ME:5160 (58:160) Intermediate Mechanics of Fluids Fall 2023 – HW2 Solution

P1.70 Derive an expression for the capillary-height change h, as shown, for a fluid of surface tension Y and contact angle θ between two parallel plates W apart. Evaluate h for water at 20C if W=0.5 mm

Solution: With b the width of the plates into the paper, the capillary forces on each wall together balance the weight of water held above the reservoir free surface:

$$\rho g \text{Whb} = 2(\text{Ybcos}\theta), \text{ or: } h \approx \frac{2\text{Ycos}\theta}{\rho g W} \text{ Ans.}$$

For water at 20°C, Y $\approx 0.0728 \text{ N/m}, \rho_g \approx 9790 \text{ N/m}^3$, and $\theta \approx 0^\circ$. Thus, for W = 0.5 mm,
$$h = \frac{2(0.0728 \text{ N/m})\cos 0^\circ}{(9790 \text{ N/m}^3)(0.0005 \text{ m})} \approx 0.030 \text{ m} \approx 30 \text{ mm} \text{ Ans.}$$

P1.73 A small submersible moves at velocity V in 20° C water at 2-m depth, where ambient pressure is 131 kPa. Its critical cavitation number is Ca ≈ 0.25 . At what velocity will cavitation bubbles form? Will the body cavitate if V = 30 m/s and the water is cold (5° C)?

Solution: From Table A-5 at 20° C read pv = 2.337 kPa. By definition,

$$Ca_{crit} = 0.25 = \frac{2(p_a - p_v)}{\rho V^2} = \frac{2(131000 - 2337)}{(998 \text{ kg/m}^3)V^2}, \text{ solve } V_{crit} \approx 32.1 \text{ m/s}$$
 Ans. (a)

If we decrease water temperature to 5° C, the vapor pressure reduces to 863 Pa, and the density changes slightly, to 1000 kg/m³. For this condition, if V = 30 m/s, we compute:

$$Ca = \frac{2(131000 - 863)}{(1000)(30)^2} \approx 0.289$$

This is greater than 0.25, therefore the body will not cavitate for these conditions. Ans. (b)

P2.44 Water flows downward in a pipe at 45° , as shown in Fig. P2.44. The mercury manometer reads a 6-in height. The pressure drop $p^2 - p^1$ is partly due to friction and partly due to gravity. Determine the total pressure drop and also the part due to friction only. Which part does the manometer read? Why?

Solution: Let "h" be the distance down from point 2 to the mercury-water interface in the right leg. Write the hydrostatic formula from 1 to 2:

$$p_{1} + 62.4 \left(5\sin 45^{\circ} + h + \frac{6}{12} \right) - 846 \left(\frac{6}{12} \right) - 62.4h = p_{2},$$

$$p_{1} - p_{2} = (846 - 62.4)(6/12) - 62.4(5\sin 45^{\circ}) = 392 - 221$$
....friction loss...
$$= 171 \frac{lbf}{ft^{2}} \quad Ans.$$

The manometer reads only the *friction loss* of 392 lbf/ft², not the gravity head of 221 psf.

P2.76 Panel BC in Fig. P2.76 is circular. Compute (a) the hydrostatic force of the water on the panel; (b) its center of pressure; and (c) the moment of this force about point B.Solution: (a) The hydrostatic force on the gate is:

$$F = \gamma h_{CG} A$$

= (9790 N/m³)(4.5 m)sin 50°(π)(1.5 m)²
= **239 kN** Ans. (a)

(b) The center of pressure of the force is:

Thus y is **1.625 m** down along the panel from B (or 0.125 m down from the center of the circle).

(c) The moment about B due to the hydrostatic force is,

 $M_{\rm B} = (238550 \text{ N})(1.625 \text{ m}) = 387,600 \text{ N} \cdot \text{m} = 388 \text{ kN} \cdot \text{m}$ Ans. (c)

P2.82 The dam in Fig. P2.82 is a quarter-circle 50 m wide into the paper. Determine the horizontal and vertical components of hydrostatic force against the dam and the point CP where the resultant strikes the dam.

Solution: The horizontal force acts as if the dam were vertical and 20 m high:

$$F_H = \gamma h_{CG} A_{vert} = \left(9790 \frac{N}{m^3}\right) (10 \ m) (20 \times 50 \ m^2) = 97.9 \ MN \ Ans.$$

C1.12 A solid aluminium disk (SG = 2.7) is 2 inches in diameter and 3/16 inch thick. It slides steadily down a 14° incline that is coated with a castor oil (SG = 0.96) film one hundredth of an inch thick. The steady slide velocity is 2 cm/s. Using Figure A.1 and a linear oil velocity profile assumption, estimate the *temperature* of the castor oil.

Solution: This problem reviews complicated units, volume and weight, shear stress, and viscosity. It fits the sketch in Fig. P1.45. The writer converts to SI units.

$$W = \rho_{alum} g Ah = (2700 kg/m^3)(9.81 m/s^2) \{\pi [(1/12)(0.3048)]^2\} (3/16/12)(0.3048) = 0.256 N$$

The weight component along the incline balances the shear stress, in the castor oil, times the bottom flat area of the disk.

$$W\sin\theta = \mu \frac{V}{h}A \text{, or: } (0.256N)\sin(14^{\circ}) = \mu [\frac{0.02 \, m/s}{(1/100/12)(0.3048)m}]\pi [(1/12)(0.3048)m]^2$$

Solve for $\mu_{oil} \approx 0.39 \, kg/(m-s)$

Looking on Fig. A.1 for castor oil, this viscosity corresponds approximately to 30° C *Ans*. The specific gravity of the castor oil was a red herring and is not needed. Note also that, since *W* is proportional to disk bottom area *A*, that area cancels out and is not needed.