ME:5160 (58:160) Intermediate Mechanics of Fluids
 Fall 2022 - HW13 Solution

P8.15 Hurricane Sandy, which hit the New Jersey coast on Oct. 29, 2012, was extremely broad, with wind velocities of $40 \mathrm{mi} / \mathrm{h}$ at 400 miles from its center. Its maximum velocity was $90 \mathrm{mi} / \mathrm{h}$. Using the model of Fig. P8.14, at $20^{\circ} \mathrm{C}$ with a pressure of 100 kPa far from the center, estimate (a) the radius R of maximum velocity, in mi; and (b) the pressure at $r=R$.

Solution: The air density is $p / R T=(100,000) /[287(293)]=1.19 \mathrm{~kg} / \mathrm{m}^{3}$. Convert $90 \mathrm{mi} / \mathrm{h}$ to $40.23 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{mi} / \mathrm{h}$ to $17.9 \mathrm{~m} / \mathrm{s}$. The outer flow is irrotational, hence Bernoulli holds:

$$
\begin{aligned}
p_{r=R}+\frac{1}{2} \rho V_{r=R}^{2}=p_{r=R}+\frac{1}{2}(1.19)(40.2)^{2}=p_{\infty}+\frac{1}{2} \rho V_{\infty}^{2} & =100,000+0 \\
\text { solve for } \quad p_{r=R}=100,000-960=99,040 P a & \approx \mathbf{9 9 k} \mathbf{k P a} \quad \text { Ans. }(b)
\end{aligned}
$$

(a) The two velocities, plus the radii, fit irrotational vortex theory. Let the outer ring be r_{2} :

$$
V_{2}=40 m i / h=\frac{C}{r_{2}}=\frac{C}{400 m i} \text {, hence } C=(40)(400)=16,000 \mathrm{mi}^{2} / h
$$

Then $\quad V_{R}=90 \mathrm{mi} / \mathrm{h}=\frac{16,000 \mathrm{~m}^{2} / \mathrm{h}}{R}$, solve $R \approx \mathbf{1 7 8} \mathbf{m i}$ Ans.(a)

P8.27 Water at $20^{\circ} \mathrm{C}$ flows past a half-body as shown in Fig. P8.27. Measured pressures at points A and B are 160 kPa and 90 kPa , respectively, with uncertainties of 3 kPa each. Estimate the stream velocity and its uncertainty.

Solution: Since Eq. (8.18) is for the upper surface, use it by noting that $V \mathrm{C}=V \mathrm{~B}$ in the figure:

Fig. P8. 27

$$
\begin{aligned}
& \frac{r_{C}}{a}=\frac{\pi-\pi / 2}{\sin (\pi / 2)}=\frac{\pi}{2}, \quad V_{C}^{2}=V_{B}^{2}=U_{\infty}^{2}\left[1+\left(\frac{2}{\pi}\right)^{2}+\frac{2}{(\pi / 2)} \cos (\pi / 2)\right]=1.405 U_{\infty}^{2} \\
& \text { Bernoulli: } \quad p_{A}+\frac{\rho}{2} V_{A}^{2}=160000+0=p_{B}+\frac{\rho}{2} V_{B}^{2}=90000+\frac{998}{2}\left(1.405 U_{\infty}^{2}\right)
\end{aligned}
$$

Solve for $\mathrm{U}_{\infty} \approx \mathbf{1 0 . 0} \mathbf{m} / \mathrm{s}$ Ans.
The uncertainty in $\left(p_{\mathrm{A}}-p_{\mathrm{B}}\right)$ is as high as 6000 Pa , hence the uncertainty in U_{∞} is $\pm \mathbf{0 . 4} \mathbf{~ m} / \mathrm{s}$. Ans.

P8.29 A uniform water stream, $U_{\infty}=20 \mathrm{~m} / \mathrm{s}$ and $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$, combines with a source at the origin to form a half-body. At $(x, y)=(0,1.2 \mathrm{~m})$, the pressure is 12.5 kPa less than p_{∞}. (a) Is this point outside the body? Estimate (b) the appropriate source strength m and (c) the pressure at the nose of the body.

