# ME:5160 (58:160) Intermediate Mechanics of Fluids <br> Fall 2022 - HW10 Solution 

P6.80 The head-versus-flowrate characteristics of a centrifugal pump are shown in Fig. P6.80. If this pump drives water at $20^{\circ} \mathrm{C}$ through 120 m of $30-\mathrm{cm}$-diameter cast-iron pipe, what will be the resulting flow rate, in $\mathrm{m}^{3} / \mathrm{s}$ ?

Solution: For water, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For cast iron, take $\varepsilon \approx 0.26$ mm , hence $\varepsilon / d=0.26 / 300 \approx 0.000867$. The head loss must match the pump head:


Fig. P6.80

$$
\mathrm{h}_{\mathrm{f}}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}=\frac{8 \mathrm{fLQ}^{2}}{\pi^{2} \mathrm{gd}^{5}}=\mathrm{h}_{\text {pump }} \approx 80-20 \mathrm{Q}^{2}, \quad \text { with } \mathrm{Q} \text { in } \mathrm{m}^{3} / \mathrm{s}
$$

Evaluate $\mathrm{h}_{\mathrm{f}}=\frac{8 \mathrm{f}(120) \mathrm{Q}^{2}}{\pi_{-}^{2}(9.81)(0.3)^{5}}=80-20 \mathrm{Q}^{2}, \quad$ or: $\mathrm{Q}^{2} \approx \frac{80}{20+4080 \mathrm{f}}$
Guess $\mathrm{f} \approx 0.02, \quad \mathrm{Q}=\left[\frac{\pi^{2}(9.81)(0.3)^{5}}{20+4080(0.02)}\right]^{1 / 2} \approx 0.887 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \quad \mathrm{Re}=\frac{4 \rho \mathrm{Q}}{\pi \mu \mathrm{d}} \approx 3.76 \mathrm{E} 6$
$\frac{\varepsilon}{d}=0.000867, \quad \mathrm{f}_{\text {better }} \approx 0.0191, \quad \mathrm{Re}_{\text {better }} \approx 3.83 \mathrm{E} 6$, converges to $\mathbf{Q} \approx \mathbf{0 . 9 0 5} \frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{s}}$ Ans.

P6.97 A heat exchanger consists of multiple parallel-plate passages, as shown in Fig. P6.97. The available pressure drop is 2 kPa , and the fluid is water at $20^{\circ} \mathrm{C}$. If the desired total flow rate is $900 \mathrm{~m}^{3} / \mathrm{h}$, estimate the appropriate number of passages. The plate walls are hydraulically smooth.


Fig. P6.97
Solution: For water, $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Unlike Prob. 6.88 , here we expect turbulent flow. If there are $N$ passages, then $\mathrm{b}=50 \mathrm{~cm}$ for all $N$ and the passage thickness is $H=0.5 \mathrm{~m} / N$. The hydraulic diameter is $D \mathrm{~h}=2 H$. The velocity in each passage is related to the pressure drop by Eq. (6.58):

$$
\Delta p=f \frac{L}{D_{h}} \frac{\rho}{2} V^{2} \quad \text { where } f=f_{\text {smooth }}=f c n\left(\frac{\rho V D_{h}}{\mu}\right)
$$

For the given data, $2000 P a=f \frac{2.0 \mathrm{~m}}{2(0.5 \mathrm{~m} / \mathrm{N})} \frac{998 \mathrm{~kg} / \mathrm{m}^{3}}{2} V^{2}$

Select $N$, find $H$ and $V$ and $Q$ total $=A V=b^{2} V$ and compare to the desired flow of $900 \mathrm{~m}^{3} / \mathrm{h}$. For example, guess $N=20$, calculate $f=0.0173$ and $Q$ total $=2165 \mathrm{~m}^{3} / \mathrm{h}$. The converged result is

$$
\begin{gathered}
Q_{\text {total }}=908 \mathrm{~m}^{3} / \mathrm{h}, \quad f=0.028 \\
\operatorname{Re}_{D_{h}}=14400, \quad H=7.14 \mathrm{~mm}, \quad \boldsymbol{N}=\mathbf{7 0} \text { passages } \quad \text { Ans. }
\end{gathered}
$$

*P6.102 A 70 percent efficient pump delivers water at $20 \square$ C from one reservoir to another 20 ft higher, as in Fig. P6.102. The piping system consists of 60 ft of galvanized-iron 2-in pipe, a reentrant entrance, two screwed $90 \square$ long-radius elbows, a screwed-open gate valve, and a sharp exit. What is the input power required in horsepower with and without a $6 \square$ well-designed conical expansion added to the exit? The flow rate is $0.4 \mathrm{ft}^{3} / \mathrm{s}$.


