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Chapters 3 & 4:  Integral Relations for a Control Volume 
and Differential Relations for Fluid Flow 
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Reynolds Transport Theorem (RTT) 
 
Need relationship between ( )sysB

dt
d  and changes in 

∫ ∀=∫=
CVCV

ddmcvB βρβ . 

 
 

1 = time rate of change of B in CV = ∫ ∀=
CV

d
dt
d

dt
cvdB

βρ  

 
2 = net outflux of B from CV across CS = R

CS

V n dAβρ ⋅∫  

As with Q and �̇�𝑚, ∆�̇�𝐵 flux though A per unit time is:  
𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
𝑑𝑑�̇�𝑚 = 𝜌𝜌𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
𝑑𝑑∆�̇�𝐵 = 𝛽𝛽𝜌𝜌𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
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Therefore: 
 

dAnVd
dt
d

dt
dB

R
CSCV

SYS ⋅+∀= ∫∫ βρβρ  

 
General form RTT for moving deforming control volume 
Special Cases: 
 
1)  Non-deforming CV 
 

( ) dAnVd
tdt

dB
R

CSCV

SYS ⋅+∀
∂
∂

= ∫∫ βρβρ  

 
2)  Fixed CV or material CV, i.e., material derivative 
DBSYS/Dt 
 

( ) dAnVd
tdt

dB

CSCV

SYS ⋅+∀
∂
∂

= ∫∫ βρβρ  

 
 Greens Theorem:  

CV CS

b d b n dA∇ ⋅ ∀ = ⋅∫ ∫  

 
( ) ( ) ∀



 ⋅∇+
∂
∂

= ∫ dV
tdt

dB

CV

SYS βρβρ  

 
Since CV fixed and arbitrary 

0
lim

→∀d
gives governing 

differential equation. 
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3)  Uniform flow across discrete CS (steady or unsteady) 
 

∑∫ ⋅=⋅
CS

R
CS

R dAnVdAnV βρβρ   (- inlet, + outlet) 

or for fixed CV, 𝑉𝑉𝑅𝑅 = 𝑉𝑉,   𝑉𝑉𝑆𝑆 = 0 
 
4) Steady Flow:  0=

∂
∂
t

 

 
Continuity Equation: 
 
B = M = mass of system 
β = 1 
 

0=
dt

dM  by definition, system = fixed amount of mass 

 
Integral Form: 
 

dAnVd
dt
d

dt
dM

CS
R

CV
∫∫ ⋅+∀== ρρ0  

 
dAnVd

dt
d

CS
R

CV
∫∫ ⋅=∀− ρρ  

 
Rate of decrease of mass in CV = net rate of mass outflow across CS 
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Note simplifications for 1) non-deforming and fixed CV   
( ∀≠∀ (t), 𝑉𝑉𝑆𝑆 = 0), 2) uniform flow across discrete CS 

(∫=∑), 3) steady flow ( 0=
∂
∂
t

), and 4) incompressible fluid 

(ρ = constant ⇒  dAnVd
dt
d

CS
R

CV
∫∫ ⋅=∀−  : “conservation of 

volume”) 
 
1) Non-deforming and fixed CV 

0
CV CS

d V n dA
t
ρ ρ∂

∀ + ⋅ =
∂∫ ∫  

2) and uniform flow over discrete inlet/outlet 
0

CV

d V nA
t
ρ ρ∂

∀ + ⋅ =
∂ ∑∫  

3) and steady flow 
0V nAρ ⋅ =∑  

or 
( ) ( ) 0

in out
VA VAρ ρ− + =∑ ∑  

 
( ) ( )in out

Q m m mρ = ⇒ =∑ ∑    
4) and incompressible flow 

0in outQ Q− + =∑ ∑  
 
if non-uniform flow over discrete inlet/outlet 

( ) 1
i i

CS av avCS
CS CS

Q V n dA V A V V n dA
A

= ⋅ = = ⋅∫ ∫  
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Differential Form: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 = ��
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

+ ∇. �𝜌𝜌𝑉𝑉�� 𝑑𝑑∀
𝐶𝐶𝐶𝐶

 

𝛽𝛽 = 1 

( ) 0=⋅∇+
∂
∂ V

t
ρρ

       

0=∇⋅+⋅∇+
∂
∂ ρρρ VV

t  

0=⋅∇+ V
Dt
D ρρ

 

0

1 1

d dM dM d d

D D
Dt Dt

ρρ ρ ρ
ρ

ρ
ρ

∀
= ∀ ⇒ = ∀ + ∀ = ⇒ − =

∀
∀

= −
∀



0

11

1
=

∀
∀

∀
∀

==−
∂
∂+

∂
∂+

∂
∂

⋅∇+

  



unitper
changeofrate

Dt
D

Dt
D

z
w

y
v

x
u

V

unitper
changeofrate
Dt
D

ρ
ρρ

ρ

ρ
ρ  

Called the continuity equation since the implication is that 
ρ and V are continuous functions of x. 
  
Incompressible Fluid:  ρ = constant 

0

0

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

z
w

y
v

x
u

V
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P3.15 Water, assumed incompressible, flows steadily 
through the round pipe in Fig. P3.15. The entrance 
velocity is constant, 0u U= , and the exit velocity 
approximates turbulent flow, ( )1 7

max 1u u r R= − . Determine 
the ratio U0/umax for this flow. 

 
Steady flow, non-deforming, fixed CV, one inlet uniform 
flow and one outlet non-uniform flow 
−𝑚𝑚𝚤𝚤𝚤𝚤̇ + 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜̇ = 0;   𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑𝑐𝑐𝑛𝑛𝑑𝑑;   ̇ − 𝑑𝑑𝑖𝑖𝚤𝚤 + 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 0 

( )1 72
0 max0

0 1 2
R

U R u r R rdrπ π= − + −∫  
2 2

0 max
490
60

U R u Rππ= − +  
0

max

49
60

U
u

=  

( ) ( )
1 7

15 7 8 7
max max0 2 2

0

1 12 1 2 1 1
1 12 1
7 7

R

R ru rdr u r R r R
R R R

π π
− −

 
    − = − − −        + +        

∫

2
max

7 72 0
15 8

u Rπ   = − −    
2

max
49
60

u Rπ=  
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank 
as shown. At time t=0, the water depth in the tank is 
30cm. Estimate the time required to fill the remainder of 
the tank. 

 
 
 
Unsteady flow, deforming CV, one inlet one outlet 
uniform flow 

1 20
CV

d d Q Q
dt

ρ ρ ρ= ∀ − +∫  
2 2

1 20
4 4CV

d d dd V V
dt

π πρ ρ ρ= ∀ − +∫  

( ) ( )
2

4
Dt h t π

∀ =  

h (0)=0.3m 
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( )
2 2

2 10
4 4
D dh d V V

dt
ρπ πρ= + −  

( )
2

1 2 0.0153dh d V V
dt D

 = − = 
   

0.7 46
0.0153 0.0153

dhdt s= = =  
 
Steady flow, fixed CV with one inlet and two exits with 
uniform flow 

Note:   
A

Q V n dA
dt
∀

= ⋅ =∫    
3L

s  

1 2 30 Q Q Q= − + +  

𝑑𝑑3 =
∀
𝑑𝑑𝑑𝑑

= 𝑑𝑑1 − 𝑑𝑑2 =
𝜋𝜋𝑑𝑑2

4
(𝑉𝑉1 − 𝑉𝑉2) 

𝑑𝑑𝑑𝑑 =
∀
𝑑𝑑3

=
𝑑𝑑ℎ 𝜋𝜋𝐷𝐷

2

4
𝜋𝜋𝑑𝑑2

4 (𝑉𝑉1 − 𝑉𝑉2)
 

 

( )

2

1 2

Ddh
d

V V

 
 
 =
−  
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P4.17 A reasonable approximation for the two-
dimensional incompressible laminar boundary layer on 

the flat surface in Fig.P4.17 is 
2

2

2y yu U
δ δ

 
= − 

   for y δ≤ , 

where 1 2Cxδ = , C const=  
(a) Assuming a no-slip condition at the wall, find an 
expression for the velocity component ( ),v x y  for y δ≤ . 
(b) Find the maximum value of v  at the station 1x m= , for 
the particular case of flow, when 3U m s=  and 1.1cmδ = . 

 
0u v

x y
∂ ∂

+ =
∂ ∂  

( )2 2 32 2v u U y y
y x x

δδ δ− −∂ ∂ ∂
= − = − − +

∂ ∂ ∂  

( )2 2 3

0
2

y

xv U y y dyδ δ δ− −= −∫  

(a) 
2 3

2 32
2 3x
y yv Uδ
δ δ

 
= − 

   1 2Cxδ =  1 2

2 2x
C x

x
δδ −= =  

(b) Since 0yv =  at y δ=  

( )max
2 1 1
2 2 3
Uv v y

x
δδ  = = = − 

 
3 0.011 0.0055

6 6
U m s

x
δ ×

= = =  
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Momentum Equation: 
B = MV = momentum, β = V 
 
Integral Form: 



( )

3
1 2

R
CV CS

d MV d V d V V n dA F
dt dt

ρ ρ= ∀ + ⋅ = ∑∫ ∫
 

 

∑ F  =  vector sum of all forces acting on CV 
 = FB + Fs 
FB =  Body forces, which act on entire CV of fluid due to 

external force field such as gravity or electrostatic or 
magnetic forces.  Force per unit volume. 

Fs =  Surface forces, which act on entire CS due to normal 
(pressure and viscous stress) and tangential (viscous 
stresses) stresses.  Force per unit area. 

 
When CS cuts through solids Fs may also include FR = 
reaction forces, e.g., reaction force required to hold nozzle 
or bend when CS cuts through bolts holding nozzle/bend 
in place. 
 1 = rate of change of momentum in CV 
       2 = rate of outflux of momentum across CS 
 3 = vector sum of all body forces acting on entire CV 
and  surface forces acting on entire CS. 
 
