ME:5160 Chapter 6-partl
Professor Fred Stern  Fall 2022 1

Viscous Flow in Ducts

Laminar Flow Solutions
Entrance, developing, and fully developed flow
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Le=f(D, V, p, 1)
11, theorem — 1/ = f (Re) f(Re) from AFD and EFD

Laminar Flow: Regit ~ 2000 Re < Reqit laminar
L /D=.06Re Re > Reqit  unstable
Re > Reyans  turbulent

L =.06Re_ D~138D
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Max Le for laminar flow
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Turbulent flow:
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Laminar vs. Turbulent Flow
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Reynolds 1883 showed that the difference depends on Re = VD/v
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Laminar pipe flow:

1. CV Analysis

gx=psing

)
Fig. 6.7 Control volume of steady, \ z,

full;lr developed flow between two l
S€ctions in an inclined pipe. Y e e e ———————

Continuity:
0= [pV - -dA— pQ, = pQ, =const.
CS

eV, =V, since A=A, p=const,andV =V,,
Momentum:

YE, = (p; — pp) mR? — 1,,2nRL + ynR2Lsin ¢ = m(B,V, — 1 V1)

Ap W Az/L =0
APAR’ — 7. 27RL + yaR’Az = 0

AD + yAZ = ZTF;L
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Ah=h —h, =A(ply+7)= 2wl

7y R
or
_RyAh — Rydh
"2 L 2 dx
Rd
=———(p+z
2dx(lo /)

For fluid particle control volume:

r d
=———(p+z
T 2w3p 7Z)

I.e., shear stress varies linearly in r across pipe for either
laminar or turbulent flow

Energy:
Pr, & P2 &
—+—=V,+z, =—=%+—=V,+2,+h
y 2q 1A y " 2g 2 T4+ N
ph=h =27k

. once tw IS known, we can determine pressure drop



ME:5160 Chapter 6-partl
Professor Fred Stern  Fall 2022 5

In general, roughness
Z-w - Tw(p’VULl! Dag{
IT; Theorem
87,y -
> = T = friction factor = T (Rep,&/D)
oV

where Rep _Vb
3

2
Ah=h =f %\é_g Darcy-Weisbach Equation

f (Rep, €/D) still needs to be determined. For laminar
flow, there is an exact solution for f since laminar pipe
flow has an exact solution. For turbulent flow,
approximate solution for f using log-law as per Moody
diagram and discussed later.
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2. Differential Analysis

Continuity:
V-V=0

Use cylindrical coordinates (r, 0, z) where z replaces
X In previous CV analysis

1g(w )+Ei(v )+8VZ
ror " ree Y oz

=0

where V = v,.é, + vgég + 1,6,

Assume Vo =0 i.e. no swirl and fully developed flow

ov, : :

=, ~ Y, which shows V= constant = 0 since v, (R)

=0

2V = 1,6 =ué,
Momentum:
by 0K+ V-VV =—-VY(p+vyz) + uvav

Ppe ~ Plge T PET IS T TR TYEITEES

Where

ey O 10
— e TV 50 T Y2 g,
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Z equation:

p{a_u +\1-Vu} = —g(p+7/2)+,uV2u
ot 0z

10(_ou
O——— + V) + pu——| r—
\ (p 7)1 ﬂr@r( ar)

t(2) R A

. both terms must be constant

#O My
rar(ar) 0z
S UL R A
or 2;482
ou 1ap
L
or 2,uc'92

=>U=— 1 8pr +Alnr +B P=p+yz

41 07

+ A

u(r =0) finite 2> A=0
R? dp
4u dz

u(r=R)=0 > B=
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2 Dp2 AR 2 1A
un =R Uy =0 (0) =22
4y dz 4 dz
ov. ou ou :
7= u —+— |=u— fluid shear stress
oz or or
_rop
2 01
fwzﬂﬁ_u :_,ua_u :_B@ As per CV analysis
N, or|,_g 2 0z
—R_7 du_drdu__d_u
Y= "'dy dydr  dr
Note: 7 =7, =UE, =—21®, for aa‘;eo, i.e., only one

component of vorticity which also varies linearly across the pipe
with its maximum at the wall.