Fig. P6.102

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94 \mathrm{slug} / \mathrm{ft}^{3}$ and $\mu=2.09 \mathrm{E}-5$ slug/fts. For galvanized iron, $\varepsilon \approx 0.0005 \mathrm{ft}$, whence $\varepsilon / d=0.0005 /(2 / 12 \mathrm{ft}) \approx 0.003$. Without the $6^{\circ}$ cone, the minor losses are:

$$
\mathrm{K}_{\text {reentrant }} \approx 1.0 ; \quad \mathrm{K}_{\mathrm{elbows}} \approx 2(0.41) ; \quad \mathrm{K}_{\text {gate valve }} \approx 0.16 ; \quad \mathrm{K}_{\text {sharp exit }} \approx 1.0
$$

Evaluate $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{0.4}{\pi(2 / 12)^{2} / 4}=18.3 \frac{\mathrm{ft}}{\mathrm{s}} ; \quad \operatorname{Re}=\frac{\rho \mathrm{Vd}}{\mu}=\frac{1.94(18.3)(2 / 12)}{2.09 \mathrm{E}-5} \approx 284000$

At this Re and roughness ratio, we find from the Moody chart that $\mathrm{f} \approx 0.0266$. Then
(a) $\quad \mathrm{h}_{\text {pump }}=\Delta \mathrm{z}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left(\mathrm{f} \frac{\mathrm{L}}{\mathrm{d}}+\sum \mathrm{K}\right)=20+\frac{(18.3)^{2}}{2(32.2)}\left[0.0266\left(\frac{60}{2 / 12}\right)+1.0+0.82+0.16+1.0\right]$

$$
\text { or } \begin{aligned}
\mathrm{h}_{\text {pump }} \approx 85.6 \mathrm{ft}, \quad \text { Power } & =\frac{\rho \mathrm{gQh}}{\mathrm{p}} \\
\eta & =\frac{(62.4)(0.4)(85.6)}{0.70} \\
& =3052 \div 550 \approx \mathbf{5 . 5 5} \mathbf{~ h p} \text { Ans. }
\end{aligned}
$$

(b) If we replace the sharp exit by a $6^{\circ}$ conical diffuser, from Fig. 6.23 , Kexit $\approx 0.3$. Then

$$
\begin{aligned}
& \qquad \mathrm{h}_{\mathrm{p}}=20+\frac{(18.3)^{2}}{2(32.2)}\left[0.0266\left(\frac{60}{2 / 12}\right)+1.0+.82+.16+0.3\right]=81.95 \mathrm{ft} \\
& \text { then Power }=(62.4)(0.4)(81.95) / 0.7 \div 550 \approx \mathbf{5 . 3 1} \mathbf{~ h p}(4 \% \text { less }) \quad \text { Ans. (b) }
\end{aligned}
$$

P6.113 The parallel galvanized-iron pipe system of Fig. P6.113 delivers water at $20^{\circ} \mathrm{C}$ with a total flow rate of $0.036 \mathrm{~m}^{3} / \mathrm{s}$. If the pump is wide open and not running, with a loss coefficient $K=1.5$, determine (a) the flow rate in each pipe and (b) the overall pressure drop.


Fig. P6.11

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For galvanized iron, $\varepsilon=0.15 \mathrm{~mm}$. Assume turbulent flow, with $\Delta \mathrm{p}$ the same for each leg:

$$
\begin{gathered}
\mathrm{h}_{\mathrm{f} 1}=\mathrm{f}_{1} \frac{\mathrm{~L}_{1}}{\mathrm{~d}_{1}} \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}}=\mathrm{h}_{\mathrm{f} 2}+\mathrm{h}_{\mathrm{m} 2}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}\left(\mathrm{f}_{2} \frac{\mathrm{~L}_{2}}{\mathrm{~d}_{2}}+1.5\right), \\
\text { and } \quad \mathrm{Q}_{1}+\mathrm{Q}_{2}=(\pi / 4) \mathrm{d}_{1}^{2} \mathrm{~V}_{1}+(\pi / 4) \mathrm{d}_{2}^{2} \mathrm{~V}_{2}=\mathrm{Q}_{\text {total }}=0.036 \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
$$

