# ME:5160 (58:160) Intermediate Mechanics of Fluids <br> Fall 2023 - HW4 Solution 

P3.18 Gasoline enters Section 1 in Fig. P3.18 at $0.5 \mathrm{~m}^{3} / \mathrm{s}$. It leaves Section 2 at an average velocity of $12 \mathrm{~m} / \mathrm{s}$. What is the average velocity at Section 3? Is it in or out?

Fig. P3.18


Solution: Given $Q_{1}=0.5 \mathrm{~m}^{3} / \mathrm{s}$, evaluate

$$
Q_{2}=\frac{\pi}{4} D_{2}^{2} V_{2}=\frac{\pi}{4}(0.18 m)^{2}\left(12 \frac{m}{s}\right)=0.305 m^{3} / s
$$

Then

$$
Q_{3}=Q_{1}-Q_{2}=0.5-0.305=+0.195 \mathrm{~m}^{3} / \mathrm{s}=(\pi / 4)(0.13 \mathrm{~m})^{2} V_{3}, \text { solve } V_{3}=\mathbf{1 4 . 7} \mathrm{m} / \mathrm{s} \text { out Ans. }
$$

P3.22 The converging-diverging nozzle shown in Fig. P3.22 expands and accelerates dry air to supersonic speeds at the exit, where $p^{2}=8 \mathrm{kPa}$ and $T_{2}=240 \mathrm{~K}$. At the throat, $p^{1}=284 \mathrm{kPa}, T_{1}=665 \mathrm{~K}$, and $V_{1}=517 \mathrm{~m} / \mathrm{s}$. For steady compressible flow of an ideal gas, estimate (a) the mass flow in $\mathrm{kg} / \mathrm{h}$, (b) the velocity $V^{2}$, and (c) the Mach number Ma2.


Fig. P3.22

Solution: The mass flow is given by the throat conditions:

$$
\dot{\mathrm{m}}=\rho_{1} \mathrm{~A}_{1} \mathrm{~V}_{1}=\left[\frac{284000}{(287)(665)} \frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right] \frac{\pi}{4}(0.01 \mathrm{~m})^{2}\left(517 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=\mathbf{0 . 0 6 0 4} \frac{\mathbf{k g}}{\mathrm{s}} \quad \text { Ans. (a) }
$$

For steady flow, this must equal the mass flow at the exit:

$$
0.0604 \frac{\mathrm{~kg}}{\mathrm{~s}}=\rho_{2} \mathrm{~A}_{2} \mathrm{~V}_{2}=\left[\frac{8000}{287(240)}\right] \frac{\pi}{4}(0.025)^{2} \mathrm{~V}_{2}, \quad \text { or } \quad \mathrm{V}_{2} \approx \mathbf{1 0 6 0} \frac{\mathbf{m}}{\mathbf{s}} \quad \text { Ans. (b) }
$$

Recall from Eq. (1.39) that the speed of sound of an ideal gas $=(k R T)^{1 / 2}$. Then

$$
\text { Mach number at exit: } \quad \mathrm{Ma}=\mathrm{V}_{2} / \mathrm{a}_{2}=\frac{1060}{[1.4(287)(240)]^{1 / 2}} \approx \mathbf{3 . 4 1} \quad \text { Ans. (c) }
$$

P3.14 The open tank in the figure contains water at $20^{\circ} \mathrm{C}$. For incompressible flow, (a) derive an analytic expression for $d h / d t$ in terms of (Q1, Q2, Q3). (b) If $h$ is constant, determine V 2 for the given data if $\mathrm{V} 1=3 \mathrm{~m} / \mathrm{s}$ and $\mathrm{Q} 3=0.01 \mathrm{~m}^{3} / \mathrm{s}$.