N

R 4
Q= ju(r)an dr = R dp_ 1umax
] 8u dz 2

Note: for given piezometric pressure drop the flow rate is
inversely proportional to the viscosity and proportional to the
radius to the fourth power such that doubling the pipe radius
produces 16-fold increase in the flow rate: Poiseuille’s law

7R?

N\
Q1 _—-R*dp
T IR 2 ™ 8y dz
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Substituting V = Vawe

¢ 87,
oV 2
S B y 8tVae _ 4tV _ 81NV
w ) o
2 -R R D
64 1 64
pDV  Rep
c o Tu _F 16
or f L ve 4 Re
2
2 2
Ah=h, = fLV 64/1 L V 32,uLV oV

D 2g pDV D’ 29 pgD?

forAz=0 — Apo«cV
Both f and Cs based on V2 normalization, which is
appropriate for turbulent but not laminar flow. The more
appropriate case for laminar flow is:

P,., =C; Re=16

Ocq

Poiseuille # (P, ){POf  fRe-64 for pipe flow
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FIGURE 3-7

Comparison of theory and experiment for the friction factor of air flowing in small-bore tubles. [After Senecal
and Rothfus (1953).]

0.0791

1/4
Re

Compare with previous solution for flow between parallel
plates with p,

Blasius power law C, =

10
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N

1:_24,u_ 48 96
pvh Re,  Re,
Rep,

C,=1fld=

P, =C,Re, =24

Oc;

P, = f Re, =96

Poiseuille # (PO){

Same as pipe other than constants!

Pch pipe I:)Of pipe 16 _ 64 . 2

24 9% 3

Oc; channelbasedonD, 0; channelbasedonD,

11
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Non-Circular Ducts: Exact laminar solutions are available
for any ““arbitrary” cross section for laminar steady fully
developed duct flow

O:_px+ﬂ(uYY+uZZ)

u(h)=0
ey =y/h 2 =z/h u'=u/U U =h—(— p.)
throggh H
Ztnaé)lllty Related Umax
transition Viu=-1 Poisson equation

u(l) =0 Dirichlet boundary condition

Note: No characteristic velocity and length scale for fully developed flow therefore

N
use characteristic duct width h and U with units’ L/T formed from p, h and p, ;

since, pressure force is balanced by net viscous force their ratio is appropriate
measure Umax.

BVP can be solved by many methods such as complex variables and conformed
mapping, transformation into Laplace equation by redefinition of dependent
variables, and numerical methods.

12
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Figure 11.1 Parallel flow in an elliptical tube.
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Some cron motions for which fully developed fow solutions are known ; for still
moew, comsult Berker (1863, pp. 670},
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Midplane

(a) ®)

Fig. 6.16 Illustration of secondary turbulent flow in noncircular ducts:
(a) axial mean velocity contours; (b) secondary flow in-plane cellular
motions. (After J. Nikuradse, dissertation, Gottingen, 1926.)

For rectangular and triangular ducts, for laminar flow ty
largest mid-points of the sides and zero in corners, whereas
for turbulent flow tv nearly constant along the sides and
falls sharply to zero in the corners due to secondary flows
induced by the turbulence anisotropy. For laminar flows in
straight ducts secondary flows are absent. As a result the
hydraulic diameter concept works poorly for laminar vs.
turbulent flow.

16



ME:5160 Chapter 6-partl
Professor Fred Stern  Fall 2022 17

Elliptical section: y*/a* + 2*/b* = 1:

YT
28T 20 ¢xa+b’ & b aap

Q"@( ff) "

Rectangular section: —a =y =@, b =215 b:

16a° & =izl cosh(z’m/za)}
u(y, z) = IJ-"T( ‘i")mmz.s,...( " ”"Z[l ~eh (G 3)

5 08 (imry/2a) (3.48)

f3

s dp 1922 & tanh(imb/2a)
o=~ 2 0
3p \ dx WD =138, ..