Many interesting applications of CV form of momentum 
equation: vanes, nozzles, bends, rockets, forces on bodies, 
water hammer, etc. 
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Differential Form: 
 

( ) ( )
CV

V V V d F
t

ρ ρ∂ + ∇ ⋅ ∀ = ∂ 
∑∫  

Where ( ) VV V
t t t

ρρ ρ∂ ∂ ∂= +
∂ ∂ ∂

 

and ˆˆ ˆV V VV ui V vjV wkVρ ρ ρ ρ ρ= = + +  is a tensor 
( ) ( ) ( ) ( ) ( )V V VV uV vV wV

x y z
ρ ρ ρ ρ ρ∂ ∂ ∂

∇ ⋅ = ∇ ⋅ = + +
∂ ∂ ∂  

VVVV ∇⋅+⋅∇= ρρ )(  
 

( )
CV

VV V V V d F
t t
ρ ρ ρ ∂ ∂    + ∇ ⋅ + + ⋅∇ ∀ =    ∂ ∂    

∑∫  

 

Since 
V DVV V
t Dt

∂
+ ⋅∇ =

∂  

∑∫ =∀ Fd
Dt
VD

CV

ρ  

∑= f
Dt
VDρ  per elemental fluid volume 

sb
ffa +=ρ  

 
b

f  = body force per unit volume 

s
f  = surface force per unit volume 

 

= 0, continuity 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2022  14 
 

Body forces are due to external fields such as gravity or 
magnetic fields.  Here we only consider a gravitational 
field; that is, 

dxdydzgFdF gravbody ρ=∑ =  
 

and  ˆg gk= −   for    

i.e. ˆ
body

f gkρ= −  
Surface Forces are due to the stresses that act on the sides 
of the control surfaces 

ijijij p τδσ +−=  
 

















+−
+−

+−
=

zzzyzx

yzyyyx

xzxyxx

p
p

p

τττ
τττ
τττ

 

 
 
 

 
Symmetry condition from requirement that for elemental 
fluid volume, stresses themselves cause no rotation. 
 
As shown before, for p alone it is not the stresses 
themselves that cause a net force but their gradients. 
 

s pf f fτ= +  

Viscous stress Normal pressure 

z 

g 

Symmetric ij jiσ σ=  
 
2nd order tensor 
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Recall pf p= −∇  based on 1st order TS.  fτ  is more 
complex since 

ijτ  is a 2nd order tensor, but similarly as for 
p, the force is due to stress gradients and are derived 
based on 1st order TS. 

^ ^ ^

^ ^ ^

^ ^ ^

x xx xy xz

y yx yy yz

z zx zy zz

i j k

i j k

i j k

σ σ σ σ

σ σ σ σ

σ σ σ σ

= + +

= + +

= + +

   

 
 
 
 
 
 
 

     and similarly, for z face 

             zx
zx zxdz dydz

z
σσ σ∂ + − ∂ 

 

                                 and 𝚥𝚥̂ and 𝑘𝑘� directions 

𝐹𝐹𝑠𝑠 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑥𝑥𝑥𝑥) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑥𝑥� +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑧𝑧𝑥𝑥)� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 �̂�𝚤 

+ �
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑥𝑥𝑦𝑦� +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑦𝑦� +
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜎𝜎𝑧𝑧𝑦𝑦�� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 𝚥𝚥̂ 

+ �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑥𝑥𝑧𝑧) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑧𝑧� +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑧𝑧𝑧𝑧)� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 𝑘𝑘� 

 

z 

Resultant 
stress  
on each face 

x 

y 

dydzdx
x

xx
xx 








∂
∂

+
σσ  

yx
yx dy dxdz

y
σ

σ
∂ 

+ ∂   

yx dxdzσ  

xx dydzσ  
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( ) ( ) ( )s x y zF dxdydz
x y z

σ σ σ
 ∂ ∂ ∂

= + + ∂ ∂ ∂   

 
Divided by the volume: 

( ) ( ) ( )s x y zf
x y z

σ σ σ∂ ∂ ∂
= + +

∂ ∂ ∂  

s ij ij ji
j i

f
x x

σ σ σ∂ ∂
= ∇ ⋅ = =

∂ ∂  

Since σij= σji 
 
Putting together the above results, 

ˆ
ij

DVa gk
Dt

ρ ρ ρ σ= = − + ∇ ⋅  
 

 
Note: 
∆ = delta  
∇ = nabla (Hebrew “nebel” means lyre or ancient harp 
used by David to entertain King Saul in praise of God) 
∇𝑓𝑓 = vector 

f∇ ⋅ = scalar 
ijσ∇ ⋅  = vector (decreases order tensor by one) 

f∇  = tensor 
V∇× = vector 

body force 
due to 
gravity 

Inertial force 
surface force = p + viscous terms 
(due to stress gradients) 
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Next, we need to relate the stresses σij to the fluid motion, 
i.e., the velocity field.  To this end, we examine the 
relative motion between two neighboring fluid particles. 
 
 
 
 
 
@ B: V dV V V dr+ = + ∇ ⋅   1st order Taylor 
Series 
 

 
 

x y z

x y z ij j

x y z

u u u dx
dV V dr v v v dy e dx

w w w dz

   
   = ∇ ⋅ = =   
     

 

 
 

 

B 

deformation rate 
tensor = ije  

dr  

relative motion 

A (u,v,w) = V 
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1 1
2 2

j ji i i
ij ij ij

j j i j i

u uu u ue
x x x x x

symmetric part anit symmetric part
ij ji ij ji

ε ω

ε ε ω ω

   ∂ ∂∂ ∂ ∂
= = + + − = +      ∂ ∂ ∂ ∂ ∂   

−
= =−

 

 

 

1 10 ( ) ( )
2 2

1 1( ) 0 ( )
2 2

1 1( ) ( ) 0
2 2

y x z x

ij x y z y

x z y z

u v u w

v u v w rigid body rotation
of fluid element

w u w v

η

ω

ζ

ξ

 
 
 
 − − 
 
 = − − = 
 
 
 

− − 
 
  







  

 
where ξ= rotation about x axis 

η = rotation about y axis 
ς= rotation about z axis 

 
Note that the components of ωij are related to the vorticity 
vector define by: 
 

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )
2 22

y z z x x y x y zV w v i u w j v u k i j kω ω ω ω
η ζξ

= ∇× = − + − + − = + +


   

= 2 × angular velocity of fluid element 
 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2022  19 
 

1 1( ) ( )
2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

ij

x y x z x

x y y z y

x z y z z

rate of strain tensor

u u v u w

v u v v w

w u w v w

ε =

 + + 
 
 = + + 
 
 + +
  

 

 
x y zu v w V+ + = ∇ ⋅ = elongation (or volumetric dilatation)  

of fluid element 
1 D

Dt
∀

=
∀

 

)(
2
1

xy vu +  = distortion wrt (x,y) plane 

)(
2
1

xz wu +  = distortion wrt (x,z) plane 

)(
2
1

yz wv +  = distortion wrt (y,z) plane 

Thus, general motion consists of: 
 

1) pure translation described by V  
2) rigid-body rotation described by ω 
3) volumetric dilatation described by V∇ ⋅  
4) distortion in shape described by εij  i≠ j 
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It is now necessary to make certain postulates concerning 
the relationship between the fluid stress tensor (σij) and 
rate-of-deformation tensor (eij).  These postulates are 
based on physical reasoning and experimental 
observations and have been verified experimentally even 
for extreme conditions. For a Newtonian fluid: 
 

1) When the fluid is at rest the stress is hydrostatic and 
the pressure is the thermodynamic pressure 
 

2) Since there is no shearing action in rigid body 
rotation, it causes no shear stress. 

 
3) τij is linearly related to εij and only depends on εij. 

 
 

4) There is no preferred direction in the fluid, so that 
the fluid properties are point functions (condition of 
isotropy). 
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Using statements 1-3 
 

ijijmnijij kp εδσ +−=  
 
kijmn = 4th order tensor with 81 components such that each 
stress is linearly related to all nine components of εij. 
 
However, statement (4) requires that the fluid has no 
directional preference, i.e. σij is independent of rotation of 
coordinate system, which means kijmn is an isotropic 
tensor = even order tensor made up of products of δij. 
 

ijmn ij mn im jn in jmk λδ δ µδ δ γδ δ= + +  
 

scalars=),,( γµλ  
 

Lastly, the symmetry condition σij = σji requires: 
 

kijmn = kjimn  γ = μ = viscosity 
 

𝜎𝜎𝑖𝑖𝑖𝑖 = −𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜇𝜇𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝚤𝚤𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝛿𝛿𝑖𝑖𝚤𝚤𝛿𝛿𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝚤𝚤𝜀𝜀𝑖𝑖𝑖𝑖  
 



2ij ij ij mm ijp
V

σ δ µε λ ε δ= − + +
∇⋅
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λ and μ can be further related if one considers mean 
normal stress vs. thermodynamic p. 
 

3 (2 3 )ii p Vσ µ λ= − + + ∇ ⋅  
1 2
3 3iip V

p mean
normal stress

σ µ λ = − + + ∇ ⋅ 
 

=


 

 
2
3

p p Vµ λ − = + ∇ ⋅ 
   

 
Incompressible flow: pp =   and absolute pressure is 
indeterminant since there is no equation of state for p.  
Equations of motion determine p∇ . 
 
Compressible flow:  pp ≠  and λ = bulk viscosity must be 
determined; however, it is a very difficult measurement 
requiring large 1 1D DV

Dt Dt
ρ

ρ
∀

∇ ⋅ = − =
∀

, e.g., within shock 
waves. 
 
Stokes Hypothesis also supported kinetic theory 
monotonic gas. 

pp =

−= µλ 3
2
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2 2
3ij ij ijp Vσ µ δ µε = − + ∇ ⋅ + 

   

Generalization 
dy
duµτ =   for 3D flow. 

ji
ij

j i

uu
x x

τ µ
 ∂∂

= +  ∂ ∂ 
 ji ≠  relates shear stress to strain rate 

 
2 12 2
3 3

i i
ii

i i

u up V p V
x x

normal viscous stress

σ µ µ µ
   ∂ ∂

= − − ∇ ⋅ + = − + − ∇ ⋅ +   ∂ ∂   


 

 
Where the normal viscous stress is the difference between 
the extension rate in the xi direction and average 
expansion at a point.  Only differences from the average = 









∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

3
1  generate normal viscous stresses.  For 

incompressible fluids, average = 0 i.e. 0V∇ ⋅ = . 
 
Non-Newtonian fluids: 

ijij ετ ∝  for small strain rates 
⋅

θ , which works well for 
air, water, etc. Newtonian fluids 
 





n
ij ij ijt

non linear history effect

τ ε ε∂
∝ +

∂
−

  Non-Newtonian 

      Viscoelastic materials 
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Non-Newtonian fluids include: 
 

(1) Polymer molecules with large molecular 
weights and form long chains coiled together 
in spongy ball shapes that deform under shear. 

