ME:5160 (58:160) Intermediate Mechanics of Fluids Fall 2023 – HW1 Solution

P1.22 The *Ekman number*, Ek, arises in geophysical fluid dynamics. It is a dimensionless parameter combining seawater density ρ , a characteristic length *L*, seawater viscosity μ , and the Coriolis frequency $\Omega \sin \phi$, where Ω is the rotation rate of the earth and ϕ is the latitude angle. Determine the correct form of Ek if the viscosity is in the numerator.

Solution : First list the dimensions of the various quantities:

$$\{\rho\} = \{\mathbf{ML}^3\}; \{L\} = \{L\}; \{\mu\} = \{\mathbf{ML}^{-1}\mathbf{T}^{-1}\}; \{\Omega\sin\phi\} = \{\mathbf{T}^{-1}\}$$

Note that $\sin\phi$ is itself dimensionless, so the Coriolis frequency has the dimensions of Ω . Only ρ and μ contain mass {M}, so if μ is in the numerator, ρ must be in the denominator That combination μ/ρ we know to be the kinematic viscosity, with units {L²T⁻¹}. Of the two remaining variables, only $\Omega \sin\phi$ contains time {T⁻¹}, so it must be in the denominator So far, we have the grouping $\mu/(\rho \Omega \sin\phi)$, which has the dimensions {L²}. So we put the length-squared into the denominator and we are finished:

Dimensionless Ekman number:
$$\text{Ek} = \frac{\mu}{\rho L^2 \Omega \sin \phi}$$
 Ans

P1.41 An aluminum cylinder weighing 30N, 6cm in diameter and 40cm long, is falling concentrically through a long vertical sleeve of diameter 6.04cm. The clearance is filled with SAE 50 oil at 20°C. Estimate the *terminal* (zero acceleration) fall velocity. Neglect air drag and assume a linear velocity distribution in the oil. [HINT: You are given diameters, not radii.]

Solution: From Table A.3 for SAE 50 oil, $\mu = 0.86$ kg/m-s. The clearance is the difference in *radii*: 3.02 - 3.0cm = 0.02cm = 0.0002m. At terminal velocity, the cylinder weight must balance the viscous drag on the cylinder surface:

$$W = \tau_{wall} A_{wall} = (\mu \frac{V}{C})(\pi DL) , \text{ where } C = \text{clearance} = r_{sleeve} - r_{cylinder}$$

or: $30N = [0.86 \frac{kg}{m-s})(\frac{V}{0.0002m})] \pi (0.06m)(0.40m)$
Solve for $V = 0.0925m/s$ Ans.