Equilateral triangle of side a: coordinates in Fig. 3-0:

uly, )= _—:\d/ﬁ_[ﬁ(- - l ‘\/3)(3)v - Z
SRy (3-49)
a*V3 _52)
Q = 3200 \ d

Circular sector: —4x =0 = 0,0 =r=a
dﬁ/dx[ 2(1 _ cos 20) _ 16a’d?
4 i oS a w
cos (imd/«a) ]
1+1)/2
% z (1) ’/( ) i + 2afm)(i — 2af)

ulr, @) =

i=13.5,.
Q = i(ﬁ) (3_50)
4\ dx
tano — @ _ 32a < = 1 ]
i [ 4 i .2,‘5 23 + 2a/mi — 2a/7)

17
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Concentric circular annulus: b = r = a:

—dpfdx| , . In(a/r)
u(r) = —-—:ﬁ{——[a‘ -+ (0 — bzm]

. (3-51)
SO /L @. 4 P M):]
Q= 8u\ dx “ In(a/b)
This is but a sample of the wealth of solutions available. The f9rmula for a con-
centric annulus is important in viscometry, with a measured Q being used to calc_;u-
late p. To increase the pressure drop, the clearance (a — b) is held small, in which

case Eq. (3-51) for Q becomes the difference betwccp two nearly e.qual numbers.
However, if we expand the bracketed term [ ] in a serics, the result is

2 &
(@ — b%) - = %ba— bY + 3@~ B + -+ Oa = by

so that Q for small clearance 18 seen 1o be cubic in (a % b).

The eccentric anpulus in Fig. 3-9 has practical applications, for example,
when a needle valve becomes misaligned. The solution was given by Piercy et al.
(1933), using an elegant complex-variable method which transformed the geome-
try to & concentric annulus, for which the solution was already known, Eg. (3-51).
We reproduce here only their expression for volume rate of flow:

: : & F
0= %(-%) [a‘ == —;;CZ_MQ Y . i ] (3-52)

Ssinh(nf — na)
where M= - ) F=“'__g_;+_¢‘2
1, F4+ M 1, F-—c+M
a=alF—m P=3br—c—m

Flow rates computed from this formula are compared in Fig. 3-10 to the concentric
result O, from Eq. (3-51). It is seen that eccentricity substantially increases the
flow rate, the maximum ratio of Q/Q,..q being 2.5 for a narrow annulus of maximum
eccentricity. The curve for b/a = 1 can be derived from Jubrication theory:

Narrow annulus: 0 =1+ 3(_< ; (3-53)
X Qg—,o 2\a— b

The reason for the increase in  is that the fluid tends to bulge through the wider
side. This is illustrated for one case in Fig. 3-11, where the wide side develops a set
of closed high-velocity streamlines. This effect is well known to piping engineers,
who have long noted the drastic leakage that occurs when a nearly closed valve
binds to one side.

18
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For laminar flow, P,
varies greatly,
therefore it 1s better to
use the exact solution
vs. Dy as discussed
next

Comparison of Poiseuille numbers for various duct cross sections when Reynolds number is scaled
by the hydraulic diameter. [ Numerical data tzken from Shah and London (1978).]

Table 6.3 Laminar Priction Factors
for 2 Comcentric Annulus

Ma fRey Doglldy, = L
o 0 1.0
T T 913
LIEEHIH] T1.78 (.80
HE LT T4 58 (EST
LLig #0011 0,795
143 B6.27 0742
i w937 716
(1 a2 3% 645
L3 8471 1.6T6
(& 0559 06To
N4 9597 0 a7
1.0 Q4.0 .667

