Chapter 5 Dimensional Analysis and Modeling

The Need for Dimensional Analysis

Dimensional analysis is a process of formulating fluid mechanics problems in terms of nondimensional variables and parameters.

1. Reduction in Variables:

If
$$F(A_1, A_2, ..., A_n) = 0$$
,

Then
$$f(\Pi_1, \Pi_2, ... \Pi_{r < n}) = 0$$

Thereby reduces number of experiments and/or simulations required to determine f vs. F

F = functional form

 A_i = dimensional variables

 $\Pi_j = nondimensional \\ parameters$

 $=\Pi_{j}\left(A_{i}\right)$

i.e., Π_j consists of nondimensional groupings of A_i 's

- 2. Helps in understanding physics
- 3. Useful in data analysis and modeling
- 4. Fundamental to concept of similarity and model testing

Enables scaling for different physical dimensions and fluid properties

Dimensions and Equations

Basic dimensions: F, L, and t \underline{or} M, L, and t F and M related by $F = Ma = MLT^{-2}$

Buckingham Π Theorem

In a physical problem including n dimensional variables in which there are m dimensions, the variables can be arranged into $r = n - \hat{m}$ independent nondimensional parameters Π_r (where usually $\hat{m} = m$).

$$F(A_1, A_2, ..., A_n) = 0$$

$$f(\Pi_1, \Pi_2, ... \Pi_r) = 0$$

 A_i 's = dimensional variables required to formulate problem (i = 1, n)

 Π_j 's = nondimensional parameters consisting of groupings of A_i 's (j = 1, r)

F, f represents functional relationships between A_n 's and Π_r 's, respectively

m̂ = rank of dimensional matrixm (i.e., number of dimensions) usually

Dimensional Analysis

Methods for determining Π_i 's

1. Functional Relationship Method

Identify functional relationships $F(A_i)$ and $f(\Pi_j)$ by first determining A_i 's and then evaluating Π_j 's

a. Inspection intuition

b. Step-by-step Methodc. Exponent Methoddescriptiontextclass

2. Nondimensionalize governing differential equations and initial and boundary conditions

Select appropriate quantities for nondimensionalizing the GDE, IC, and BC e.g. for M, L, and t

Put GDE, IC, and BC in nondimensional form

Identify Π_j 's

Exponent Method for Determining Π_j 's

- 1) determine the n essential quantities
- 2) select \hat{m} of the A quantities, with different dimensions, that contain among them the \hat{m} dimensions, and use them as repeating variables together with one of the other A quantities to determine each Π .

For example let A_1 , A_2 , and A_3 contain M, L, and t (not necessarily in each one, but collectively); then the Π_j parameters are formed as follows:

$$\Pi_{1} = A_{1}^{x_{1}} A_{2}^{y_{1}} A_{3}^{z_{1}} A_{4}$$

$$\Pi_{2} = A_{1}^{x_{2}} A_{2}^{y_{2}} A_{3}^{z_{2}} A_{5}$$

$$\Pi_{n-m} = A_{1}^{x_{n-m}} A_{2}^{y_{n-m}} A_{3}^{z_{n-m}} A_{n}$$

Determine exponents such that Π_i 's are dimensionless

3 equations and 3 unknowns for each $\Pi_{\rm i}$

In these equations the exponents are determined so that each Π is dimensionless. This is accomplished by substituting the dimensions for each of the A_i in the equations and equating the sum of the exponents of M, L, and t each to zero. This produces three equations in three unknowns (x, y, t) for each Π parameter.

In using the above method, the designation of $\hat{m} = m$ as the number of basic dimensions needed to express the n variables dimensionally is not always correct. The correct value for \hat{m} is the rank of the dimensional matrix, i.e., the next smaller square subgroup with a nonzero determinant.