Fig P8.29
Solution: We know, from Fig. 8.5 and Eq. 8.18, the point on the half-body surface just above " m " is at $\mathrm{y}=\pi \mathrm{a} / 2$, as shown, where $\mathrm{a}=m / \mathrm{U}$. The Bernoulli equation allows us to compute the necessary source strength m from the pressure at $(x, y)=(0,1.2 \mathrm{~m})$:

$$
\mathrm{p}_{\infty}+\frac{\rho}{2} \mathrm{U}_{\infty}^{2}=\mathrm{p}_{\infty}+\frac{998}{2}(20)^{2}=\mathrm{p}_{\infty}-12500+\frac{998}{2}\left[(20)^{2}+\left(\frac{m}{1.2}\right)^{2}\right]
$$

Solve for $\boldsymbol{m}-6.0 \frac{\mathbf{m}^{2}}{\mathbf{s}} \quad$ Ans. (b) while $\mathrm{a}=\frac{m}{\mathrm{U}}=\frac{6.0}{20}=0.3 \mathrm{~m}$

The body surface is thus at $\mathrm{y}=\pi \mathrm{a} / 2=\mathbf{0 . 4 7} \mathbf{~ m}$ above m . Thus the point in question, $\mathrm{y}=1.2 \mathrm{~m}$ above m, is outside the body. Ans. (a)

At the nose SP of the body, $(x, y)=(-a, 0)$, the velocity is zero, hence we predict

$$
\mathrm{p}_{\infty}+\frac{\rho}{2} \mathrm{U}_{\infty}^{2}=\mathrm{p}_{\infty}+\frac{998}{2}(20)^{2}=\mathrm{p}_{\text {nose }}+\frac{\rho}{2}(0)^{2}, \quad \text { or } \quad \mathbf{p}_{\text {nose }} \approx \mathbf{p}_{\infty}+\mathbf{2 0 0} \mathbf{k P a} \quad \text { Ans. (c) }
$$

P8.44 Suppose that circulation is added to the cylinder flow of Prob. P8.43 sufficient to place the stagnation points at $\theta=35^{\circ}$ and 145°. What is the required vortex strength K in $\mathrm{m}^{2} / \mathrm{s}$? Compute the resulting pressure and surface velocity at (a) the stagnation points, and (b) the upper and lower shoulders. What will be the lift per meter of cylinder width?

Solution: Recall that Prob. P8.43 was for water at $20^{\circ} \mathrm{C}$ flowing at $6 \mathrm{~m} / \mathrm{s}$ past a $1-\mathrm{m}$-diameter cylinder, with $p_{\infty}=200 \mathrm{kPa}$. From Eq. (8.35),

$$
\sin \theta_{\text {stag }}=\sin \left(35^{\circ}\right)=\frac{K}{2 U_{\infty} a}=\frac{K}{2(6 \mathrm{~m} / \mathrm{s})(0.5 \mathrm{~m})}, \quad \text { or: } \quad K=3.44 \mathrm{~m}^{2} / \mathrm{s} \quad \text { Ans. }
$$

(a) At the stagnation points, velocity is zero and pressure equals stagnation pressure:

$$
p_{\text {stag }}=p_{\infty}+\frac{\rho}{2} U_{\infty}^{2}=200,000 P a+\frac{998 \mathrm{~kg} / \mathrm{m}^{3}}{2}(6 \mathrm{~m} / \mathrm{s})^{2}=\mathbf{2 1 8 , 0 0 0} \mathbf{P a} \quad \text { Ans. (a) }
$$

(b) At any point on the surface, from Eq. (8.37),

$$
p_{\text {stag }}=218000=p_{\text {surf }}+\frac{\rho}{2}\left(-2 U_{\infty} \sin \theta+\frac{K}{a}\right)^{2}=p_{\text {surf }}+\frac{998}{2}\left[-2(6) \sin \theta+\frac{3.44}{0.5}\right]^{2}
$$

At the upper shoulder, $\theta=90^{\circ}$,

$$
p=218000-\frac{998}{2}(-5.12)^{2} \approx \mathbf{2 0 4 , 9 0 0} \mathbf{P a} \text { Ans. (b-upper) }
$$

At the lower shoulder, $\theta=270^{\circ}$,

$$
p=218000-\frac{998}{2}(-18.88)^{2} \approx \mathbf{4 0 , 1 0 0} \mathbf{P a} \text { Ans. (b-lower) }
$$

*P8.48 Wind at U_{∞} and p_{∞} flows past a Quonset hut which is a half-cylinder of radius a and length L (Fig. P8.48). The internal pressure is pi. Using inviscid theory, derive an expression for the upward force on the hut due to the difference between pi and ps.