When the friction factors are correctly found from the Moody chart, these two equations may be solved for the two velocities (or flow rates). Begin by guessing $\mathrm{f} \approx 0.020$ :

$$
(0.02)\left(\frac{60}{0.05}\right) \frac{\mathrm{V}_{1}^{2}}{2(9.81)}=\frac{\mathrm{V}_{2}^{2}}{2(9.81)}\left[(0.02)\left(\frac{55}{0.04}\right)+1.5\right], \text { solve for } \mathrm{V}_{1} \approx 1.10 \mathrm{~V}_{2}
$$

then $\frac{\pi}{4}(0.05)^{2}\left(1.10 \mathrm{~V}_{2}\right)+\frac{\pi}{4}(0.04)^{2} \mathrm{~V}_{2}=0.036$. Solve $\mathrm{V}_{2} \approx 10.54 \frac{\mathrm{~m}}{\mathrm{~s}}, \mathrm{~V}_{1} \approx 11.59 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\text { Correct } \mathrm{Re}_{1} \approx 578000, \mathrm{f}_{1} \approx 0.0264, \mathrm{Re}_{2} \approx 421000, \mathrm{f}_{2} \approx 0.0282 \text {, repeat. }
$$

The 2 nd iteration converges: $\mathrm{f} 1 \approx 0.0264, \mathrm{~V} 1=11.69 \mathrm{~m} / \mathrm{s}, \mathrm{f} 2 \approx 0.0282, \mathrm{~V} 2=10.37 \mathrm{~m} / \mathrm{s}$,

$$
\mathrm{Q} 1=\mathrm{A} 1 \mathrm{~V} 1=\mathbf{0 . 0 2 3} \mathbf{m}^{\mathbf{3}} / \mathbf{s}, \quad \mathrm{Q} 2=\mathrm{A} 2 \mathrm{~V} 2=\mathbf{0 . 0 1 3} \mathbf{m}^{\mathbf{3}} / \mathbf{s} . \quad \text { Ans. (a) }
$$

The pressure drop is the same in either leg:

$$
\Delta \mathrm{p}=\mathrm{f}_{1} \frac{\mathrm{~L}_{1}}{\mathrm{~d}_{1}} \frac{\rho \mathrm{~V}_{1}^{2}}{2}=\left(\mathrm{f}_{2} \frac{\mathrm{~L}_{2}}{\mathrm{~d}_{2}}+1.5\right) \frac{\rho \mathrm{V}_{2}^{2}}{2} \approx \mathbf{2 . 1 6 E 6} \mathrm{~Pa} \quad \text { Ans. (b) }
$$

C6.3 The water slide in the figure is to be installed in a swimming pool. The manufacturer recommends a continuous water flow of $1.39 \mathrm{E}-3 \mathrm{~m}^{3} / \mathrm{s}$ (about $22 \mathrm{gal} / \mathrm{min}$ ) down the slide to ensure that customers do not burn their bottoms. An $80 \%$-efficient pump under the slide, submerged 1 m below the water surface, feeds a 5 -m-long, 4 - cm -diameter hose, of roughness 0.008 cm , to the slide. The hose discharges the water at the top of the slide, 4 m above the water surface, as a free jet. Ignore minor losses and assume $\alpha=1.06$. Find the brake horsepower needed to drive the pump.


FigC6.3
Solution: For water take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Write the steady-flow energy equation from the water surface (1) to the outlet (2) at the top of the slide:

$$
\begin{gathered}
\frac{p_{a}}{\rho g}+\frac{\alpha_{1} V_{1}^{2}}{2 g}+z_{1}=\frac{p_{a}}{\rho g}+\frac{\alpha_{2} V_{2}^{2}}{2 g}+z_{2}+h_{f}-h_{\text {pump }}, \quad \text { where } V_{2}=\frac{1.39 E-3}{\pi(0.02)^{2}}=1.106 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { Solve for } \quad h_{\text {pump }}=\left(z_{2}-z_{1}\right)+\frac{V_{2}^{2}}{2 g}\left(\alpha_{2}+f \frac{L}{d}\right)
\end{gathered}
$$

Work out Red $=\rho \mathrm{Vd} / \mu=(998)(1.106)(0.04) / 0.001=44200, \varepsilon / d=0.008 / 4=0.002$,
whence $f$ Moody $=0.0268$. Use these numbers to evaluate the pump head above:

$$
h_{p u m p}=(5.0-1.0)+\frac{(1.106)^{2}}{2(9.81)}\left[1.06+0.0268\left(\frac{5.0}{0.04}\right)\right]=4.27 \mathrm{~m}
$$

whence $\quad \mathbf{B H} \mathbf{P}_{\text {required }}=\frac{\rho g Q h_{p u m p}}{\eta}=\frac{998(9.81)(1.39 E-3)(4.27)}{0.8}=\mathbf{7 3} \mathbf{w a t t s} \quad$ Ans.