Rank of dimensional matrix equals size of next smaller sub-group with nonzero determinant

Example: Derivation of Kolmogorov Scales Using Dimensional Analysis

<u>Nomenclature</u>

 l_0 ---- length scales of the largest eddies

 η ---- length scales of the smallest eddies (Kolmogorov scale)

 u_0 ---- velocity associated with the largest eddies

 u_{η} ---- velocity associated with the smallest eddies

 τ_0 ---- time scales of the largest eddies

 τ_{η} ---- time scales of the smallest eddies

Assumptions:

- 1. For large Reynolds numbers, the small-scales of motion (small eddies) are statistically steady, isotropic (no sense of directionality), and independent of the detailed structure of the large-scales of motion.
- 2. **Kolmogorov's (1941) universal equilibrium theory**: The large eddies are not affected by viscous dissipation, but transfer energy to smaller eddies by inertial forces. The range of scales of motion where the dissipation in negligible is the inertial subrange.
- 3. **Kolmogorov's first similarity hypothesis**. In every turbulent flow at sufficiently high Reynolds number, the statistics of the small-scale motions have a universal form that is uniquely determined by viscosity v and dissipation rate ε .

Facts and Mathematical Interpretation:

Fact 1. Dissipation of energy through the action of molecular viscosity occurs at the smallest eddies, i.e., Kolmogrov scales of motion η . The Reynolds number (Re_{η}) of these scales are of order(1).

Fact 2. EFD confirms that most eddies break-up on a timescale of their turn-over time, where the turnover time depends on the local velocity and length scales. Thus at Kolmogrov scale $\eta/u_{\eta} = \tau_{\eta}$.

Fact 3. The rate of dissipation of energy at the smallest scale is,

$$\varepsilon \equiv v S_{ij} S_{ij} \tag{1}$$

where $S_{ij} = \frac{1}{2} \left(\frac{\partial u_{\eta,i}}{\partial x_j} + \frac{\partial u_{\eta,j}}{\partial x_i} \right)$ is the rate of strain associated with the

smallest eddies, $S_{ij} \equiv u_{\eta}/\eta$. This yields,

$$\varepsilon \equiv v \left(u_{\eta}^2 / \eta^2 \right) \tag{2}$$

Fact 4. Kolmogrov scales of motion η , u_{η} , τ_{η} can be expressed as a function of ν , ε only.

Derivation:

Based on **Kolmogorov's first similarity hypothesis**, the small scales of motion are function of $F(\eta, u_{\eta}, \tau_{\eta}, v, \varepsilon)$ and determined by v and ε only. Thus v and ε are repeating variables. The dimensions for v and ε are L^2T^{-1} and L^2T^{-3} , respectively.

Herein, the exponential method is used:

$$F\left(\eta, u_{\eta}, \tau_{\eta}, v, \varepsilon\right) = 0 \qquad n = 5$$

$$\begin{bmatrix} L & \frac{L}{T} & T & \frac{L^{2}}{T} & \frac{L^{2}}{T^{3}} \end{bmatrix}$$
(3)

use v and ε as repeating variables, $m=2 \Rightarrow r=n-m=3$

$$\Pi_{1} = v^{x_{1}} \varepsilon^{y_{1}} \eta
= \left(L^{2} T^{-1} \right)^{x_{1}} \left(L^{2} T^{-3} \right)^{y_{1}} L$$
(4)

$$L 2x_1 + 2y_1 + 1 = 0$$

$$T -x_1 - 3y_1 = 0$$
(5)

$$x_1 = -3/4$$
 and $y_1 = 1/4$

$$\Pi_1 = \eta \left(\frac{\varepsilon}{v^3}\right)^{1/4} \tag{6}$$

$$\Pi_{2} = v^{x_{2}} \varepsilon^{y_{2}} u_{\eta}
= \left(L^{2} T^{-1}\right)^{x_{2}} \left(L^{2} T^{-3}\right)^{y_{2}} \left(L T^{-1}\right)$$
(7)

$$L 2x_2 + 2y_2 + 1 = 0$$

$$T -x_2 - 3y_2 - 1 = 0$$
(8)

$$x_2 = y_2 = -1/4$$

 $\Pi_2 = u_{\eta}/(\varepsilon v)^{1/4}$ (9)

$$\Pi_{3} = v^{x_{3}} \varepsilon^{y_{3}} \tau_{\eta}
= \left(L^{2} T^{-1}\right)^{x_{3}} \left(L^{2} T^{-3}\right)^{y_{3}} (T)$$
(10)

$$L 2x_3 + 2y_3 = 0$$

$$T -x_3 - 3y_3 + 1 = 0$$
(11)

$$x_3=-1/2$$
 and $y_3=1/2$

$$\Pi_3 = \tau_\eta \left(\frac{\varepsilon}{v}\right)^{1/2}$$
(12)