Solution: For a control volume enclosing the tank,

$$
\begin{gathered}
\frac{d}{d t}\left(\int_{C V} \rho d v\right)+\rho\left(Q_{2}-Q_{1}-Q_{3}\right)=\rho \frac{\pi d^{2}}{4} \frac{d h}{d t}+\rho\left(Q_{2}-Q_{1}-Q_{3}\right) \\
\text { solve } \frac{\mathbf{d h}}{\mathbf{d t}}=\frac{\mathbf{Q}_{1}+\mathbf{Q}_{\mathbf{3}}-\mathbf{Q}_{\mathbf{2}}}{\left(\pi \mathbf{d}^{2} / \mathbf{4}\right)} \quad \text { Ans. (a) }
\end{gathered}
$$

If $h$ is constant, then

$$
\begin{aligned}
Q_{2}=Q_{1}+Q_{3} & =0.01+\frac{\pi}{4}(0.05)^{2}(3.0)=0.0159=\frac{\pi}{4}(0.07)^{2} V_{2} \\
& \text { solve } V_{2}=4.13 \mathbf{~ m} / \mathbf{s} \text { Ans. (b) }
\end{aligned}
$$

P3.54 For the pipe-flow reducing section of Fig. P3.54, D1 $=8 \mathrm{~cm}, \mathrm{D} 2=5 \mathrm{~cm}$, and p2 $=1 \mathrm{~atm}$. All fluids are at $20^{\circ} \mathrm{C}$. If V1 $=5 \mathrm{~m} / \mathrm{s}$ and the manometer reading is $h=58 \mathrm{~cm}$, estimate the total horizontal force resisted by the flange bolts.


Fig. P3. 54
Solution: Let the CV cut through the bolts and through section 2. For the given manometer reading, we may compute the upstream pressure:

$$
\mathrm{p}_{1}-\mathrm{p}_{2}=\left(\gamma_{\text {merc }}-\gamma_{\text {water }}\right) \mathrm{h}=(132800-9790)(0.58 \mathrm{~m}) \approx 71300 \mathrm{~Pa} \text { (gage) }
$$

Now apply conservation of mass to determine the exit velocity:

$$
\mathrm{Q}_{1}=\mathrm{Q}_{2}, \quad \text { or } \quad(5 \mathrm{~m} / \mathrm{s})(\pi / 4)(0.08 \mathrm{~m})^{2}=\mathrm{V}_{2}(\pi / 4)(0.05)^{2}, \quad \text { solve for } \mathrm{V}_{2} \approx 12.8 \mathrm{~m} / \mathrm{s}
$$

Finally, write the balance of horizontal forces:

$$
\sum \mathrm{F}_{\mathrm{x}}=-\mathrm{F}_{\text {bolts }}+\mathrm{p}_{1, \text { gage }} \mathrm{A}_{1}=\dot{\mathrm{m}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

$$
\text { or: } \quad \mathrm{F}_{\text {bolts }}=(71300) \frac{\pi}{4}(0.08)^{2}-(998) \frac{\pi}{4}(0.08)^{2}(5.0)[12.8-5.0] \approx \mathbf{1 6 3} \mathbf{N} \quad \text { Ans. }
$$

P3.61 A $20^{\circ} \mathrm{C}$ water jet strikes a vane on a tank with frictionless wheels, as shown. The jet turns and falls into the tank without spilling. If $\theta=30^{\circ}$, estimate the horizontal force F needed to hold the tank stationary.

Solution: The CV surrounds the tank and wheels and cuts through the jet, as shown. We should assume that the splashing into the tank does not increase the x-momentum of the water in the tank. Then we can write the CV horizontal force relation:


Fig. P3.61

$$
\sum \mathrm{F}_{\mathrm{x}}=-\mathrm{F}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\int \mathrm{u} \rho \mathrm{~d} v\right)_{\operatorname{tank}}-\dot{\mathrm{m}}_{\mathrm{in}} \mathrm{u}_{\mathrm{in}}=0-\dot{\mathrm{m}} \mathrm{~V}_{\mathrm{jet}} \text { independent of } \theta
$$

Thus $\mathrm{F}=\rho \mathrm{A}_{\mathrm{j}} \mathrm{V}_{\mathrm{j}}^{2}=\left(1.94 \frac{\text { slug }}{\mathrm{ft}^{3}}\right) \frac{\pi}{4}\left(\frac{2}{12} \mathrm{ft}\right)^{2}\left(50 \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \approx \mathbf{1 0 6} \mathbf{l b f} \quad$ Ans.

