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Chapters 3 & 4: Integral Relations for a Control Volume
and Differential Relations for Fluid Flow

Laws of mechanics are written for a system, i.c., a fixed
amount of matter.

Suuw..bw.'q‘g_
s e
M

‘m-.‘w-r

1. Conservation of mass: EIM =0

dt
d(MV)

2. Conservation of momentum: F=Ma = ™

3. Conservation of energy: db Q-W

dt
AE=heat added — work done

Also -
dHg
Conservation of angular momentum: —d-T— =Mg

. dS 3Q .
Second Law of Thermodynamics: % = T +6

&, entropy production due to system irreversibilities
6<0
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In fluid mechanics we are usually interested in a region of
space, i.€, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived
in thermodynamics for
v S “8 CV forms of continuity
and 1% and 2™ laws, but

Ly )
== not in general form or
referred to as RTT).

Note GDE’s are of form:

— (M MV,E)=RHS
dt —
system extensive properties By depend on mass

dB
> which needs to be related to changes in

1.€., involve

CV. Recall, definition of corresponding system intensive
properties

B=(1,V,e) independent of mass
where

B= [Bdm = [BpdV

Le., B= SIEB
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Revynolds Transport Theorem (RTT)

Need relationship between di(B ) and changes in

Sys
B, = [Bdm=[fpdy.

CN. ok
-e*- dt Mwmj o\eﬁmvwivxﬁ GV

Syster

st tdt Ve = VU~ N

N o= flasd velodd ty

[IVIR'S sc.ltrk«w. \—[ all i
-[,—\wve £ Vs = s de-{-twtwj ome
oo
N v. Y oordinate

\)__: = relutive Vo[ooi'\'b $\15+M
_@‘.‘:LS._ Lown (Bey »AB}EME (B + BB,
dt “pi 0 b
- WAL <RV ] y . A%{'*’bé ~ AB{'
b%-—wo & €rot 8°"£ + ;Q;'ao v
UE R
&
: . dB..,
1 = time rate of change of B in CV = 7 y j Lpdv
1 [ cr

2 = net outflux of B from CV across CS = I ppY g -n dA
CS

As with Q and i1, AB flux though A per unit time is:
dQ =Vz.ndA
dm = pVr.ndA
dAB = BpVr.n dA
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Therefore:
P @ [ ppay+ [ oV -n da
dt dt s, O

General form RTT for moving deforming control volume
Special Cases:

1) Non-deforming CV
dBgys O
C_[Va(ﬂp)dv + JSﬂPKR -n dA

2) Fixed CV or material CV, 1.e., material derivative
DBsys/Dt

dBSYS a
Boss [ L (pp)av + [ o -n ds
dt C'fVat(ﬂp) +CIS'B'O—E
Greens Theorem: _[ Vb dv= _[1_?'2 dA
cr Cs

B _ j[ (Bp)+ V- ﬂpV)}

Since CV fixed and arbitrary limgives governing
differential equation.
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3) Uniform flow across discrete CS (steady or unsteady)

I’BpKR.EdA:;'BpKR'EdA (- inlet, + outlet)
Cs

or for fixed CV, Vg =V, Vs =0
0
4) Steady Flow: P 0

Continuity Equation:

B =M = mass of system

B=1

am =0 by definition, system = fixed amount of mass

dt
Integral Form:

dM

d
2 0=L(pdav+[pV, nd4
— dthVp stp_R n

d
—ECijdvinKR-adA

Rate of decrease of mass in CV = net rate of mass outflow across CS
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Note simplifications for 1) non-deforming and fixed CV
(V#V (1), Vs = 0), 2) uniform flow across discrete CS

(I=Z), 3) steady flow (% =0), and 4) incompressible fluid

d
(p =constant = ~ .[ av = j Vi-ndd . «congervation of

cS
volume™)

1) Non-deforming and fixed CV

jg—’;dwjpz-gdA:o
cV CS

2) and uniform flow over discrete inlet/outlet

ja—pd‘v’JerK-QA:O
cv at

3) and steady flow
D pV-nd=0

—Z(p@j +2.(pV4),, =0
pO == (m), =2 (),
4) and incompressible flow

_ZQin +ZQOut =0

1f non-uniform flow over discrete inlet/outlet

O = [Vondd=(V,4),,  V,=—[V-ndd
l CS : ACS

or
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Differential Form:
M 0= “ap+v( V)]dv
dc ot V\PL
cV

B=1

t

_dv _dp

M=pV= dM=pdV+Vdp=0=
Jo,

1Dp__ 1DV

o DtV Dt

p Dt —

HK_J
rate of change p 4, 0v Ow_ 1Dp_1DV
ox 0y 0z pDt YV Dt

rate of change ¥
per unit ¥

per unit p

Called the continuity equation since the implication is that
p and V are continuous functions of x.