Analysis of the \prod parameters gives,

$$\Pi_1 \times \Pi_2 = \frac{u_\eta \eta}{v} = Re_\eta \equiv 1 \implies \text{Fact } 1$$
 (13)

$$\frac{\Pi_2}{\Pi_1} \times \Pi_3 = \frac{u_\eta}{\eta} \tau_\eta = 1 \qquad \Rightarrow \text{Fact 2}$$
 (14)

$$\frac{\Pi_2}{\Pi_1} = \frac{u_\eta}{\eta} \left(\frac{\varepsilon}{v}\right)^{1/2} \equiv 1 \qquad \Rightarrow \text{Fact 3}$$
 (15)

$$\stackrel{\text{yields}}{\longrightarrow} \ \Pi_1 = \Pi_2 = \Pi_3 \equiv 1$$

Thus Kolmogrov scales are:

$$\eta \equiv (v^3/\varepsilon)^{1/4},$$

$$u_{\eta} \equiv (\varepsilon v)^{1/4},$$

$$\tau_{\eta} \equiv (v/\varepsilon)^{1/2}$$
Fact 4 (16)

Ratios of the smallest to largest scales:

Based on Fact 2, the rate at which energy (per unit mass) is passed down the energy cascade from the largest eddies is,

$$\Pi = u_0^2 / (l_0 / u_0) = u_0^3 / l_0 \tag{17}$$

Based on Kolmogorov's universal equilibrium theory,

$$\varepsilon = u_0^3 / l_0 \equiv \nu \left(u_\eta^2 / \eta^2 \right) \tag{18}$$

Replace ε in Eqn. (16) using Eqn. (18) and note $\tau_0 = l_0/u_0$,

$$\eta/l_0 \equiv \text{Re}^{-3/4},$$

$$u_{\eta}/u_0 \equiv \text{Re}^{-1/4},$$

$$\tau_{\eta}/\tau_0 \equiv \text{Re}^{-1/2}$$
(19)

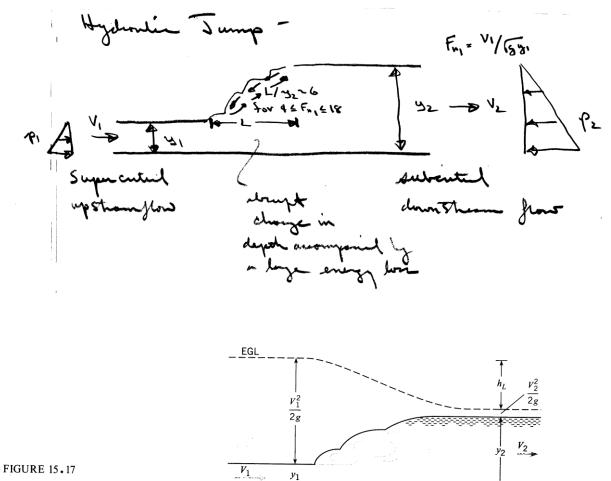
where $Re = u_0 l_0 / v$

How large is η ?

Cases	Re	η / l_o	l_o	η
Educational experiments	10^{3}	5.6×10 ⁻³	~ 1 cm	$5.6 \times 10^{-3} \text{ cm}$
Model-scale experiments	10^{6}	3.2×10 ⁻⁵	~ 3 m	$9.5 \times 10^{-5} \text{ m}$
Full-scale experiments	10^{9}	1.8×10 ⁻⁷	~ 100 m	1.8×10 ⁻⁵ m

Much of the energy in this flow is dissipated in eddies which are less than fraction of a millimeter in size!!

Example: Hydraulic jump



Definition sketch for the hydraulic jump.

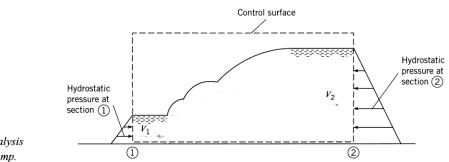


FIGURE 15.18 Control-volume analysis for the hydraulic jump.