  
(2) Emulsions and slurries containing suspended 

particles such as blood and water/clay 
 
 
Navier Stokes Equations: 
 

ˆ
ij

DVa gk
Dt

ρ ρ ρ σ= = − + ∇ ⋅  
 

2ˆ 2
3ij ij

j

DV gk p V
Dt x

ρ ρ µε µ δ∂  = − − ∇ + − ∇ ⋅ ∂    

 
Recall μ = μ(T) μ increases with T for gases, decreases 
with T for liquids, but if it is assumed that μ = constant: 
 

2ˆ 2
3ij

j j

DV gk p V
Dt x x

ρ ρ µ ε µ∂ ∂
= − − ∇ + − ∇ ⋅

∂ ∂  

 
2

2 22 ji i
ij i

j j j i j j

uu u u V
x x x x x x

ε
 ∂∂ ∂∂ ∂

= + = = ∇ = ∇  ∂ ∂ ∂ ∂ ∂ ∂ 
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𝜌𝜌 𝐷𝐷𝐶𝐶
𝐷𝐷𝑜𝑜

2 2ˆ
3 j

g k p V V
x

ρ µ
 ∂

= − − ∇ + ∇ − ∇ ⋅ 
∂  

 

For incompressible flow 0V∇ ⋅ =  
 

2ˆ

ˆ ˆ

DV gk p V
Dt

p where p p z
piezometric pressure

ρ ρ µ
γ

= − − ∇ + ∇

−∇ = +
  

For μ = 0 
ˆDV g k p

Dt
ρ ρ= − − ∇   Euler Equation 

 
NS equations for ρ, μ constant 
 

2ˆDV p V
Dt

ρ µ= −∇ + ∇  
 

2ˆV V V p V
t

ρ µ∂ + ⋅∇ = −∇ + ∇ ∂   

21 ˆV V V p V
t

ν
ρ

∂ + ⋅∇ = − ∇ + ∇ ∂      
µν
ρ

=  kinematic viscosity/ 

                                                diffusion coefficient 
 

Non-linear 2nd order PDE, as is the case for ρ, μ not constant 
 

Combine with V∇ ⋅  for 4 equations for 4 unknowns V , p 
and can be, albeit difficult, solved subject to initial and 
boundary conditions for V , p at t = t0 and on all 
boundaries i.e. “well posed” IBVP. 
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Application of CV Momentum Equation: 
 
 ∑𝐹𝐹�

𝚤𝚤𝑛𝑛𝑜𝑜 𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑛𝑛 𝑜𝑜𝚤𝚤 𝐶𝐶𝐶𝐶

= 𝑑𝑑
𝑑𝑑𝑜𝑜 ∫ 𝑉𝑉𝜌𝜌 𝑑𝑑∀𝐶𝐶𝐶𝐶���������

𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛 𝑓𝑓𝑟𝑟𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑓𝑓ℎ𝑟𝑟𝚤𝚤𝑎𝑎𝑛𝑛
𝑜𝑜𝑓𝑓 𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝚤𝚤 𝐶𝐶𝐶𝐶

+ ∫ 𝑉𝑉𝜌𝜌𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑𝐶𝐶𝑆𝑆���������
𝚤𝚤𝑛𝑛𝑜𝑜 𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜𝑥𝑥

 

 

 SB FFF +=  ( SF  includes reaction forces) 
 
Note: 
 

1. Vector equation 
  
2. n = outward unit normal: RV n⋅  < 0 inlet, > 0 outlet 

 
3. 1D Momentum flux, fixed CV 

 
( ) ( )i ii iout in

CS

V V n dA m V m Vρ ⋅ = −∑ ∑∫    

 
Where iV , iρ are assumed uniform over fixed discrete 
inlets and outlets 
  

i i ni im V Aρ=  
 

∑𝐹𝐹 = 𝑑𝑑
𝑑𝑑𝑜𝑜 ∫ 𝑉𝑉𝜌𝜌 𝑑𝑑∀𝐶𝐶𝐶𝐶 + ∑��̇�𝑚𝑖𝑖  𝑉𝑉𝑖𝑖�𝑜𝑜𝑜𝑜𝑜𝑜���������

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑖𝑖
𝑓𝑓𝑜𝑜𝑜𝑜𝑥𝑥

− ∑��̇�𝑚𝑖𝑖  𝑉𝑉𝑖𝑖�𝑖𝑖𝚤𝚤�������
𝑖𝑖𝚤𝚤𝑜𝑜𝑛𝑛𝑜𝑜 𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑖𝑖 𝑓𝑓𝑜𝑜𝑜𝑜𝑥𝑥
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4. Momentum flux correction factors 

�𝑢𝑢𝜌𝜌𝑉𝑉.𝑛𝑛 𝑑𝑑𝑑𝑑 = 𝜌𝜌�𝑢𝑢2 𝑑𝑑𝑑𝑑
�������

𝑟𝑟𝑥𝑥𝑖𝑖𝑟𝑟𝑜𝑜 𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓 𝑓𝑓𝑖𝑖𝑜𝑜ℎ
𝚤𝚤𝑜𝑜𝚤𝚤−𝑜𝑜𝚤𝚤𝑖𝑖𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖
𝑣𝑣𝑛𝑛𝑜𝑜𝑜𝑜𝑓𝑓𝑖𝑖𝑜𝑜𝑦𝑦 𝑝𝑝𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑜𝑜𝑛𝑛

= 𝜌𝜌𝛽𝛽𝑑𝑑𝑉𝑉𝑟𝑟𝑣𝑣2 = �̇�𝑚𝛽𝛽𝑉𝑉𝑟𝑟𝑣𝑣 

Where  
2

1

avCS

u dA
A V

β
 

=  
 

∫    

  
1

av
CS

QV u dA AA
= =∫  

  �̇�𝑚 =  𝜌𝜌𝑑𝑑𝑉𝑉𝑟𝑟𝑣𝑣 
 
Laminar pipe flow: 

 
1

2 2

0 021 1r ru U U
R R

   = − ≈ −   
  

 

 
 0.53avV U=  𝛽𝛽 = 4

3
= 1.33  𝑉𝑉𝑟𝑟𝑣𝑣 small and 𝛽𝛽 > 1 

Turbulent pipe flow: 
 

 
m

R
rUu 






 −= 10

  1 1
9 5m≤ ≤  

       ( )0
2

1 (2 )avV U
m m

=
+ + :  for  7

1=m , Vav =.82U0 

 ( ) ( )
)22)(21(2

21 22

mm
mm

++
++

=β :  for  m=1/7, β = 1.02 

 
  𝑉𝑉𝑟𝑟𝑣𝑣 large ≈ 1 and 𝛽𝛽 → 1 
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5. Constant p causes no force; Therefore, 
 

 Use pgage = patm-pabsolute 
 

0p
CS CV

F pn dA p d= − = − ∇ ∀ =∫ ∫  for p = constant 

 
6.  For jets open to atmosphere: p = pa, i.e., pgage = 0. 
  
7.  Choose CV carefully with CS normal to flow (if 

possible) and indicating coordinate system and ∑ F  
on CV similar as free body diagram used in 
dynamics. 

 
8.   Many applications, usually with continuity and 

energy equations. Careful practice is needed for 
mastery. 

a. Steady and unsteady developing and fully 
developed pipe flow 

b. Emptying or filling tanks 
c. Forces on transitions 
d. Forces on fixed and moving vanes 
e. Hydraulic jump 
f. Boundary Layer and bluff body drag 
g. Rocket or jet propulsion 
h. Nozzle 
i. Propeller 
j. Water-hammer 
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First relate umax to U0 using continuity equation 
 

 
( )∫ −=

==⇒==⇒=+−

R m

avoutavinavoutinoutin

drrR
ruRU

A
QVVVQQQQQ

0
max

2
0

,,

21

     ;      0

ππ
 

 

 ( )0 max2
0

1 1 2
R m

av
rU u r dr VRR

π
π

= − =∫  

 max
2

(1 )(2 )avV u
m m

=
+ +     

m = 1/2 Vav = .53umax  umax = Vav/.53   
m = 1/7 Vav = .82umax  umax = Vav/.82 
 

≈ 
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Second, calculate F using momentum equation: 
 
 F = wall drag force = Rdxw πτ 2  (force fluid on wall) 
 -F = force wall on fluid 
 
 ( ) ∫ −=−−=∑

R

x URUdrruuFRppF
0

0

2

022

2

21 )()2( ρππρπ  
 

 
( ) 2 2 2 2

1 2 0 2
0

2

2

R

F p p R U R u r dr

AVav

π ρ π ρ π

βρ

= − + − ∫


 

 
 𝐹𝐹 = (𝑝𝑝1 − 𝑝𝑝2)𝜋𝜋𝑅𝑅2 + 𝜌𝜌𝑈𝑈02𝜋𝜋𝑅𝑅2 − 𝛽𝛽2𝜌𝜌𝑑𝑑𝑉𝑉𝑟𝑟𝑣𝑣2�������������

𝜌𝜌𝑈𝑈02𝜋𝜋𝑅𝑅2(1−𝛽𝛽2)

 

 

𝛽𝛽 = 1
𝐴𝐴 ∫ �

𝑜𝑜
𝐶𝐶𝑎𝑎𝑎𝑎
�
2
𝑑𝑑𝑑𝑑�����������

𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑜𝑜𝑜𝑜𝑥𝑥
𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑜𝑜𝑖𝑖𝑜𝑜𝚤𝚤 𝑓𝑓𝑟𝑟𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓

  

= 4/3 laminar flow 
=    1.02 turbulent flow 

22

0

2

21 3
1)( RURppFlam πρπ −−=  

 
22

0

2

21 02.)( RURppFturb πρπ −−=  
 
 

= U0
2 from  

continuity 

Complete analysis 
using BL theory or 
CFD! 
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Reconsider the problem for fully developed flow: 
 
 Continuity: 
 

 
0in out

in out

m m
m m m
− + =

= =

 

  

  or  Q = constant 

 
 Momentum: 

  

( ) ( )2
1 2

2 2

( )

( ) ( )
( )

