ME:5160 (58:160) Intermediate Mechanics of Fluids

Fall 2023 - HW1 Solution

P1.22 The Ekman number, Ek, arises in geophysical fluid dynamics. It is a dimensionless parameter combining seawater density ρ, a characteristic length L, seawater viscosity μ, and the Coriolis frequency $\Omega \sin \phi$, where Ω is the rotation rate of the earth and ϕ is the latitude angle. Determine the correct form of Ek if the viscosity is in the numerator.

Solution : First list the dimensions of the various quantities:

$$
\{\rho\}=\left\{\mathrm{ML}^{-3}\right\} ; \quad\{L\}=\{\mathrm{L}\} ; \quad\{\mu\}=\left\{\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right\} ; \quad\{\Omega \sin \phi\}=\left\{\mathrm{T}^{-1}\right\}
$$

Note that $\sin \phi$ is itself dimensionless, so the Coriolis frequency has the dimensions of Ω. Only ρ and μ contain mass $\{\mathrm{M}\}$, so if μ is in the numerator, ρ must be in the denominator That combination μ / ρ we know to be the kinematic viscosity, with units $\left\{\mathrm{L}^{2} \mathrm{~T}^{-1}\right\}$. Of the two remaining variables, only $\Omega \sin \phi$ contains time $\left\{\mathrm{T}^{-1}\right\}$, so it must be in the denominat So far, we have the grouping $\mu /(\rho \Omega \sin \phi)$, which has the dimensions $\left\{\mathrm{L}^{2}\right\}$. So we put the length-squared into the denominator and we are finished:

$$
\text { Dimensionless Ekman number: } \quad \mathrm{Ek}=\frac{\mu}{\rho L^{2} \Omega \sin \phi} \quad \text { Ans }
$$

P1.41 An aluminum cylinder weighing $30 \mathrm{~N}, 6 \mathrm{~cm}$ in diameter and 40 cm long, is falling concentrically through a long vertical sleeve of diameter 6.04 cm . The clearance is filled with SAE 50 oil at $20^{\circ} \mathrm{C}$. Estimate the terminal (zero acceleration) fall velocity. Neglect air drag and assume a linear velocity distribution in the oil. [HINT: You are given diameters, not radii.]

Solution: From Table A. 3 for SAE 50 oil, $\mu=0.86 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$. The clearance is the difference in radii: $3.02-3.0 \mathrm{~cm}=0.02 \mathrm{~cm}=0.0002 \mathrm{~m}$. At terminal velocity, the cylinder weight must balance the viscous drag on the cylinder surface:

$$
\begin{gathered}
W=\tau_{\text {wall }} A_{\text {wall }}=\left(\mu \frac{V}{C}\right)(\pi D L), \text { where } C=\text { clearance }=r_{\text {sleeve }}-r_{\text {cylinder }} \\
\text { or: } \left.\quad 30 N=\left[0.86 \frac{k g}{m-s}\right)\left(\frac{V}{0.0002 m}\right)\right] \pi(0.06 m)(0.40 \mathrm{~m}) \\
\text { Solve for } V=\mathbf{0 . 0 9 2 5} \mathrm{m} / \mathrm{s} \quad \text { Ans. }
\end{gathered}
$$