Say we assume that

$$V_1 = V_1(\rho, g, \mu, y_1, y_2)$$
 or $V_2 = V_1y_1/y_2$

Dimensional analysis is a procedure whereby the functional relationship can be expressed in terms of r nondimensional parameters in which r < n = number of variables. Such a reduction is significant since in an experimental or numerical investigation a reduced number of experiments or calculations is extremely beneficial

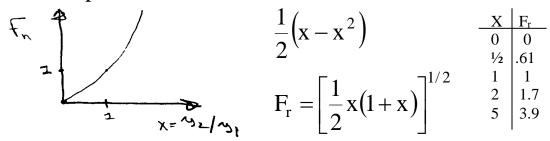
In general:
$$\Gamma(A_1, A_2, ..., A_n) = 0$$
 Represents many, many experiments $\Gamma(A_1, A_2, ..., A_n) = 0$ dimensional form with reduced or $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$ mondimensional form with reduced $\Gamma(A_1, A_2, ..., A_n) = 0$

It can be shown that

$$F_{r} = \frac{V_{1}}{\sqrt{gy_{1}}} = F_{r} \left(\frac{y_{2}}{y_{1}}\right)$$

neglect μ (ρ drops out as will be shown)

thus only need one experiment to determine the functional relationship



For this particular application we can determine the functional relationship through the use of a control volume analysis: (neglecting μ and bottom friction) x-momentum equation: $\sum F_x = \sum V_x \rho \underline{V} \cdot \underline{A}$

$$\gamma \frac{y_1^2}{2} - \gamma \frac{y_2^2}{2} = V_1 \rho (-V_1 y_1) + V_2 \rho (V_2 y_2)$$
$$\frac{\gamma}{2} (y_1^2 - y_2^2) = \frac{\gamma}{g} (V_2^2 y_2 - V_1^2 y_1)$$

continuity equation: $V_1y_1 = V_2y_2$

equation:
$$\mathbf{v}_1\mathbf{y}_1 = \mathbf{v}_2\mathbf{y}_2$$

$$V_2 = \frac{V_1 y_1}{y_2}$$

$$\frac{\gamma y_1^2}{2} \left[1 - \left(\frac{y_2}{y_1} \right)^2 \right] = V_1^2 \frac{\gamma}{g} y_1 \left(\frac{y_1}{y_2} - 1 \right)$$

pressure forces = inertial forces due to gravity Note: each term in equation must have some units: principle of dimensional homogeneity, i.e., in this case, force per unit width N/m

now divide equation by
$$\frac{\left(1 - \frac{y_2}{y_1}\right)y_1^3}{gy_2}$$

$$\frac{V_1^2}{gy_1} = \frac{1}{2} \frac{y_2}{y_1} \left(1 + \frac{y_2}{y_1} \right)$$
 dimensionless equation

ratio of inertia forces/gravity forces = $(Froude number)^2$

note:
$$F_r = F_r(y_2/y_1)$$
 do not need to know both y_2 and y_1 , only ratio to get F_r

Also, shows in an experiment it is not necessary to vary γ , y_1 , y_2 , V_1 , and V_2 , but only F_r and y_2/y_1

Next, can get an estimate of h_L from the energy equation (along free surface from $1\rightarrow 2$)

$$\frac{V_1^2}{2g} + y_1 = \frac{V_2^2}{2g} + y_2 + h_L$$

$$h_{L} = \frac{(y_2 - y_1)^3}{4y_1y_2}$$

 \neq f(μ) due to assumptions made in deriving 1-D steady flow energy equations

n = 6

Exponent method to determine Π_j 's for Hydraulic jump

use
$$V = V_1$$
, y_1 , ρ as repeating variables

$$\begin{split} F(g, V_1, y_1, y_2, \rho, \mu) &= 0 \\ \frac{L}{T^2} \frac{L}{T} L L \frac{M}{L^3} \frac{M}{LT} \end{split} \label{eq:force_force}$$