0

x
in out

ave in ave out

ave out in

F p p R F u V n dA u V n dA

AV AV
QV

π ρ ρ

ρ β ρ β
ρ β β

= − − = ⋅ + ⋅

= − +
= −
=

∑ ∫ ∫

 

(𝑝𝑝1 − 𝑝𝑝2)𝜋𝜋𝑅𝑅2 − 𝜏𝜏𝑓𝑓2𝜋𝜋𝑅𝑅dx = 0 
 

Δ𝑝𝑝𝜋𝜋𝑅𝑅2 − 𝜏𝜏𝑓𝑓2𝜋𝜋𝑅𝑅dx = 0 
   
Since Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 = −𝑑𝑑𝑝𝑝 = −(𝑝𝑝2 − 𝑝𝑝1) 
 
 






−=

dx
dpR

w 2
τ  or for smaller CV r < R, 






−=

dx
dpr

2
τ  

 
  (valid for laminar or turbulent flow, but assume laminar) 
 

0dp
dx

<  favorable pressure gradient, i.e., Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 = −𝑑𝑑𝑝𝑝 > 0 

0dp
dx

>  adverse pressure gradient, i.e., Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 = −𝑑𝑑𝑝𝑝 < 0 
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−=−==

dx
dpr

dr
du

dy
du

2
µµτ   y = R-r (wall coordinate) 

  





−−=

dx
dpr

dr
du

µ2
 

  c
dx
dpru +






−−=

µ4

2

 

 
  0)( == Rru     






−=

dx
dpRc

µ4

2

 

 
  






−

−
=

dx
dprRru

µ4
)(

22

 (If  𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

< 0 flow moves from left to right) 

 
  






−=

dx
dpRu

µ4

2

max
  






 −=

2

2

max 1)(
R
ruru  

 
  






−=∫=

dx
dpRdrrruQ

R

µ
ππ
8

2)(
4

0

 

 

  
2

max
28ave

Q R dp uV
A dxµ

 = = − = 
   

 

  2

8 4
2 2

ave ave
w

V VR dp R
dx R R

µ µτ   = − = =   
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  2

8 32 64 64
Re

w

ave ave ave

f
V RV V D
τ µ µ

ρ ρ ρ
= = = =  

 

  Re aveV D
ν

=    
Exact solution NS for laminar fully developed pipe flow! 
 
Piezometric head 

h = z +
p
𝛾𝛾

 

For a horizontal pipe 
∆𝑝𝑝 = 𝛾𝛾∆ℎ , ∆𝜕𝜕 = 0  

 
2 𝑑𝑑𝑥𝑥 𝜏𝜏𝑤𝑤

𝑅𝑅
= −𝑑𝑑𝑝𝑝 = ∆𝑝𝑝 = 2 𝐿𝐿 𝜏𝜏𝑤𝑤

𝑅𝑅
 ,   𝑓𝑓 = 8𝜏𝜏𝑤𝑤

𝜌𝜌𝐶𝐶𝑎𝑎𝑎𝑎2
 

 
∆𝑝𝑝 = 2𝐿𝐿𝜌𝜌𝐶𝐶𝑎𝑎𝑎𝑎2 𝑓𝑓

8𝑅𝑅
= 𝐿𝐿𝜌𝜌𝐶𝐶𝑎𝑎𝑎𝑎2 𝑓𝑓

2𝐷𝐷
  

Dividing by 𝛾𝛾 
∆𝑝𝑝
𝛾𝛾

=
𝐿𝐿𝜌𝜌𝑉𝑉𝑟𝑟𝑣𝑣2 𝑓𝑓

2𝐷𝐷𝛾𝛾
= 𝑓𝑓

𝐿𝐿
𝐷𝐷
𝑉𝑉𝑟𝑟𝑣𝑣2

2𝑔𝑔
  

More generally 
 

∆ℎ = 𝑓𝑓 𝐿𝐿
𝐷𝐷
𝐶𝐶𝑎𝑎𝑎𝑎2

2𝑎𝑎
  Darcy–Weisbach equation 
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Application of relative inertial coordinates for a 
moving but non-deforming control volume (CV) 
 
The CV moves at a constant velocity CSV  with respect to 
the absolute inertial coordinates. If RV  represents the 
velocity in the relative inertial coordinates that move 
together with the CV, then: 
                                     R CSV V V= −  
Reynolds transport theorem for an arbitrary moving deforming 
CV:  

                     
SYS

R
CV CS

dB d d V n dA
dt dt

βρ βρ= ∀ + ⋅∫ ∫    

For a non-deforming CV moving at constant velocity, RTT for 
incompressible flow: 

                     
syst

R
CV CS

dB
d V ndA

dt t
βρ ρ β∂

= ∀ + ⋅
∂∫ ∫

    
 

1. Conservation of mass 
   systB M= , and 1β = : 

dAnVd
dt
d

dt
dM

CS
R

CV
∫∫ ⋅+∀== ρρ0  

dAnVd
dt
d

CS
R

CV
∫∫ ⋅=∀− ρρ  

For steady flow and ρ=constant:  
 
                                    0R

CS

V ndA⋅ =∫
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2. Conservation of momentum  
 

   ( )CSsyst RB M V V= +  and syst R CSdB dM V V Vβ = = + =   
 
 
                   

( ) ( ) ( )
[ ]CS CSR R

CSR R
CV CS

d M V V V V
F d V V V ndA

dt t
ρ ρ

+ ∂ +
= = ∀ + + ⋅

∂∑ ∫ ∫
 

 
 
For steady flow with the use of continuity: 
 
 

                               

( )CSR R
CS

CSR R R
CS CS

F V V V ndA

V V ndA V V ndA

ρ

ρ ρ

= + ⋅

= ⋅ + ⋅

∑ ∫

∫ ∫
0

        

(since CSV = constant and using continuity)
 

 

R R
CS

F V V ndAρ= ⋅∑ ∫
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Example (use relative inertial coordinates): 
 
     A jet strikes a vane which moves to the right at constant velocity 𝑉𝑉𝐶𝐶  on a 

frictionless cart.  Compute (a) the force 𝐹𝐹𝑥𝑥 required to restrain the cart and (b) 
the power 𝑃𝑃 delivered to the cart.  Also find the cart velocity for which (c) the 
force 𝐹𝐹𝑥𝑥 is a maximum and (d) the power 𝑃𝑃 is a maximum. 

 
Solution: 

 
Assume relative inertial coordinates with non-deforming CV i.e. CV moves 

at constant translational non-accelerating  
                                              𝑉𝑉𝐶𝐶𝑆𝑆 = 𝑢𝑢𝐶𝐶𝑆𝑆𝚤𝚤̂ + 𝑣𝑣𝐶𝐶𝑆𝑆𝚥𝚥̂ + 𝑤𝑤𝐶𝐶𝑆𝑆𝑘𝑘� = 𝑉𝑉𝐶𝐶𝚤𝚤̂ 
then R CSV V V= −  . Also assume steady flow 𝑉𝑉 ≠ 𝑉𝑉(𝑑𝑑) with 𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑𝑐𝑐𝑛𝑛𝑑𝑑 and 
neglect gravity effect. 
 
Continuity: 
                                                    0 = 𝜌𝜌 ∫ 𝑉𝑉𝑅𝑅 ⋅ 𝑛𝑛𝑑𝑑𝑑𝑑𝐶𝐶𝑆𝑆  

−𝜌𝜌𝑉𝑉𝑅𝑅1𝑑𝑑1 + 𝜌𝜌𝑉𝑉𝑅𝑅2𝑑𝑑2 = 0 
𝑉𝑉𝑅𝑅1𝑑𝑑1 = 𝑉𝑉𝑅𝑅2𝑑𝑑2 = �𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶��������

𝐶𝐶𝑅𝑅1=𝐶𝐶𝑅𝑅𝑥𝑥1=𝐶𝐶𝑗𝑗−𝐶𝐶𝐶𝐶

𝑑𝑑𝑖𝑖 

Bernoulli without gravity: 

                                          1p
0 2

1 2
1
2 RV pρ+ =

0 2
2

1
2 RVρ+  

                                                        1 2R RV V=  
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                                                      1 2 jA A A= =       
Momentum: 

∑𝐹𝐹 = 𝜌𝜌� 𝑉𝑉𝑅𝑅  𝑉𝑉𝑅𝑅 ⋅ 𝑛𝑛𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

 

x x Rx RCS
F F V V ndAρ= − = ⋅∑ ∫  

 
−𝐹𝐹𝑥𝑥 = 𝜌𝜌𝑉𝑉𝑅𝑅𝑥𝑥1(−𝑉𝑉𝑅𝑅1𝑑𝑑1) + 𝜌𝜌𝑉𝑉𝑅𝑅𝑥𝑥2(𝑉𝑉𝑅𝑅2𝑑𝑑2) 

 
−𝐹𝐹𝑥𝑥 = 𝜌𝜌�𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶��−�𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶�𝑑𝑑𝑖𝑖� + 𝜌𝜌�𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶� cos𝜃𝜃 �𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶�𝑑𝑑𝑖𝑖 

 
𝐹𝐹𝑥𝑥 = 𝜌𝜌�𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶�

2𝑑𝑑𝑖𝑖[1 − cos 𝜃𝜃] 
 

𝑃𝑃𝑐𝑐𝑤𝑤𝑃𝑃𝑃𝑃 = 𝑉𝑉𝐶𝐶𝐹𝐹𝑥𝑥 = 𝑉𝑉𝐶𝐶𝜌𝜌�𝑉𝑉𝑖𝑖 − 𝑉𝑉𝐶𝐶�
2𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) 

 
𝐹𝐹𝑥𝑥𝑖𝑖𝑟𝑟𝑥𝑥 = 𝜌𝜌𝑉𝑉𝑖𝑖2𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃), 𝑉𝑉𝐶𝐶 = 0 

 
𝑃𝑃𝑖𝑖𝑟𝑟𝑥𝑥 ⇒

𝑑𝑑𝑃𝑃
𝑑𝑑𝑉𝑉𝐶𝐶

= 0 

𝑃𝑃 = 𝑉𝑉𝐶𝐶𝜌𝜌�𝑉𝑉𝑖𝑖2 − 2𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖 + 𝑉𝑉𝐶𝐶2�𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) 
= 𝜌𝜌�𝑉𝑉𝑖𝑖2𝑉𝑉𝐶𝐶 − 2𝑉𝑉𝐶𝐶2𝑉𝑉𝑖𝑖 + 𝑉𝑉𝐶𝐶3�𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) 