Fig P8.48
Solution: The analysis is similar to Prob. P8.46 on the previous page. If po is the stagnation pressure at the nose $\left(\theta=180^{\circ}\right)$, the surface pressure distribution is

$$
\mathrm{p}_{\mathrm{s}}=\mathrm{p}_{\mathrm{o}}-\frac{\rho}{2} \mathrm{U}_{\mathrm{s}}^{2}=\mathrm{p}_{\mathrm{o}}-\frac{\rho}{2}\left(2 \mathrm{U}_{\infty} \sin \theta\right)^{2}=\mathrm{p}_{\mathrm{o}}-2 \rho \mathrm{U}_{\infty}^{2} \sin ^{2} \theta
$$

Then the net upward force on the half-cylinder is found by integration:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{up}}=\int_{0}^{\pi}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{s}}\right) \sin \theta \mathrm{abd} \theta=\int_{0}^{\pi}\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{o}}+2 \rho \mathrm{U}_{\infty}^{2} \sin ^{2} \theta\right) \sin \theta \mathrm{abd} \theta, \\
& \text { or: } \quad \mathbf{F}_{\mathrm{up}}=\left(\mathbf{p}_{\mathbf{i}}-\mathbf{p}_{\mathbf{o}}\right) \mathbf{2 a b}+\frac{\mathbf{8}}{\mathbf{3}} \rho \mathbf{U}_{\infty}^{\mathbf{2}} \mathbf{a b} \quad \text { Ans. }\left(\text { where } \mathrm{p}_{\mathrm{o}}=\mathrm{p}_{\infty}+\frac{\rho}{2} \mathrm{U}_{\infty}^{2}\right)
\end{aligned}
$$

P8.75 Using the four-source image pattern needed to construct the flow near a corner shown in Fig. P8.72, find the value of the source strength m which will induce a wall velocity of $4.0 \mathrm{~m} / \mathrm{s}$ at the point $(x, y)=(a, 0)$ just below the source shown, if $a=50 \mathrm{~cm}$.

Solution: The flow pattern is formed by four equal sources m in the 4 quadrants, as in the figure at right. The sources above and below the point $\mathrm{A}(a, 0)$ cancel each other at A , so the velocity at A is caused only by the two left sources. The velocity at A is the sum of the two horizontal components from these 2 sources:

Fig P8.75
$V_{A}=2 \frac{m}{\sqrt{a^{2}+(2 a)^{2}}} \frac{2 a}{\sqrt{a^{2}+(2 a)^{2}}}=\frac{4 m a}{5 a^{2}}=\frac{4 m}{5(0.5 m)}=4 \frac{\mathrm{~m}}{\mathrm{~s}} \quad$ if $\boldsymbol{m}=\mathbf{2 . 5} \frac{\mathbf{m}^{2}}{\mathbf{s}} \quad$ Ans.

C8.4 Find a formula for the stream function for flow of a doublet of strength λ at a distance a from a wall, as in Fig. C8.4. (a) Sketch the streamlines. (b) Are there any stagnation points? (c) Find the maximum velocity along the wall and its position.

Fig C8.4
Solution: Use an image doublet of the same strength and orientation at the $(x, y)=(0,-a)$. The stream function for this combined flow will form a "wall" at $y=0$ between the two doublets:

$$
\psi=-\frac{\lambda(y+a)}{x^{2}+(y+a)^{2}}-\frac{\lambda(y-a)}{x^{2}+(y-a)^{2}}
$$

(a) The streamlines are shown on the next page for one quadrant of the doubly-symmetric flow field. They are fairly circular, like Fig. 8.8, above the doublet, but they flatten near the wall.

Problem C8.4

(b) There are no stagnation points in this flow field. Ans. (b)
(c) The velocity along the wall $(y=0)$ is found by differentiating the stream function:

$$
u_{\text {wall }}=\left.\frac{\partial \psi}{\partial y}\right|_{y=0}=-\frac{\lambda}{x^{2}+a^{2}}+\frac{2 \lambda a^{2}}{\left(x^{2}+a^{2}\right)^{2}}-\frac{\lambda}{x^{2}+a^{2}}+\frac{2 \lambda a^{2}}{\left(x^{2}+a^{2}\right)^{2}}
$$

The maximum velocity occurs at $x=0$, that is, right between the two doublets:

$$
u_{w, \max }=\frac{2 \lambda}{a^{2}} \quad \text { Ans. (c) }
$$