Assume
$$\hat{\mathbf{m}} = \mathbf{m}$$
 to avoid evaluating

dimensional matrix

rank of 6 x 6

$$\begin{split} \Pi_1 &= V^{x1} \ y_1^{y1} \ \rho^{z1} \ \mu \\ &= (LT^{-1})^{x1} \ (L)^{y1} \ (ML^{-3})^{z1} \ ML^{-1}T^{-1} \end{split}$$

$$L \qquad x_1 + y_1 - 3z_1 - 1 = 0 \qquad y_1 = 3z_1 + 1 - x_1 = -1$$

T
$$-x_1$$
 $-1=0$ $x_1=-1$

$$M z_1 + 1 = 0 z_1 = -1$$

$$\Pi_1 = \frac{\mu}{\rho y_1 V}$$
 or $\Pi_1^{-1} = \frac{\rho y_1 V}{\mu} = \text{Reynolds number} = \text{Re}$

$$\Pi_2 = V^{x2} y_1^{y2} \rho^{z2} g$$

= $(LT^{-1})^{x2} (L)^{y2} (ML^{-3})^{z2} LT^{-2}$

L
$$x_2 + y_2 - 3z_2 + 1 = 0$$
 $y_2 = -1 - x_2 = 1$

T
$$-x_2$$
 $-2 = 0$ $x_2 = -2$

$$\mathbf{M} \quad \mathbf{z}_2 = \mathbf{0}$$

$$\Pi_2 = V^{-2}y_1g = \frac{gy_1}{V^2}$$
 $\Pi_2^{-1/2} = \frac{V}{\sqrt{gy_1}} = \text{Froude number} = \text{Fr}$

$$\Pi_3 = (LT^{-1})^{x3} (L)^{y3} (ML^{-3})^{z3} y_2$$

$$L \quad x_3 + y_3 + 3z_3 + 1 = 0 \qquad y_3 = -1$$

$$T - x_3 = 0$$

M
$$-3z_3 = 0$$

$$\Pi_3 = \frac{y_2}{y_1} \qquad \qquad \Pi_3^{-1} = \frac{y_1}{y_2} = \text{depth ratio}$$

$$f(\Pi_1, \Pi_2, \Pi_3) = 0$$

or,
$$\Pi_2 = \Pi_2(\Pi_1, \Pi_3)$$

i.e.,
$$F_r = F_r(Re, y_2/y_1)$$

if we neglect μ then Re drops out

$$F_{r} = \frac{V_{1}}{\sqrt{gy_{1}}} = f\left(\frac{y_{2}}{y_{1}}\right)$$

Note that dimensional analysis does not provide the actual functional relationship. Recall that previously we used control volume analysis to derive

$$\frac{V_1^2}{gy_1} = \frac{1}{2} \frac{y_2}{y_1} \left(1 + \frac{y_2}{y_1} \right)$$

the actual relationship between F vs. y₂/y₁

$$F = F(Re, F_r, y_1/y_2)$$
 or
$$F_r = F_r(Re, y_1/y_2)$$

dimensional matrix:

Size of next smaller subgroup with nonzero determinant = 3 = rank of matrix

Common Dimensionless Parameters for Fluid Flow Problems

Most common physical quantities of importance in fluid flow problems are: (without heat transfer)

1 2 3 4 5 6 7 8 V, ρ , g, μ , σ , K, Δp , L

velocity density gravity viscosity surface compressibility pressure length tension change

n = 8 m = 3 \Rightarrow 5 dimensionless parameters

1) Reynolds number =
$$\frac{\rho VL}{\mu} = \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho V^2/L}{\mu V/L^2}$$
 Re

R_{crit} distinguishes among flow regions: laminar or turbulent value varies depending upon flow situation

2) Froude number =
$$\frac{V}{\sqrt{gL}} = \frac{\text{inertia forces}}{\text{gravity force}}$$
 $\frac{\rho V^2/L}{\gamma}$ Fr important parameter in free-surface flows

3) Weber number =
$$\frac{\rho V^2 L}{\sigma}$$
 = $\frac{\text{inertia force}}{\text{surface tension force}} \frac{\rho V^2 / L}{\sigma / L^2}$ We important parameter at gas-liquid or liquid-liquid interfaces and when these surfaces are in contact with a boundary

4) Mach number =
$$\frac{V}{\sqrt{k/\rho}} = \frac{V}{a} = \sqrt{\frac{\text{inertia force}}{\text{compressibility force}}}}$$
 Ma

Paramount importance in high speed flow $(V \ge c)$

5) Pressure Coefficient =
$$\frac{\Delta p}{\rho V^2} = \frac{\text{pressure force}}{\text{inertia force}} = \frac{\Delta p/L}{\rho V^2/L}$$
 (Euler Number)

Nondimensionalization of the Basic Equation

It is very useful and instructive to nondimensionalize the basic equations and boundary conditions. Consider the situation for ρ and μ constant and for flow with a free surface