 
𝑑𝑑𝑃𝑃
𝑑𝑑𝑉𝑉𝐶𝐶

= 𝜌𝜌�𝑉𝑉𝑖𝑖2 − 4𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖 + 3𝑉𝑉𝐶𝐶2�𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) = 0 

3𝑉𝑉𝐶𝐶2 − 4𝑉𝑉𝑖𝑖𝑉𝑉𝐶𝐶 + 𝑉𝑉𝑖𝑖2 = 0 

𝑉𝑉𝐶𝐶 =
+4𝑉𝑉𝑖𝑖 ± �16𝑉𝑉𝑖𝑖2 − 12𝑉𝑉𝑖𝑖2

6
=

4𝑉𝑉𝑖𝑖 ± 2𝑉𝑉𝑖𝑖
6

 

For 3
j

C

V
V = :  𝑃𝑃𝑖𝑖𝑟𝑟𝑥𝑥 =

𝐶𝐶𝑗𝑗
3
𝜌𝜌 �

2𝐶𝐶𝑗𝑗
3
�
2
𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) = 4

27
𝑉𝑉𝑖𝑖3𝜌𝜌𝑑𝑑𝑖𝑖(1 − cos𝜃𝜃) 
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Example (use absolute inertial and relative inertial 
coordinates) 

 
Assume gravity force is negligible and the cross section 
area of the jet does not change after striking the bucket. 
Taking moving CV at speed Vs= ΩR î enclosing jet and 
bucket: 
 
Solution 1 (relative inertial coordinates) 
 
Continuity:  , , 0in R out Rm m− + =   

  , , RR in R out R
CS

m m m V n dAρ= = = ⋅∫  

 

Bernoulli without gravity: 

ΩR 

CV 

Vout,R 

Vin,R 
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                   1p
0 2

, 2
1
2 in RV pρ+ =

0 2
,

1
2 out RVρ+  

                             , ,in R out RV V=  

Inlet             𝑉𝑉𝑖𝑖𝚤𝚤,𝑅𝑅 = �𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�𝚤𝚤̂ 
Outlet 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑅𝑅 = −�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�𝚤𝚤̂ 
 
  Since        , 1 , 2 0in R out RV A V Aρ ρ− + =  
                            1 2 jA A A= =      
 

Momentum: 
 , ,X bucket R out R R in RF F m V m V= − = −∑    

 
2

( ) ( )

2 ( )

2 ( )

bucket R j j

R j

j j

F m V R V R

m V R

A V Rρ

 = − − − Ω − − Ω 
= − Ω

= − Ω



  

  ( )R j jm A V Rρ= − Ω  
 22 ( )bucket j jP RF A R V Rρ= Ω = Ω − Ω  

𝑑𝑑𝑃𝑃
𝑑𝑑𝛺𝛺

= 2𝜌𝜌𝑑𝑑𝑖𝑖𝑅𝑅�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�2 − 2𝜌𝜌𝑑𝑑𝑖𝑖𝛺𝛺𝑅𝑅2�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�𝑅𝑅 

= 2𝜌𝜌𝑑𝑑𝑖𝑖𝑅𝑅 ��𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�2 − 2𝑅𝑅𝛺𝛺�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�� 
= 2𝜌𝜌𝑑𝑑𝑖𝑖𝑅𝑅�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅��𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅 − 2𝑅𝑅𝛺𝛺� 

𝑑𝑑𝑃𝑃
𝑑𝑑𝛺𝛺

= 0  →   𝑉𝑉𝑖𝑖 − 3𝛺𝛺𝑅𝑅 = 0  →   
𝑉𝑉𝑖𝑖
3

= 𝛺𝛺𝑅𝑅 

𝑃𝑃𝑖𝑖𝑟𝑟𝑥𝑥 = 2𝜌𝜌𝑑𝑑𝑖𝑖
𝑉𝑉𝑖𝑖
3
�𝑉𝑉𝑖𝑖 −

𝑉𝑉𝑖𝑖
3
�
2

= 2𝜌𝜌𝑑𝑑𝑖𝑖
𝑉𝑉𝑖𝑖
3

4𝑉𝑉𝑖𝑖2

9
=

8
27�
0.296

𝜌𝜌𝑑𝑑𝑖𝑖𝑉𝑉𝑖𝑖3 
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If infinite number of buckets:  R j jm A Vρ=  
  

  

3
max

2 ( )

2 ( )

10
2 2

bucket j j j

j j j

j
j j

F A V V R

P A V R V R

VdP for R P A V
d

ρ

ρ

ρ

= − Ω

= Ω − Ω

= Ω = =
Ω

 

 
Solution 2 (absolute inertial coordinates) 
 

𝑉𝑉𝑅𝑅 = 𝑉𝑉 − 𝑉𝑉𝐶𝐶𝑆𝑆   →    𝑉𝑉 = 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝐶𝐶𝑆𝑆 
 

𝑉𝑉𝑖𝑖𝚤𝚤 = 𝑉𝑉𝑖𝑖  𝚤𝚤̂ 
 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = −�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅� 𝚤𝚤̂ + 𝛺𝛺𝑅𝑅 �̂�𝚤 = −�𝑉𝑉𝑖𝑖 − 2𝛺𝛺𝑅𝑅� 𝚤𝚤̂ 
 
Continuity: from solution 1 
 

−𝑉𝑉𝑖𝑖𝚤𝚤,𝑅𝑅 + 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑅𝑅 = 0 
 
express in the absolute inertial coordinates: 𝑉𝑉𝑅𝑅 = 𝑉𝑉 − 𝑉𝑉𝐶𝐶𝑆𝑆 
 

−�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅� 𝚤𝚤̂ + �𝑉𝑉𝑖𝑖 + 2𝛺𝛺𝑅𝑅 − 𝛺𝛺𝑅𝑅� 𝚤𝚤̂ = 0 
 
 

all jet mass flow 
result in work. 
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Momentum: 
 

�𝐹𝐹𝑥𝑥 = −𝐹𝐹𝑏𝑏𝑜𝑜𝑓𝑓𝑏𝑏𝑛𝑛𝑜𝑜 = �̇�𝑚(𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑖𝑖𝚤𝚤) 
 

= 𝜌𝜌𝑑𝑑𝑖𝑖�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅��−�𝑉𝑉𝑖𝑖 − 2𝛺𝛺𝑅𝑅� − 𝑉𝑉𝑖𝑖� 
 

𝐹𝐹𝑏𝑏𝑜𝑜𝑓𝑓𝑏𝑏𝑛𝑛𝑜𝑜 = 2𝜌𝜌𝑑𝑑𝑖𝑖�𝑉𝑉𝑖𝑖 − 𝛺𝛺𝑅𝑅�2 
  
Same as Solution 1. 
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Application of CV continuity equation for steady 
incompressible flow, fixed CV, one inlet and outlet with 
A = constant 

 

in out

V ndA V ndA m Qρ ρ ρ⋅ = ⋅ = =∫ ∫   

in outQ Q=  
( ) ( )ave avein out
V A V A=  

For A = constant  ( ) ( )ave avein out
V V=  
( ) ( )

in out

F V V n dA V V n dAρ ρ= ⋅ + ⋅∑ ∫ ∫  

Pipe: 
( ) ( )x

in out

F u V n dA u V n dAρ ρ= ⋅ + ⋅∑ ∫ ∫  

( ) ( )2 2
ave avein out

AV AVρ β ρ β= − +  
( )ave out inQVρ β β= −    change in shape u 

Vane: 
�𝐹𝐹 = �̇�𝑚 �𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑖𝑖𝚤𝚤� ;    |𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜| = |𝑉𝑉𝑖𝑖𝚤𝚤| 

 
If θ=180: 
( ) ( )2x out in inF m u u m u= − = −∑    

 
For arbitrary θ: 

�𝐹𝐹𝑥𝑥 = �̇�𝑚(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 cos𝜃𝜃 − 𝑢𝑢𝑖𝑖𝚤𝚤) = �̇�𝑚𝑢𝑢𝑖𝑖𝚤𝚤(cos𝜃𝜃 − 1) 
change in direction u 
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Application of differential momentum equation: 
 

1. NS valid both laminar and turbulent flow; however, 
many orders of magnitude difference in temporal 
and spatial resolution, i.e., turbulent flow requires 
very small time and spatial scales 

  

2. Laminar flow Recrit = 
Uδ
ν

≤  about 2000 
Re > Recrit    instability 

 
3. Turbulent flow Retransition > 10 or 20 Recrit 

 
Random motion superimposed on mean coherent 
structures. 
 
Cascade: energy from large scale dissipates at 
smallest scales due to viscosity. 
Kolmogorov hypothesis for smallest scales 

 
4. No exact solutions for turbulent flow: RANS, DES, 

LES, DNS (all CFD) 
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5. 80 exact solutions for simple laminar flows are 
mostly linear 0V V⋅∇ = .  Topics of exact analytical 
solutions:  

I. Couette (wall/shear-driven) steady flows  
a. Channel flows  
b. Cylindrical flows  

II. Poiseuille (pressure-driven) steady flows  
a. Channel flows  
b. Duct flows  

III. Combined Couette and Poiseuille steady flows  
IV. Gravity and free-surface steady flows  
V. Unsteady flows  

VI. Suction and injection flows  
VII. Wind-driven (Ekman) flows  

VIII. Similarity solutions  
 

6. Also, many exact solutions for low Re linearized 
creeping motion Stokes flows and high Re nonlinear 
BL approximations. 

 
7. Can also use CFD for non-simple laminar flows 
  
8. AFD or CFD requires well posed IBVP; therefore, 

exact solutions are useful for setup of IBVP, 
physics, and verification CFD since modeling errors 
yield USM = 0 and only errors are numerical errors 
USN, i.e., assume analytical solution = truth, called 
analytical benchmark. 
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Energy Equation: 
 
B = E = energy 
β = e = dE/dm = energy per unit mass 
 
  
Integral Form (fixed CV): 

 
( )

CV CS

dE e d e V n dA Q W
dt t

rateof change rateof outflux
E in CV E across CS

ρ ρ∂
= ∀ + ⋅ = −

∂∫ ∫  

 

 

 
 
 

=++= gzvue 2

2
1^

 internal + KE + PE 

 
Q  = conduction + convection + radiation 

 

 
 



/
shaft pW W W W

pressure viscouspump turbine
ν= + +   

 

 
 ( )pdW p ndA V= ⋅   - pressure force × velocity 
 

 ( )p
CS

W p V n dA= ⋅∫

 

 

Rate of 
change E 

Rate of heat 
added CV 

Rate work 
done by CV 
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vdW dA Vτ= − ⋅

   - viscous force × velocity 
 

v
CS

W V dAτ= − ⋅∫

 

 

( )( ) /s
CV CS

Q W W e d e p V n dA
tν ρ ρ ρ∂

− − = ∀ + + ⋅
∂∫ ∫  

 

 
For our purposes, we are interested in steady flow one 
inlet and outlet.  Also �̇�𝑊𝑣𝑣 ≈ 0 in most cases; since, V = 0 
at solid surface; on inlet and outlet only τn ~ 0 since its 
perpendicular to flow; or for V ≠ 0 and τstreamline ~ 0 if 
outside BL. 