Twi=>Two

Table 6.4 Laminar Friction
Constants f Re for Rectangular and
Triangular Ducts

Rectangular Isosceles triangle
b <
a

bla JRep, 0, deg JRep,
0.0 96.00 0 48.0
0.05 89.9] 10 516
0.1 84.68 20 529
0.125 82.34 30 533
0.167 78.81 40 529
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 5691 90 48.0
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1. Concept of hydraulic diameter for noncircular
ducts

For noncircular ducts, tw= f(perimeter); thus, new

87
definitions of T =—V\£ and C; = ZTWZ are required.
pV oV

Define average wall shear stress
- 1P :
Tw = 5 [z, ds ds=arc length, P = perimeter
0
Momentum:

ApA—7wPL + yAL(Ej =0
Wb

L
Ah = A(p/ _ fw
(p/y+2) AP

7L

A/P =Rn= Hydraulic radius (=R/2 for circular pipe and Ah= RI2

)

21
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Energy:
Twl
Ah=h =—"
/AP

- _AAhy —Aydh _—Ad(p+pz) _A| dp

Tw

P L P dx P dx Pl dx non-circular duct

Recall for circular pipe:

In analogy to circular pipe:

i\ A
~ Al dp| ol dp A D AN Hydraulic
_A_ ——h|_ :>E=T“:>Dh=? diameter

Tw = =

P dx 4 dx

For multiple surfaces such as concentric annulus P and A
based on wetted perimeter and area

T:i\flwz = f(Re, ,&/D,) Re, J%
— 2§ o 2
Ah=h, =Tk _ oY fL_ <LV

R, 8 IR, D, 29
However, accuracy not good for laminar flow (40%) and
marginal turbulent flow (15%).

22
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a. Accuracy for laminar flow (smooth non-circular

pipe)

Recall for pipe flow:

P, =C,Re=16
Poiseuille # (P,)s
P, = fRe=64

Recall for channel flow:

1E_24,u_ 48 96
povh Re,, Re,

[S—
Rep,

C,=fld=
by 12 24

C, = = =
ovh Re, Re,

Rep,,

P, =C,Re, =24

Oc;

Poiseuille # (PO){

P, =fRe, =96
Therefore:
Pecoie oo 16 64 2
Oc; channelbasedon D, B F)of channelbasedon D, B 24 B %6 - 3

Thus, If we could not work out the laminar theory and
chose to use the approximation f Re, =64 or C; Re, =16
we would be 33 percent low for channel flow.

23
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FIGURE %11

Pereent error n the spproximate hy-
draulic radins, Eq. (2-58), sompared to
ke pract luminar-fow expression, Eg.
(-5l

24
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b. Accuracy for turbulent flow (smooth non-
circular pipe)

For turbulent flow, Dn works much better especially if
combined with “effective diameter” concept based on
ratio of exact laminar circular and noncircular duct Pg

numbers, i.e., 16/Poc, Or 64/Pos |

First recall turbulent circular pipe solution and compare
with turbulent channel flow solution using log-law in both
cases

Channel Flow

h *
V zlju*{lm(h_y)“JrB}dy Y=h-y wall coordinate

0 K ¥
:u{l.nme_lj
K U K
AA . 4(2hB)
D :—:I :4h — =
"= P T eL 5B+ ah h= half width

. VD, V4h
Define Rep, = U“ =

v

25
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f-12 _ 2|09(ReDh f1/2)_1_19 (using Dn)

X
Very nearly the same as circular pipe

7% to large at Re = 10°

4% to large at Re = 108
Therefore, error in Dy concept relatively smaller for
turbulent flow.

Note  f **(channel) =2log(0.64Re, f"*)—0.8

Rewriting such that exact agreement pipe flow with Rep
replaced by 0.64Repn

P, (circle) =16
Define Detrecive = > >t 0 P, (channel)=24 "

\ J
Y

Laminar solution

(therefore, improvement on Dy IS)

VD

eff

Rep .

5 P,; (circle) 5 Poc, (circle)

' Py (non—circular) " Py (non-circular)

Or

B 64 D - 16
P, (non—circular) " Poc, (non—circular)

N /

From exact laminar solution

Deff