Continuity:
$$\nabla \cdot \underline{\mathbf{V}} = 0$$

$$\label{eq:def_DV_Dt} \text{Momentum:} \quad \rho \frac{D\underline{V}}{Dt} = -\nabla \big(p + \gamma z\big) + \mu \nabla^2 \underline{V}$$

$$\rho g = \text{specific weight}$$

Boundary Conditions:

1) fixed solid surface:
$$\underline{V} = 0$$

2) inlet or outlet:
$$\underline{V} = \underline{V}_0$$
 $p = p_0$

2) inlet or outlet:
$$\underline{V} = \underline{V}_{o}$$
 $p = p_{o}$

3) free surface: $w = \frac{\partial \eta}{\partial t}$ $p = p_{a} - \gamma \left(R_{x}^{-1} + R_{y}^{-1}\right)$ surface tension

All variables are now nondimensionalized in terms of ρ and

L = reference length

$$\underline{\underline{V}}^* = \frac{\underline{V}}{\underline{U}} \qquad \qquad \underline{t}^* = \frac{t\underline{U}}{\underline{L}}$$

$$\underline{x}^* = \frac{\underline{x}}{L} \qquad p^* = \frac{p + \rho gz}{\rho U^2}$$

All equations can be put in nondimensional form by making the substitution

$$\underline{\mathbf{V}} = \underline{\mathbf{V}}^* \mathbf{U}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t^*} \frac{\partial t^*}{\partial t} = \frac{U}{L} \frac{\partial}{\partial t^*}$$

$$\begin{split} \nabla &= \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \\ &= \frac{\partial}{\partial x^*} \frac{\partial x^*}{\partial x} \hat{i} + \frac{\partial}{\partial y^*} \frac{\partial y^*}{\partial y} \hat{j} + \frac{\partial}{\partial z^*} \frac{\partial z^*}{\partial z} \hat{k} \\ &= \frac{1}{L} \nabla^* \end{split}$$

and
$$\frac{\partial u}{\partial x} = \frac{1}{L} \frac{\partial}{x^*} (Uu^*) = \frac{U}{L} \frac{\partial u^*}{\partial x^*}$$
 etc.

Result: $\nabla^* \cdot \mathbf{V}^* = 0$

$$\frac{D\underline{V}^*}{Dt} = -\nabla^* p^* + \underbrace{\frac{\mu}{\rho VL}} \nabla^{*2} \underline{V}^*$$
1)
$$V^* = 0$$

$$1) \quad \underline{\mathbf{V}}^* = \mathbf{0}$$

2)
$$\underline{\underline{V}}^* = \frac{\underline{V}_o}{U}$$
 $p^* = \frac{p_o}{\rho V^2}$

3)
$$w^* = \frac{\partial \eta^*}{\partial t^*} \qquad p^* = \frac{p_o}{\rho V^2} + \frac{gL}{U^2} z^* + \frac{\gamma}{\rho V^2 L} \left(R_x^{*-1} + R_y^{*-1} \right)$$
pressure coefficient
$$Fr^{-2} We^{-1} V = U$$

Similarity and Model Testing

Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same corresponding values for model and prototype

$$\Pi_{i \text{ model}} = \Pi_{i \text{ prototype}}$$
 $i = 1, r = n - \hat{m} (m)$

Enables extrapolation from model to full scale

However, complete similarity usually not possible

Therefore, often it is necessary to use Re, or Fr, or Ma scaling, i.e., select most important Π and accommodate others as best possible

Types of Similarity:

1) Geometric Similarity (similar length scales):
A model and prototype are geometrically similar if and only if all body dimensions in all three coordinates have the same linear-scale ratios

$$\alpha = L_m/L_p \qquad (\alpha < 1)$$
1/10 or 1/50

2) Kinematic Similarity (similar length and time scales): The motions of two systems are kinematically similar if homologous (same relative position) particles lie at homologous points at homologous times

3) Dynamic Similarity (similar length, time and force (or mass) scales): in addition to the requirements for kinematic similarity the model and prototype forces must be in a constant ratio