2

&

1ˆ /
2S

inlet outlet

Q W u V gz p V n dAρ ρ − = + + + ⋅ 
 ∫ 

 

 
Assume parallel flow with /p gzρ +



 and û constant over 

inlet and outlet. 
 

( ) 2

& &

ˆ / ( )
2S

inlet outlet inlet outlet

Q W u p gz V n dA V V n dAρρ ρ− = + + ⋅ + ⋅∫ ∫   

 
( ) 3ˆ / ( )

2S in in inin
in

Q W u p gz m V dAρρ− = + + − − ∫ 

  

( ) 3ˆ / ( )
2out out outout

out

u p gz m V dAρρ+ + + + ∫  

= constant i.e., 
hydrostatic pressure 
variation 
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Define kinetic energy correction factor 
 

3 2
21 ( )

2 2
ave

aveA A

VV dA V V n dA m
A V

ρα α
• 

= → ⋅ = 
 

∫ ∫  

 

Laminar flow: 













−=

2

0 1
R
rUu  

 
  Vave=0.5  β = 4/3  α=2 
 

Turbulent flow: 
m

R
rUu 






 −= 10

 

 

  
( ) ( )3 31 2
4(1 3 )(2 3 )

m m
m m

α
+ +

=
+ +  

 
m=1/7  α=1.058  as with β, α~1 for  

turbulent flow 
 

 
2 2

ˆ ˆ( / ) ( / )
2 2

s ave ave
out in

W V VQ u p gz u p gz
m m

ρ α ρ α− = + + + − + + +
 

 

 
 
Let in = 1, out = 2, V = Vave, and divide by g 
 

2 21 1 2 2
1 1 2 22 2p t L

p pV z h V z h h
g g g g

α α
ρ ρ

+ + + = + + + +  
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ps t
t p

WW W h h
gm gm gm

= − = −


 

  

 
 

Where ht extracts and hp adds energy 
 

 2 1
1 ( )L

Qh u u
g mg

= − −




 
 
 hL = thermal energy (other terms represent mechanical energy 
 

1 1 2 2m AV A Vρ ρ= =  
 
Assuming no heat transfer mechanical energy converted 
to thermal energy through viscosity and cannot be 
recovered; therefore, it is referred to as head loss > 0, 
which can be shown from 2nd law of thermodynamics. 
 
1D energy equation can be considered as modified 
Bernoulli equation for hp, ht, and hL. 
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Application of 1D Energy equation fully developed pipe 
flow without hp or ht. 
 
Recall the horizontal pipe flow using continuity and 
momentum: 𝜏𝜏𝑓𝑓 = 𝑅𝑅

2
�− 𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥
�, i.e., −𝑑𝑑𝑝𝑝

𝑑𝑑𝑥𝑥
= 2𝜏𝜏𝑤𝑤

𝑅𝑅
 

 
Similarly, for non-horizontal pipe: − 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑝𝑝 + 𝛾𝛾𝜕𝜕) = 2𝜏𝜏𝑤𝑤

𝑅𝑅
 

 
Using energy equation, 𝐿𝐿 = 𝑑𝑑𝜕𝜕 and �̂�𝑝 = 𝑝𝑝 + 𝛾𝛾𝜕𝜕: 
 
ℎ𝐿𝐿 = 𝑝𝑝1−𝑝𝑝2

𝜌𝜌𝑎𝑎
+ (𝜕𝜕1 − 𝜕𝜕2) = 𝐿𝐿

𝜌𝜌𝑎𝑎
�− 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑝𝑝 + 𝛾𝛾𝜕𝜕)�    

 
ℎ𝐿𝐿 = 𝐿𝐿

𝜌𝜌𝑎𝑎
�− 𝑑𝑑𝑝𝑝�

𝑑𝑑𝑥𝑥
� = 𝐿𝐿

𝜌𝜌𝑎𝑎
�2𝜏𝜏𝑤𝑤

𝑅𝑅
�   (If  𝑑𝑑𝑝𝑝�

𝑑𝑑𝑥𝑥
< 0 flow moves from left to right) 

 
Where 𝜏𝜏𝑓𝑓 = 1

8
𝑓𝑓𝜌𝜌𝑉𝑉𝑟𝑟𝑣𝑣𝑛𝑛2  

 

ℎ𝐿𝐿 = ℎ𝑓𝑓 = 𝑓𝑓
𝐿𝐿
𝐷𝐷
𝑉𝑉𝑟𝑟𝑣𝑣𝑛𝑛2

2𝑔𝑔
    

Where ℎ𝑓𝑓 is the friction loss 
Also recall for laminar flow that 𝜏𝜏𝑓𝑓 = 4𝜇𝜇𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅
 

2

8 32 64 / Re

Re /

w
D

ave ave

D ave

f
V RV
V D

τ µ
ρ ρ

ν

= = =

=
 

 

2

32 ave
L

LVh
D

µ
γ

=   ∝  Vave   exact solution! 

Darcy-Weisbach Equation (valid for laminar or Turbulent 
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Note: 
 
Po = Poiseuille number = fRe = 64 = pure constant, which 
is the case for all laminar flows regardless duct cross 
section but with different constant depending on cross 
section; since, τw∝Vave 
 
For turbulent flow,  Recrit ~ 2000, Retrans ~ 3000 
 
 f=f (Re, k/D)  Re = VaveD/ν, k = roughness 
 
 τw and 2

L aveh V∝   
 
Pipe with minor losses, 

 hL = hf + Σhm   where 

2

2m
Vh K

g
K loss coefficient

=

=
 

 
hm = “so called” minor losses, e.g., entrance/exit, 
expansion/contraction, bends, elbows, tees, other 
fitting, and valves. 
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(a) First suppose 2D problem: D1 and D2 denotes width in 
y instead of diameter and we take unit in z (span-wise) 
direction  
 
  

2
2 2

2

.79 989 0.02 1 425xF F mV V N
Aρ

= − = − ⇒ ∗ × × × =∑ 

   

  2 5.22 / , 81.6 /V m s m kg s= =  
 
Continuity equation between points 1 and 2 
 

  
2

1 1 2 2 1 2
1

2.09 /DV A V A V V m s
D

= ⇒ = =  

Bernoulli neglect g, p2=pa 
2 2

1 1 2 2
1 1
2 2

p V p Vρ ρ+ = +    hL=0, z=constant 

( )2 2
1 2 2 1

1
2

p p V Vρ= + −    2 2
1

.79 998101,000 (5.22 2.09 )
2

p ×
= + −  

1 110,020p Pa=  
 

Note: 2 2 2
2 2 3 3 4 42 2 2

p V p V p Vρ ρ ρ
+ = + = +  

  2 3 4 2 3 4ap p p p V V V= = = → = =  



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2022  52 
 

  2 2 3 3 4 40
CS

V A A V A V A Vρ= ⋅ → = +∑  
  432 AAA +=  
 
  3 3 3 4 4 40 ( )y

CS
F VV A V V A V V Aρ ρ ρ= = ⋅ = + −∑ ∑  

   2 2
3 3 4 4V A V Aρ ρ= −    43 AA =  

 
(b) For the round jet implied in the problem statement 

 
2 2

2 2

2

.79 989 .02 425
4xF F mV V N

A

π

ρ
= − = − ⇒ ∗ =∑ 





 

 2 41.4 / , 10.3 /V m s m kg s
•

= =  
Continuity equation between points 1 and 2 

2

2
1 1 2 2 1 2

1

DV A V A V V
D

 
= ⇒ =  

   

 
2

1
241.4
5

V  =  
    1 6.63 /V m s=  

 
Bernoulli neglect g, p2=pa 
 

2 2
1 1 2 2

1 1
2 2

p V p Vρ ρ+ = +    hL=0, z=constant 
 

( )2 2
1 2 2 1

1
2

p p V Vρ= + −    2 2
1

.79 998101,000 (41.4 6.63 )
2

p ×
= + −  

Pap 000,7601 =  
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(a) 
2

2
1 22

Vz z
g

= +    0,11,0,1 212 ==== zzhLα  

 2 1 22 ( )V g z z= −  11*81.9*2=  sm /7.14=  
 

 2 3
2 2 2 (.01) *14.7*3600 4.16 /

4
Q A V m hπ

= = =  

 5
6

14.7 0.01Re 1.5 10
10

VD
ν −

×
= = = ×  

 

(b) 
2

2
1 2 22 L

Vz z h
g

α= + +   
6 2

2 2

322, , 10 /L
VLh m s

D g
µα ν

ρ
−= = =  

 2
2 23.2 107.8 0V V+ − =  

      V2 = 8.9 m/s 
      Q= 2.516 m3/h 
 

Re=89,000=8.9*104 >>2000 
 
 
 

Torricelli’s 
expression 
for speed of 
efflux from 
reservoir 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2022  54 
 

(c) 

2 2
2 2

1 2 22 2
V VLz z f

g D g
α= + +

  α2=1 

 ( )
2

2
1 2 1 /

2
Vz z fL D

g
− = +  

 [ ]1
2

2 1 22 ( ) /(1 / )V g z z fL D= − +  

 [ ]1
2

2 216 /(1 *1000)V f= +   (Re), Re VDf f
ν

= =  
  guess f = 0.015 (smooth pipe Moody diagram) 

  

4
2

4
2

4
2

3.7 / Re 3.7 10 , .024
2.94 / Re 2.9 10 , .025
2.88 / Re 2.9 10

V m s x f
V m s x f
V m s x

= → = =

= → = =

= → =
 

 

