# ME:5160 (58:160) Intermediate Mechanics of Fluids Fall 2023 - HW12 Solution 

P7.42 A light aircraft flies at $30 \mathrm{~m} / \mathrm{s}(67 \mathrm{mi} / \mathrm{h})$ in air at $20^{\circ} \mathrm{C}$ and 1 atm . Its wing is an NACA 0009 airfoil, with a chord length of 150 cm and a very wide span (neglect aspect ratio effects). Estimate the drag of this wing, per unit span length, (a) by flat plate theory; and (b) using the data from Fig. 7.25 for $\alpha=0^{\circ}$.

Solution: For air at $20^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.8 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$. First find the Reynolds number, based on chord length, to see where we are:

$$
\operatorname{Re}_{c}=\frac{\rho U c}{\mu}=\frac{\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)(30 \mathrm{~m} / \mathrm{s})(1.5 \mathrm{~m})}{1.8 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m}-\mathrm{s}}=3 \times 10^{6} \quad \text { turbulent }
$$

(a) For flat-plate theory, use Eq. (7.49a), which assumes transition at $\operatorname{Re}_{\mathrm{x}}=500,000$ :

$$
\begin{aligned}
& C_{d}=\frac{0.031}{\operatorname{Re}_{c}^{1 / 7}}-\frac{1440}{\operatorname{Re}_{c}}=\frac{0.031}{(3 \mathrm{E} 6)^{1 / 7}}-\frac{1440}{3 \mathrm{E} 6}=0.00368-0.00048=0.0032 \\
& \text { Drag }=C_{d} \frac{\rho}{2} U^{2}(2 b c)=(0.0032)\left(\frac{1.2}{2}\right)(30)^{2}[2(1.0)(1.5)]=5.2 \frac{\mathrm{~N}}{m} \quad \text { Ans. }(a)
\end{aligned}
$$

(b) For the actual NACA 0009 airfoil, at $\mathrm{Re}_{c}=3 \mathrm{E} 6$, in Fig. 7.25, read $C_{d} \approx 0.0065$. Then

$$
\text { Drag }=C_{d} \frac{\rho}{2} U^{2}(b c)=(0.0065)\left(\frac{1.2}{2}\right)(30)^{2}[(1.0)(1.5)]=5.3 \frac{\mathrm{~N}}{\mathrm{~m}} \quad \text { Ans. }(b)
$$

The two are quite close. A thin airfoil at low angles is similar to a flat plate.

P7.50 Consider the flat-walled diffuser in Fig. P7.50, which is similar to that of Fig. $6.26 a$ with constant width $b$. If $x$ is measured from the inlet and the wall boundary layers are thin, show that the core velocity $U(x)$ in the diffuser is given approximately by

$$
U=\frac{U_{\mathrm{o}}}{1+(2 x \tan \theta) / W}
$$



Fig. P7.50
where $W$ is the inlet height. Use this velocity distribution with Thwaites' method to compute the wall angle $\theta$ for which laminar separation will occur in the exit plane when diffuser length $L=2 W$. Note that the result is independent of the Reynolds number.

Solution: We can approximate $\mathrm{U}(\mathrm{x})$ by the one-dimensional continuity relation:
$\mathrm{U}_{\mathrm{o}} \mathrm{Wb}=\mathrm{U}(\mathrm{W}+2 \mathrm{x} \tan \theta) \mathrm{b}$, or: $\mathrm{U}(\mathrm{x}) \approx \mathrm{U}_{\mathrm{o}} /[1+2 \mathrm{x} \tan \theta / \mathrm{W}]$ (same as Görtler, Prob. 7.48)
We return to the solution from Görtler's $(n=1)$ distribution in Prob. 7.48:

$$
\begin{gathered}
\lambda=-0.09 \text { if } \frac{2 \mathrm{x} \tan \theta}{\mathrm{~W}}=0.159 \text { (separation), or } \mathrm{x}=\mathrm{L}=2 \mathrm{~W}, \\
\tan \theta_{\text {sep }}=\frac{0.159}{4}=0.03975, \quad \boldsymbol{\theta}_{\text {sep }} \approx 2.3^{\circ} \quad \text { Ans. }
\end{gathered}
$$

[This laminar result is much less than the turbulent value $\theta_{\text {sep }} \approx 8^{\circ}-10^{\circ}$ in Fig. 6.26c.]