Model Testing in Water (with a free surface)

$$F(D, L, V, g, \rho, v) = 0$$

n = 6 and m = 3 thus r = n - m = 3 pi terms

In a dimensionless form,

$$f(C_D, Fr, Re) = 0$$

or

$$C_D = f(Fr, Re)$$

where

$$C_{D} = \frac{D}{\frac{1}{2}\rho V^{2}L^{2}}$$

$$Fr = \frac{V}{\sqrt{gL}}$$

$$Re = \frac{VL}{v}$$

$$Fr = \frac{V_{p}}{\sqrt{gL}}$$

If
$$Fr_m = Fr_p$$
 or $\frac{V_m}{\sqrt{gL_m}} = \frac{V_p}{\sqrt{gL_p}}$

$$V_m = \frac{\sqrt{gL_m}}{\sqrt{gL_p}} V_p = \sqrt{\alpha} V_p$$
 Froude scaling

and
$$Re_m = Re_p$$
 or $\frac{V_m L_m}{v_m} = \frac{V_p L_p}{v_p}$
$$\frac{v_m}{v_p} = \frac{V_m L_m}{V_p L_p} = \alpha^{1/2} \alpha = \alpha^{3/2}$$

Then,

$$C_{D_m} = C_{D_p} \text{ or } \frac{D_m}{\rho_m V_m^2 L_m^2} = \frac{D_p}{\rho_p V_p^2 L_p^2}$$

However, impossible to achieve, since

if
$$\alpha = 1/10$$
, $\nu_m = 3.1 \times 10^{-8} \, m^2/s < 1.2 \times 10^{-7} \, m^2/s$
For mercury $\nu = 1.2 \times 10^{-7} \, m^2/s$

Alternatively one could maintain Re similarity and obtain

$$V_m = V_p/\alpha$$

But if
$$\alpha = 1/10$$
, $V_m = 10V_p$,

High speed testing is difficult and expensive.

$$\frac{V_{\rm m}^2}{g_{\rm m}L_{\rm m}} = \frac{V_{\rm p}^2}{g_{\rm p}L_{\rm p}}$$

$$\frac{g_{\mathrm{m}}}{g_{\mathrm{p}}} = \frac{V_{\mathrm{m}}^2}{V_{\mathrm{p}}^2} \frac{L_{\mathrm{p}}}{L_{\mathrm{m}}}$$

$$\frac{g_m}{g_p} = \frac{V_m^2}{V_p^2} \frac{L_p}{L_m}$$

$$\frac{g_m}{g_p} = \frac{1}{\alpha^2} \times \frac{1}{\alpha} = \alpha^{-3}$$

$$g_m = \frac{g_p}{\alpha^3}$$

But if $\alpha = 1/10$, $g_m = 1000g_p$ Impossible to achieve

Model Testing in Air

$$F(D, L, V, \rho, v, a) = 0$$

n = 6 and m = 3 thus r = n - m = 3 pi terms

In a dimensionless form,

$$f(C_D, Fr, Re) = 0$$

or

$$C_D = f(Fr, Ma)$$

where

$$C_D = \frac{D}{\frac{1}{2}\rho V^2 L^2}$$

$$Re = \frac{VL}{v}$$

$$Ma = \frac{V}{a}$$

$$If \qquad \frac{V_m L_m}{v_m} = \frac{V_p L_p}{v_p}$$

and
$$\frac{V_m}{a_m} = \frac{V_p}{a_p}$$

Then,

$$C_{D_m} = C_{D_p} \text{ or } \frac{D_m}{\rho_m V_m^2 L_m^2} = \frac{D_p}{\rho_p V_p^2 L_p^2}$$

However,
$$\frac{v_m}{v_p} = \frac{L_m}{L_p} \left[\frac{a_m}{a_p} \right] = \alpha$$
 again not possible

Therefore, in wind tunnel testing Re scaling is also violated

Model Studies w/o free surface

$$c_p = \Delta p / \frac{1}{2} \rho V^2$$
High Re

Model Studies with free surface

In hydraulics model studies, Fr scaling used, but lack of We similarity can cause problems. Therefore, often models are distorted, i.e. vertical scale is increased by 10 or more compared to horizontal scale

Ship model testing:

$$C_T = (Re, F_r) = C_w(F_r) + C_v(Re)$$

V_m determined for F_r scaling

$$C_{wm} = C_{Tm} - C_v$$

$$C_{Ts} = C_{wm} + C_v$$
Based on flat plate of same surface area