \mathrm{y}}\right)=-\nabla \mathrm{p}, \quad \text { or: } \quad \rho_{\mathrm{o}}\left[(2 \mathrm{xy})(2 \mathrm{yi})+\left(-\mathrm{y}^{2}\right)(2 \mathrm{xi}-2 \mathrm{y} \mathbf{j})\right]=-\nabla \mathrm{p}
$$

Solve for $\quad \nabla \mathrm{p}=-\rho_{\mathrm{o}}\left(2 \mathrm{xy}^{2} \mathbf{i}+2 \mathrm{y}^{3} \mathbf{j}\right), \quad$ or: $\quad \frac{\partial \mathbf{p}}{\partial \mathbf{x}}=-\rho_{\mathbf{0}} \mathbf{2} \mathbf{x y}^{\mathbf{2}}$ Ans.