P7.75 The helium-filled balloon in Fig. P7.75 is tethered at $20^{\circ} \mathrm{C}$ and 1 atm with a string of negligible weight and drag. The diameter is 50 cm , and the balloon material weighs 0.2 N , not including the helium. The helium pressure is 120 kPa . Estimate the tilt angle $\theta$ if the airstream velocity $U$ is (a) $5 \mathrm{~m} / \mathrm{s}$ or (b) $20 \mathrm{~m} / \mathrm{s}$.


Fig. P7.75
Solution: For air at $20^{\circ} \mathrm{C}$ and 1 atm , take $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.8 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For helium, R $=2077 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{K}$. The helium density $=(120000) /[2077(293)] \approx 0.197 \mathrm{~kg} / \mathrm{m}^{3}$.

The balloon net buoyancy is independent of the flow velocity:

$$
B_{\text {net }}=\left(\rho_{a i r}-\rho_{H e}\right) g \frac{\pi}{6} D^{3}=(1.2-0.197)(9.81) \frac{\pi}{6}(0.5)^{3} \approx 0.644 \mathrm{~N}
$$

The net upward force is thus $\mathrm{Fz}=(\mathrm{Bnet}-\mathrm{W})=0.644-0.2=0.444 \mathrm{~N}$. The balloon drag does depend upon velocity. At $5 \mathrm{~m} / \mathrm{s}$, we expect laminar flow:
(a) $U=5 \frac{m}{s}: \operatorname{Re}_{D}=\frac{1.2(5)(0.5)}{1.8 E-5}=167000 ;$ Table 7.3: $C_{D} \approx 0.47$

$$
\text { Drag }=C_{D} \frac{\rho}{2} U^{2} \frac{\pi}{4} D^{2}=0.47\left(\frac{1.2}{2}\right)(5)^{2} \frac{\pi}{4}(0.5)^{2} \approx 1.384 \mathrm{~N}
$$

Then $\quad \theta_{a}=\tan ^{-1}\left(\frac{\text { Drag }}{F_{z}}\right)=\tan ^{-1}\left(\frac{1.384}{0.444}\right)=\mathbf{7 2}^{\circ} \quad$ Ans. (a)
(b) At $20 \mathrm{~m} / \mathrm{s}, \mathrm{Re}=667000$ (turbulent), Table 7.3: $\mathrm{CD} \approx 0.2$ :

$$
\text { Drag }=0.2\left(\frac{1.2}{2}\right)(20)^{2} \frac{\pi}{4}(0.5)^{2}=9.43 \mathrm{~N}, \quad \theta_{b}=\tan ^{-1}\left(\frac{9.43}{0.444}\right)=87^{\circ} \quad \text { Ans. (b) }
$$

These angles are too steep-the balloon needs more buoyancy and/or less drag.

P7.84 A Ping-Pong ball weighs 2.6 g and has a diameter of 3.8 cm . It can be supported by an air jet from a vacuum cleaner outlet, as in Fig. P7.84. For sea-level standard air, what jet velocity is required?


