
ME:5160 (58:160) Intermediate Mechanics of Fluids 

Fall 2023 – HW12 Solution 

 

P7.42 A light aircraft flies at 30 m/s (67 mi/h) in air at 20C and 1 atm.  Its wing is an NACA 

0009 airfoil, with a chord length of 150 cm and a very wide span (neglect aspect ratio effects).  

Estimate the drag of this wing, per unit span length, (a) by flat plate theory; and   (b) using the data 

from Fig. 7.25 for  = 0. 

 

Solution:  For air at 20C and 1 atm,   = 1.2 kg/m3 and  = 1.8E-5 kg/m-s.  First find the 

Reynolds number, based on chord length, to see where we are: 
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(a) For flat-plate theory, use Eq. (7.49a), which assumes transition at Rex = 500,000:  
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(b) For the actual NACA 0009 airfoil, at Rec = 3E6, in Fig. 7.25, read Cd   0.0065.  Then 
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The two are quite close.  A thin airfoil at low angles is similar to a flat plate. 
 

 

 

 

 

 



P7.50 Consider the flat-walled diffuser in Fig. P7.50, which is similar to that of 

Fig. 6.26a with constant width b. If x is measured from the inlet and the wall boundary layers are 

thin, show that the core velocity U(x) in the diffuser is given approximately by 
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Fig. P7.50 
 

where W is the inlet height. Use this velocity distribution with Thwaites’ method to compute the 

wall angle  for which laminar separation will occur in the exit plane when diffuser length L = 2W. 

Note that the result is independent of the Reynolds number. 
 

Solution: We can approximate U(x) by the one-dimensional continuity relation: 

o oU Wb U(W 2x tan )b, or: U(x) U /[1 2x tan /W] (same as Görtler, Prob. 7.48) = +  +  

We return to the solution from Görtler’s (n = 1) distribution in Prob. 7.48: 
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[This laminar result is much less than the turbulent value sep  8−10 in Fig. 6.26c.] 
 

 

 

 

 

 

 

 



P7.75 The helium-filled balloon in Fig. P7.75 is tethered at 20C and 1 atm with a string of 

negligible weight and drag. The diameter is 50 cm, and the balloon material weighs 0.2 N, not 

including the helium. The helium pressure is 120 kPa. Estimate the tilt angle  if the airstream 

velocity U is (a) 5 m/s or (b) 20 m/s. 

 

Fig. P7.75 

Solution: For air at 20C and 1 atm, take  = 1.2 kg/m3 and  = 1.8E−5 kg/ms. For helium, R 

= 2077 J/kgK. The helium density = (120000)/[2077(293)]  0.197 kg/m3. 

The balloon net buoyancy is independent of the flow velocity: 
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The net upward force is thus Fz = (Bnet − W) = 0.644 − 0.2 = 0.444 N. The balloon drag does 

depend upon velocity. At 5 m/s, we expect laminar flow: 
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These angles are too steep—the balloon needs more buoyancy and/or less drag. 

 
 

 



P7.84 A Ping-Pong ball weighs 2.6 g and has a diameter of 3.8 cm. It can be supported by an 
air jet from a vacuum cleaner outlet, as in Fig. P7.84. For sea-level standard air, what jet 

velocity is required? 
 

 

 

 

 

 

 

Fig P7.84 

 

Solution: For sea-level air, take  = 1.225 kg/m3 and  = 1.78E−5 kg/ms. The ball weight must 

balance its drag: 
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D DC V 36.7,  Use Fig. 7.16b, converges to C 0.47,  Re 23000, V  m / s Ans.=    9



P7.108 The data in Fig. P7.108 are for lift and drag of a spinning sphere from Ref. 45, pp. 7–20. 

Suppose a tennis ball (W  0.56 N, D  6.35 cm) is struck at sea level with initial velocity Vo = 30 

m/s, with “topspin” (front of the ball rotating downward) of 120 rev/sec. If the initial height of the ball 

is 1.5 m, estimate the horizontal distance travelled before it strikes the ground. 
 

 

 

 

 

 

Fig P7.108 

Solution: For sea-level air, take  = 1.225 kg/m3 and  = 1.78E−5 kg/ms. For this short distance, 

the ball travels in nearly a circular arc, as shown at right. From Figure P7.108 we read drag and 

lift: 
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Initially, the accelerations in the horizontal and vertical directions are (z up, x to left) 
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The term ax serves to slow down the ball from 30 m/s, when hit, to about 24 m/s when it strikes 

the floor about 0.5 s later. The average velocity is (30 + 24)/2 = 27 m/s. The term az causes the 

ball to curve in its path, so one can estimate the radius of curvature and the angle of turn for which 

z = 1.5 m. Then, finally, one estimates x as desired: 
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ballFinally, x Rsin (54)sin(13.54 ) Ans. = =   12.6 m  

A more exact numerical integration of the equations of motion (not shown here) yields the result 

x  13.0 m at t  0.49 s. 



C7.2 Air at 20C and 1 atm flows at Vavg = 5 m/s between long, smooth parallel heat-exchanger 

plates 10 cm apart, as shown below. It is proposed to add a number of widely spaced 1-cm-long 

thin ‘interrupter’ plates to increase the heat transfer, as shown. Although the channel flow is 

turbulent, the boundary layer over the interrupter plates is laminar. Assume all plates are 1 m wide 

into the paper. Find (a) the pressure drop in Pa/m without the small plates present. Then find (b) 

the number of small plates, per meter of channel length, which will cause the overall pressure drop 

to be 10 Pa/m. 

 

Fig. C7.2 

Solution: For air, take  = 1.2 kg/m3 and  = 1.8E−5 kg/ms. (a) For wide plates, the hydraulic 

diameter is Dh = 2h = 20 cm. The Reynolds number, friction factor, and pressure drop for the bare 

channel (no small plates) is: 
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Each small plate (neglecting the wake effect if the plates are in line with each other) has a laminar 

Reynolds number: 
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Each plate force must be supported by the channel walls. The effective pressure drop will be the 

bare wall pressure drop (assumed unchanged) plus the sum of the interrupter-plate forces divided 

by the channel cross-section area, which is given by (h  1 m) = 0.1 m2. The extra pressure drop 

provided by the plates, for this problem, is (10.0 − 1.47) = 8.53 Pa/m. Therefore we need 
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This is the number of small interrupter plates needed for each meter of channel length to build up 

the pressure drop to 10.0 Pa/m. 

 