(d) Re 2000VD
ν

= =    
2000D

V
ν

=  

 
2

2 2
1 2 2 2 2

2
2

32( )
20002

V LVz z
g g

V

να
ν

− = +  

 
2 3

2 2
1 2 2 2

32( )
2 2000
V LVz z

g g
να

ν
− = +  

 
3 2

2 2
2

32 11 0
2000

LV V
g gν

+ − =   2 1.1 /V m s=  
 
       mD 00182.0=  
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Low U and small D to actually have laminar flow 
Differential Form of Energy Equation: 

( ) ( )
CV

dE e e V d Q W
dt t

ρ ρ
 

∂ = + ∇ ⋅ ∀ = − ∂  
∫  



 

 
𝜌𝜌
𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

+ 𝑃𝑃
𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

+ 𝑃𝑃∇. �𝜌𝜌𝑉𝑉������������
=0

+ 𝜌𝜌𝑉𝑉.∇𝑃𝑃 = 𝜌𝜌
𝐷𝐷𝑃𝑃
𝐷𝐷𝑑𝑑

= 𝜌𝜌 �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

+ 𝑉𝑉.∇𝑃𝑃�
 

2 21 1ˆ ˆ
2 2

e u V gz u V g r= + + = + − ⋅  
ˆ

( ) /De Du DVQ W q w V g V
Dt Dt Dt

ρ ρ  = − ∀ = − = + − ⋅ 
 

 

   
 

( )q q k T= −∇ ⋅ = ∇ ⋅ ∇   Fourier’s Law 

�̇�𝑤 = −∇ ⋅ �𝑉𝑉 ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖������
𝜌𝜌�
𝐷𝐷𝐶𝐶
𝐷𝐷𝑜𝑜−𝑎𝑎�

𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝚤𝚤𝑜𝑜𝑜𝑜𝑖𝑖
𝑛𝑛𝑒𝑒𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝚤𝚤

− 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

 

First term for �̇�𝑤
 −𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝑉𝑉 ⋅ 𝜌𝜌 �

𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑔𝑔� = −𝜌𝜌 �𝑉𝑉 ⋅
𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑉𝑉 ⋅ 𝑔𝑔� 

Where  

𝑉𝑉 ⋅
𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

= 𝑉𝑉 ⋅ �
𝜕𝜕𝑉𝑉
𝜕𝜕𝑑𝑑

+ 𝑉𝑉 ⋅ ∇𝑉𝑉� =
𝜕𝜕𝑉𝑉2

𝜕𝜕𝑑𝑑
+ 𝑉𝑉 ⋅ ∇𝑉𝑉2 = 𝑉𝑉

𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

 

Therefore 
−𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝜌𝜌 �𝑉𝑉

𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑉𝑉 ⋅ 𝑔𝑔� 
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And 

�̇�𝑤 = −𝜌𝜌 �𝑉𝑉
𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑉𝑉 ⋅ 𝑔𝑔� − 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

 

Substitute equation for �̇�𝑞 and �̇�𝑤 
�̇�𝑞 − �̇�𝑤 = −∇ ⋅ (𝑘𝑘∇T) + 𝜌𝜌 �𝑉𝑉

𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑉𝑉 ⋅ 𝑔𝑔� + 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= 𝜌𝜌 �
𝐷𝐷𝑢𝑢�
𝐷𝐷𝑑𝑑

+ 𝑉𝑉
𝐷𝐷𝑉𝑉
𝐷𝐷𝑑𝑑

− 𝑉𝑉 ⋅ 𝑔𝑔�  
 

𝜌𝜌
𝐷𝐷𝑢𝑢�
𝐷𝐷𝑑𝑑

= −∇ ⋅ (𝑘𝑘∇T)+𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

 

Second term on right hand side 
 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= (𝜏𝜏𝑖𝑖𝑖𝑖 − 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖)
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

− 𝑝𝑝∇ ⋅ V  

From continuity  
𝐷𝐷𝜌𝜌
𝐷𝐷𝑑𝑑

+ 𝜌𝜌∇.𝑉𝑉 = 0 → ∇.𝑉𝑉 = −
1
𝜌𝜌
𝐷𝐷𝜌𝜌
𝐷𝐷𝑑𝑑

 

−𝑝𝑝∇.𝑉𝑉 =
𝑝𝑝
𝜌𝜌
𝐷𝐷𝜌𝜌
𝐷𝐷𝑑𝑑

= −𝜌𝜌
𝐷𝐷
𝐷𝐷𝑑𝑑

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝑝𝑝
𝐷𝐷𝑑𝑑

 

Therefore  
𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

− 𝜌𝜌
𝐷𝐷
𝐷𝐷𝑑𝑑

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝑝𝑝
𝐷𝐷𝑑𝑑

 

And 
𝜌𝜌
𝐷𝐷𝑢𝑢�
𝐷𝐷𝑑𝑑

= −∇ ⋅ (𝑘𝑘∇T) + 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

− 𝜌𝜌
𝐷𝐷
𝐷𝐷𝑑𝑑

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝑝𝑝
𝐷𝐷𝑑𝑑

 

Rearranging equation and substituting dissipation 
function Φ = 𝜏𝜏𝑖𝑖𝑖𝑖

𝜕𝜕𝑜𝑜𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

≥ 0 
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𝜌𝜌
𝐷𝐷
𝐷𝐷𝑑𝑑

� û +
𝑝𝑝
𝜌𝜌
� = −∇ ⋅ (𝑘𝑘∇T) +

𝐷𝐷𝑝𝑝
𝐷𝐷𝑑𝑑

+ Φ 

 Summary GDE for compressible non-constant property 
fluid flow 

Continuity: ( ) 0V
t
ρ ρ∂

+ ∇ ⋅ =
∂  

 
Momentum: 𝜌𝜌 𝐷𝐷𝐶𝐶

𝐷𝐷𝑜𝑜
= 𝜌𝜌𝑔𝑔 − ∇𝑝𝑝 + ∇. 𝜏𝜏𝑖𝑖𝑖𝑖 

 
   𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝜖𝜖𝑖𝑖𝑖𝑖 + 𝜆𝜆∇.𝑉𝑉𝛿𝛿𝑖𝑖𝑖𝑖 
 

𝑔𝑔 = −𝑔𝑔𝑘𝑘� 
 
Energy Φ+∇⋅∇+= )( Tk

Dt
Dp

Dt
Dhρ  

 
Primary variables: p, V, T 
 
Auxiliary relations:  ρ = ρ (p,T)  μ = μ (p,T) 
(equations of state)   h = h (p,T)  k = k (p,T) 
 
Restrictive Assumptions: 

1) Continuum 
2) Newtonian fluids 
3) Thermodynamic equilibrium 
4) 𝑔𝑔 = −𝑔𝑔𝑘𝑘� 
5) heat conduction follows Fourier’s law 
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6) no internal heat sources 
For incompressible constant property fluid flow 

 
ˆ vdu c dT=   cv, μ, k, ρ ~ constant 

 
Φ+∇= Tk

Dt
DTcv

2ρ  

 
For static fluid or V small 
 

Tk
t
Tcp

2∇=
∂
∂ρ  heat conduction equation (also valid for solids) 

 
Summary GDE for incompressible constant property fluid 
flow (cv ~ cp) 
 

0V∇ ⋅ =   
 

2ˆDV gk p V
Dt

ρ ρ µ= − − ∇ + ∇   “elliptic” 
 

Φ+∇= Tk
Dt
DTcp

2ρ   where 
j

i
ij x

u
∂
∂

=Φ τ  

 

 
Continuity and momentum uncoupled from energy; 
therefore, solve separately and use solution post facto to 
get T. 
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For compressible flow, ρ solved from continuity equation, 
T from energy equation, and p = (ρ, T) from equation of 
state (e.g., ideal gas law).  For incompressible flow, ρ = 
constant and T uncoupled from continuity and momentum 
equations, the latter of which contains p∇  such that 
reference p is arbitrary and specified post facto (i.e., for 
incompressible flow, there is no connection between p 
and ρ).  The connection is between p∇  and 0V∇ ⋅ = , i.e., a 
solution for p requires 0V∇ ⋅ = . 
 

NS  
21 ˆDV p V

Dt
ν

ρ
= − ∇ + ∇   p̂ p zγ= +  

)(NS⋅∇   (See derivation details on p.87) 
 

2 21 ji

j i

uuD V p
Dt x x

ν
ρ

∂∂ − ∇ ∇ ⋅ = − ∇ +  ∂ ∂   

 
For 0V∇ ⋅ = : 
 

 
i

j

j

i

x
u

x
up

∂
∂

∂
∂

−=∇ ρ2  

 
Poisson equation determines pressure up to additive 
constant. 
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Approximate Models: 
1) Stokes Flow 
  

 For low Re 1, ~ 0UL V V
ν

= << ⋅∇  
 
 0V∇ ⋅ =  

21V p V
t

ν
ρ

∂
= − ∇ + ∇

∂  
 

0)( 2 =∇⇒⋅∇ pNS  
2)  Boundary Layer Equations 
 
For high Re >> 1 and attached boundary layers or fully 
developed free shear flows (wakes, jets, mixing layers), 

v<<U, 
yx ∂

∂
<<

∂
∂ , 0=yp , and for free shear flow px = 0.   

 
 0=+ yx vu  
 
 ˆt x y x yyu uu vu p uν+ + = − +  non-linear, “parabolic” 
 

 
0

ˆ
y

x t x

p
p U UU

=

− = +  

 
Many exact solutions; similarity methods 
 

Linear, “elliptic” 
Most exact solutions NS; and for steady 
flow superposition, elemental solutions and 
separation of variables 
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3)  Inviscid Flow 
 

( ) 0

, ," "

( ) , , , , ( , )

V
t
DV g p Euler Equation nonlinear hyperbolic
Dt
Dh Dp k T p V T unknowns and h k f p T
Dt Dt

ρ ρ

ρ ρ

ρ ρ

∂
+ ∇ ⋅ =

∂

= − ∇

= + ∇ ⋅ ∇ =

 
4)  Inviscid, Incompressible, Irrotational 

 
∇ × 𝑉𝑉 = 0 → 𝑉𝑉 = ∇𝜑𝜑 

∇.𝑉𝑉 = 0 → ∇2𝜑𝜑 = 0   𝑙𝑙𝑙𝑙𝑛𝑛𝑃𝑃𝑐𝑐𝑃𝑃 elliptic 
 
 ∫ Euler Equation   Bernoulli Equation: 

 
2

2
p V gz constρ ρ+ + =  

 
Many elegant solutions:  Laplace equation using 
superposition elementary solutions, separation of 
variables, complex variables for 2D, and Boundary 
Element methods. 
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Couette Shear Flows:  1-D shear flow between surfaces of 
like geometry (parallel plates or rotating cylinders). 
 