Fig P7.84

Solution: For sea-level air, take $\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.78 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. The ball weight must balance its drag:

$$
\mathrm{W}=0.0026(9.81)=0.0255 \mathrm{~N}=\mathrm{C}_{\mathrm{D}} \frac{\rho}{2} \mathrm{~V}^{2} \frac{\pi}{4} \mathrm{D}^{2}=\mathrm{C}_{\mathrm{D}} \frac{1.225}{2} \mathrm{~V}^{2} \frac{\pi}{4}(0.038)^{2}, \quad \mathrm{C}_{\mathrm{D}}=\mathrm{fcn}(\operatorname{Re})
$$

$C_{D} V^{2}=36.7$, Use Fig. 7.16b, converges to $C_{D} \approx 0.47, \operatorname{Re} \approx 23000, V \approx 9 \mathbf{m} / \mathbf{s}$ Ans.

P7.108 The data in Fig. P7.108 are for lift and drag of a spinning sphere from Ref. 45, pp. 7-20. Suppose a tennis ball ( $\mathrm{W} \approx 0.56 \mathrm{~N}, \mathrm{D} \approx 6.35 \mathrm{~cm}$ ) is struck at sea level with initial velocity $\mathrm{Vo}=30$ $\mathrm{m} / \mathrm{s}$, with "topspin" (front of the ball rotating downward) of $120 \mathrm{rev} / \mathrm{sec}$. If the initial height of the ball is 1.5 m , estimate the horizontal distance travelled before it strikes the ground.


Fig P7.108
Solution: For sea-level air, take $\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.78 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For this short distance, the ball travels in nearly a circular arc, as shown at right. From Figure P7.108 we read drag and lift:

$$
\begin{aligned}
& \omega=120(2 \pi)=754 \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \frac{\omega \mathrm{R}}{\mathrm{~V}}=\frac{754(0.03175)}{30} \approx 0.80 \\
& \text { Read } \quad \mathrm{C}_{\mathrm{D}} \approx \mathbf{0 . 4 7 , \quad \mathrm { C } _ { \mathrm { L } }} \approx \mathbf{0 . 1 2}
\end{aligned}
$$



Initially, the accelerations in the horizontal and vertical directions are ( $z$ up, $x$ to left)

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{x}, 0}=-\frac{\mathrm{drag}}{\mathrm{~m}}=-\frac{0.47(1.225 / 2)(30)^{2}(\pi / 4)(0.0635)^{2}}{0.56 / 9.81} \approx-\mathbf{1 4 . 4} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}} \\
& \mathrm{a}_{\mathrm{z}, 0}=-\mathrm{g}-\frac{\mathrm{lift}}{\mathrm{~m}}=-9.81-\frac{0.12(1.225 / 2)(30)^{2}(\pi / 4)(0.0635)^{2}}{0.56 / 9.81} \approx-\mathbf{1 3 . 5} \mathbf{~ m} / \mathbf{s}^{2}
\end{aligned}
$$

The term ax serves to slow down the ball from $30 \mathrm{~m} / \mathrm{s}$, when hit, to about $24 \mathrm{~m} / \mathrm{s}$ when it strikes the floor about 0.5 s later. The average velocity is $(30+24) / 2=\mathbf{2 7} \mathrm{m} / \mathrm{s}$. The term az causes the ball to curve in its path, so one can estimate the radius of curvature and the angle of turn for which $\Delta \mathrm{z}=1.5 \mathrm{~m}$. Then, finally, one estimates $\Delta \mathrm{x}$ as desired:

$$
\frac{\mathrm{V}^{2}{ }_{\mathrm{avg}}}{\mathrm{R}}=\mathrm{a}_{\mathrm{z}}, \quad \text { or: } \quad \mathrm{R} \approx \frac{(27)^{2}}{13.5} \approx 54 \mathrm{~m} ; \quad \theta=\cos ^{-1}\left(\frac{54-1.5}{54}\right) \approx 13.54^{\circ}
$$

Finally, $\Delta \mathrm{x}_{\text {ball }}=\mathrm{R} \sin \theta=(54) \sin \left(13.54^{\circ}\right) \approx \mathbf{1 2 . 6} \mathbf{~ m}$ Ans.
A more exact numerical integration of the equations of motion (not shown here) yields the result $\Delta \mathrm{x} \approx 13.0 \mathrm{~m}$ at $\mathrm{t} \approx 0.49 \mathrm{~s}$.

C7.2 Air at $20^{\circ} \mathrm{C}$ and 1 atm flows at $\operatorname{Vavg}=5 \mathrm{~m} / \mathrm{s}$ between long, smooth parallel heat-exchanger plates 10 cm apart, as shown below. It is proposed to add a number of widely spaced $1-\mathrm{cm}-\mathrm{long}$ thin 'interrupter' plates to increase the heat transfer, as shown. Although the channel flow is turbulent, the boundary layer over the interrupter plates is laminar. Assume all plates are 1 m wide into the paper. Find (a) the pressure drop in $\mathrm{Pa} / \mathrm{m}$ without the small plates present. Then find (b) the number of small plates, per meter of channel length, which will cause the overall pressure drop to be $10 \mathrm{~Pa} / \mathrm{m}$.


Fig. C7.2
Solution: For air, take $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.8 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. (a) For wide plates, the hydraulic diameter is $\mathrm{Dh}=2 h=20 \mathrm{~cm}$. The Reynolds number, friction factor, and pressure drop for the bare channel (no small plates) is:

$$
\begin{gathered}
R e_{D h}=\frac{\rho V_{\text {avg }} D_{h}}{\mu}=\frac{(1.2)(5.0)(0.2)}{1.8 E-5}=66,700 \text { (turbulent) } \\
f_{\text {Moody,smooth }} \approx 0.0196 \\
\Delta p_{\text {bare }}=f \frac{L}{D_{h}} \frac{\rho}{2} V_{\text {avg }}^{2}=(0.0196)\left(\frac{1.0 \mathrm{~m}}{0.2 \mathrm{~m}}\right)\left(\frac{1.2}{2}\right)(5.0)^{2}=1.47 \frac{\mathbf{P a}}{\mathbf{m}} \quad \text { Ans. (a) }
\end{gathered}
$$

Each small plate (neglecting the wake effect if the plates are in line with each other) has a laminar Reynolds number:

$$
\begin{gathered}
R e_{L}=\frac{\rho V_{\text {avg }} L_{\text {plate }}}{\mu}=\frac{(1.2)(5.0)(0.01)}{1.8 E-5}=\mathbf{3 3 3 3}<5 E 5, \quad \therefore \text { laminar } \\
C_{D, \text { laminar }}=\frac{1.328}{\sqrt{\operatorname{Re}_{L}}}=\frac{1.328}{\sqrt{3333}} \approx 0.0230 \\
F_{1 \text { plate }}=C_{D} \frac{\rho}{2} V_{\text {avg }}^{2} A_{2 \text { sides }}=(0.0230)\left(\frac{1.2}{2}\right)(5.0)^{2}(2 \times 0.01 \times 1)=0.0069 \frac{\mathrm{~N}}{\text { plate }}
\end{gathered}
$$

Each plate force must be supported by the channel walls. The effective pressure drop will be the bare wall pressure drop (assumed unchanged) plus the sum of the interrupter-plate forces divided by the channel cross-section area, which is given by $(h \times 1 \mathrm{~m})=0.1 \mathrm{~m}^{2}$. The extra pressure drop provided by the plates, for this problem, is $(10.0-1.47)=8.53 \mathrm{~Pa} / \mathrm{m}$. Therefore we need

$$
\text { No. of plates }=\frac{\Delta p_{\text {needed }}}{(F / A)_{1 \text { plate }}}=\frac{8.53 \mathrm{~Pa} / \mathrm{m}}{(0.0069 \mathrm{~N} / \text { plate }) /\left(0.1 \mathrm{~m}^{2}\right)} \approx \mathbf{1 2 4} \text { plates } \quad \text { Ans. (b) }
$$

This is the number of small interrupter plates needed for each meter of channel length to build up the pressure drop to $10.0 \mathrm{~Pa} / \mathrm{m}$.