Steady Flow Between Parallel Plates: Combined  Couette 
and Poiseuille Flow. 

 
0

0
0

x y z

x

V
u v w
u

∇ ⋅ =
+ + =

=
 

2ˆDV p V
Dt

ρ µ= −∇ + ∇   0=+++
∂
∂

zyx wuvuuu
t
u  

ˆ0 x yyp uµ= − +  

Φ+∇= Tk
Dt
DTcp

2ρ   0x y z
T uT vT wT
t

∂
+ + + =

∂  
20 yyy ukT µ+=  

 
 
 
 
 
(note inertia terms vanish identically and ρ is absent from 
equations) 

2 2 2

2 2 2

2

2 2 2

( ) ( ) ( )

( )

x y z

x y y z z x

x y z

y

u v w

v u w v u w

u v w

u

µ

λ

µ

Φ = + +
+ + + + + + 

+ + +

=
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Non-dimensional equations, but drop * 
 

Uuu /* =   
01

0*

TT
TTT

−
−

=  * /y y h=  

0=xu         (1) 
2

ˆyy x
hu p B const
Uµ

= = − =     (2) 

[ ]2

01

2

Pr

)( yyy u
TTk

UT

Ec

−
−

=


µ      (3) 

B.C. y = 1 u = 1 T = 1 
  y = -1 u = 0 T = 0 
(1) is consistent with 1-D flow assumption.  Simple 

form of (2) and (3) allow for solution to be 
obtained by double integration. 

 
21 1(1 ) (1 )

2 2
u y B y⇒ = + + −

 

 y=y/h 

 
 
 

Solution depends on 
2

ˆ x
hB p
Uµ

= −  ( ˆ / /xp p x z xγ= ∂ ∂ + ∂ ∂ ) 

 B < 0    ˆ xp  is opposite to U 
 B < -0.5  backflow occurs near lower wall 
 |B| >> 1   flow approaches parabolic profile 

Linear flow 
due to U 

Parabolic flow 
due to px Note:  linear 

superposition since 
0V V⋅∇ =  
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Pressure gradient effect

2
2 3 4Pr Pr Pr1 (1 ) (1 ) ( ) (1 )

2 8 6 12
c c cE E B E BT y y y y y= + + − − − + −



 
 
 
 

 
 

Note: usually PrEc is quite small 
 

Substance  PrEc  dissipation 
Air   0.001 very small 

Water  0.02      
#

Pr
Brinkman

EBr c

=
=

 

Crude oil  20  large      
 
Prandtl number Pr = µCp/k = momentum diffusivity/thermal diffusivity 
 
Eckert number Ec = U2/Cp(T1-T0) = advection transport/heat dissipation 
potential 
 
Br# = heat produced viscous dissipation/heat transported molecular 
conduction 
 

Pure 
conduction 

T rises due to 
viscous dissipation 

Dominant term 
for B ∞ 
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Shear Stress 
1)  ˆ 0xp =  i.e., pure Couette Flow 

𝐵𝐵 = −
ℎ2

𝜇𝜇𝑈𝑈
�̂�𝑝𝑥𝑥 = 0 

Using solution shown previously 

𝑢𝑢∗ =
1
2

(1 + 𝜕𝜕∗) +
1
2
𝐵𝐵�1 − 𝜕𝜕∗2� =

1
2

(1 + 𝜕𝜕∗) 
Calculating wall shear stress 

𝑢𝑢
𝑈𝑈

=
1
2 �

1 +
𝜕𝜕
ℎ�

 

𝜕𝜕 �𝑢𝑢𝑈𝑈�

𝜕𝜕 �𝜕𝜕ℎ�
=

1
2

 

𝜏𝜏𝑓𝑓 = 𝜇𝜇
𝑑𝑑𝑢𝑢
𝑑𝑑𝜕𝜕
�
𝑦𝑦=−1

  =
𝜇𝜇𝑈𝑈
2ℎ

 

𝐶𝐶𝑓𝑓 =
𝜏𝜏𝑓𝑓

1
2𝜌𝜌𝑈𝑈

2
=

𝜇𝜇𝑈𝑈
2ℎ

1
2𝜌𝜌𝑈𝑈

2
=

𝜇𝜇
𝜌𝜌𝑈𝑈ℎ

 

Since 𝑅𝑅𝑃𝑃ℎ = 𝜌𝜌𝑈𝑈ℎ/𝜇𝜇 

𝐶𝐶𝑓𝑓 =
1
𝑅𝑅𝑃𝑃ℎ

 

 
P0 = CfRe = 1:  Better for non-accelerating flows 
since ρ is not in equations and P0 = pure constant 
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2)  U = 0 i.e.  pure Poiseuille Flow 
 

* *21 (1 )
2

u B y= −  *
* *
y

u By= −   y
h

BUuy 2
−=   uVave =  

 

Where  max2ˆ x
uhB p

U Uµ
−

= =  

Dimensional form ( )2 2

max

1 ˆ 1
2 x

h yu p h
u

µ
 

= − − 
 



 max3
4 hudyuQ

h

h
=∫=

−

 

 
aveVu

h
Qu === max3

2
2  

Remember that for laminar pipe flow, 𝑉𝑉𝑟𝑟𝑣𝑣𝑛𝑛 = 1
2
𝑢𝑢𝑖𝑖𝑟𝑟𝑥𝑥 

 

h
u

h
u

h
BU

lower
h

BU

upper
h

BUu

w

hyyw

32 max µµµτ

µ

µµτ

===

+=

−==
±=

    

 
6Re

Re
66

2
1 0

2

===== hf

h

w
f CPor

huU
C

ρ
µ

ρ

τ  

Remember that for laminar pipe flow, 𝐶𝐶𝑓𝑓 = 16
𝑅𝑅𝑛𝑛𝐷𝐷

 and 𝜏𝜏𝑓𝑓 = 𝜇𝜇8𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎
𝐷𝐷

, 
i.e. Except for numerical constants same as for circular 
pipe. 

2

.

.

u lam

u turbρ

∝

∝
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Rate of heat transfer at the walls: 
 

2

1 0( )
2 4w

y h

T k Uq k T T
y h h

µ
±

∂
= = − ±

∂
  + = upper, - = lower 

 
Heat transfer coefficient: 
 

( )1 0

wq
T Tς = −  
 

212 Br
k
hNu ±==

ς  

 
For Br > 2, both upper & lower walls must be cooled to 

maintain T1 and T0 
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Conservation of Angular Momentum: moment form of 
momentum equation (not new conservation law!) 
 

0
sys

B H r V dm= = × =∫  angular momentum of system about inertial 

coordinate system 0 (extensive property) 
 

𝛽𝛽 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃 × 𝑉𝑉   (intensive property) 
 

𝑑𝑑𝐻𝐻0
𝑑𝑑𝑑𝑑�

Rate of
change of
angular

momentum

=
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝑃𝑃 × 𝑉𝑉�𝜌𝜌 𝑑𝑑∀
𝐶𝐶𝐶𝐶

+ ��𝑃𝑃 × 𝑉𝑉�𝜌𝜌 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

 

 
           ∑ == 0M   vector sum all external moments applied 
on CV due to both FB and FS, including reaction forces 
 
For uniform flow across discrete inlet/outlet: 
 
� �𝑃𝑃 × 𝑉𝑉�𝜌𝜌 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑
𝐶𝐶𝑆𝑆

= ∑�𝑃𝑃 × 𝑉𝑉�𝑜𝑜𝑜𝑜𝑜𝑜�̇�𝑚𝑜𝑜𝑜𝑜𝑜𝑜 − ∑�𝑃𝑃 × 𝑉𝑉�𝑖𝑖𝚤𝚤�̇�𝑚𝑖𝑖𝚤𝚤
   

( ) R
CVCS

MrdgrdAM

momentforcebodymomentforcesurface

+∫ ×∀+∫ ×⋅=


ρτ0  

 
=RM   moment of reaction forces 
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Take inertial frame 0 as fixed to earth such that CS 
moving at Vs= -Rω 𝚤𝚤̂ 

𝑉𝑉 = 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑆𝑆 
𝑉𝑉2 = 𝑉𝑉0𝚤𝚤̂ − 𝑅𝑅𝑅𝑅𝚤𝚤̂ = (𝑉𝑉0 − 𝑅𝑅𝑅𝑅)𝚤𝚤̂     𝑃𝑃2 = 𝑅𝑅 𝚥𝚥̂ 

𝑉𝑉1 = 𝑉𝑉0𝑘𝑘�       𝑃𝑃1 = 0 𝚥𝚥̂ 
 

0
pipe

QV A=  
 
 

�𝑑𝑑𝑧𝑧 = 0 = −𝑇𝑇0𝑘𝑘� = �𝑃𝑃2 × 𝑉𝑉2��̇�𝑚𝑜𝑜𝑜𝑜𝑜𝑜 − �𝑃𝑃1 × 𝑉𝑉1��̇�𝑚𝑖𝑖𝚤𝚤 
 

out inm m Qρ= =    0
ˆ ˆ( )( )oT k R V R k Qω ρ− = − −  

 
0 0

2

V T
R QR

ω
ρ

= −   interestingly, even for T0=0, ωmax=V0/R 

(limited by ratio such that large R small ω; large V0 large ω) 

Retarding torque due to 
bearing friction 
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Differential Equation of Conservation of Angular 
Momentum: 
 
Apply CV form for fixed CV: 

 
zω = angular acceleration 

I  = moment of inertia 

2 2 2 2z
dx dx dy dyI a dy b dy c dx d dxω = + − −  

( )z xy yxI dxdyω τ τ= −  

Since 3 3 2 2

12 12
I dxdy dydx dxdy dx dyρ ρ   = + = +     

2 2

12 z xy yxdx dyρ ω τ τ + = −    

0, 0
lim

dx dy→ → yxxy ττ = , similarly, zxxz ττ = , zyyz ττ =  
i.e.  jiij ττ =  stress tensor is symmetric (stresses 

themselves cause no rotation) 