Incompressible Fluid: p = constant
V- V=0
ou oOv ow
+—+—=
ox 0Oy Oz

0
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P3.15 Water, assumed incompressible, flows steadily
through the round pipe in Fig. P3.15. The entrance
velocity is constant, #=U, , and the exit velocity
approximates turbulent flow, u = t,,, (1-7/ R)" . Determine
the ratio Uo/umax for this flow.

| r=R\
=0
. _

-2 —

x=0
P3.15
Steady flow, non-deforming, fixed CV, one inlet uniform
flow and one outlet non-uniform flow
—Myy, + Moy = 0; p =constant; — Qi + Qpyur =0
) R 1/7
0=-U,7R +JO Uy (1-1/R)" 27rdr

max

0=-U,zR*+u_,_ D7 g
60
U, 49
u 60

max
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank
as shown. At time t=0, the water depth in the tank is

30cm. Estimate the time required to fill the remainder of
the tank.

W&~
hO-03gy |
Vi=2.5m/s d=12cm B V2= 1.9 s
P3.12

Unsteady flow, deforming CV, one inlet one outlet
uniform flow

d
0=—[ pd¥-pQ, +p0,
cv
d d? d*
0=— [ pdV - pV Z—+ pV.
dfchp =PV~

7 D?
4

V(t)=h(t)
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2 2
prD @erﬂd (Vz_Vl)

4 dt 4
dh (dY
dh 0.7

dt = = =
0.0153 0.0153

Steady flow, fixed CV with one inlet and two exits with

uniform flow

v I
Note: Q:£K'ﬁdA:E "
O:_Q1+Q2+Q3
\% d?
Q3:E:Q1_Q2:T(V1_Vz)
2
. o
dt=Q :ndz
3 T(V1_Vz)
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P4.17 A reasonable approximation for the two-
dimensional incompressible laminar boundary layer on

2y _
the flat surface in Fig.P4.17 is =Y s 52 | for y<d,

where 8 = Cx"?

(a) Assuming a no-slip condition at the wall, find an
expression for the velocity component v(x,y) for y <6 .

(b) Find the maximum value of v at the stationx =1m, for
the particular case of flow, when U =3m/s and & =1.1cm.

, C =const

Layer thickness &(x)

. I -
¥ L U = constant
o = U
2 u(x,y) u(x, y)
Ve
0: =X
P4.17
ou
u 8\/ 0
o 8y
v __Ou_ ~U(-2y57 +2y%6" )85
oy o ox

V= 2U5xjoy(y5_2 —y25_3)dy

2 3
(a) V=20 (252 3y53j o= 5"=%x_1/2:%
(b) Since v, =0 at y=0
205(1_1)_US _3x0.011
2x ( j 6x

Vinax :V(y:é‘): —OOOSS”’I/S

2 3
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Momentum Equation:
B =MV =momentum, B =V

Integral Form:

D L [ Vpav+ [Vpr, nda=Y F
dt dt Cv Cs ) T
1 2
> F = vector sum of all forces acting on CV
= Itk
Fp = Body forces, which act on entire CV of fluid due to

external force field such as gravity or electrostatic or
magnetic forces. Force per unit volume.

Surface forces, which act on entire CS due to normal
(pressure and viscous stress) and tangential (viscous
stresses) stresses. Force per unit area.

e
|

When CS cuts through solids Fs may also include Fr =
reaction forces, e.g., reaction force required to hold nozzle
or bend when CS cuts through bolts holding nozzle/bend
in place.

1 = rate of change of momentum in CV

2 = rate of outflux of momentum across CS

3 = vector sum of all body forces acting on entire CV
and surface forces acting on entire CS.

Many interesting applications of CV form of momentum
equation: vanes, nozzles, bends, rockets, forces on bodies,
water hammer, etc.
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Differential Form:

j[%(zp)Jrv

0 8 oV
Where = (V P 4,
ﬁt(_p) Ot p ot

sz)}dv =2 F

and VoV = pVV = pui V + pvjV + pwkV is a tensor

V. (Vpl)=V-(pVV) = 3<pu V) +%(pVK) +%<pr)

per elemental fluid volume

pa=f +f

I~ ™~
|

= body force per unit volume
= surface force per unit volume
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Body forces are due to external fields such as gravity or

magnetic fields. Here we only consider a gravitational

field; that is,
ZEbudy = dEgmv = pg dXdde

and & =gk for lg T
le ibody :_pgk

Surface Forces are due to the stresses that act on the sides

of the control surfaces
o,=—po,+T,

Normal pressure / Viscous stress
3& - p + TXX TX_}’ TXZ
/ ' __-:;6 . = Tyx —P + TW Tyz
! ﬁ." sz sz o p + z-zz
)
Symmetric O3 = O j;
Z 2" order tensor

Symmetry condition from requirement that for elemental
fluid volume, stresses themselves cause no rotation.

As shown before, for p alone it i1s not the stresses
themselves that cause a net force but their gradients.

f=f,+f,
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Recall f,=-Vp based on 1% order TS. /. is more

complex since 7, is a 2" order tensor, but similarly as for

p, the force is due to stress gradients and are derived
based on 1% order TS.

AN AN AN
o,=0,i+0, jto_k Resultant
A A A stress
0,=0,i+0, jto.k on each face
VAN VAN N

o,=0, i+o, j+o_k

y oo,
/ [ayx +—= dyj dxdz
qy

>

»
»

o, dydz re— T (a +aidx)dydz

X ox

/ f and similarly, for z face
o, dxdz oo
(G + p dzjdydz o..
/4

and j and k directions

d 0 d
I = [_ (O-xx) + . (ny) +— (sz)] dxdydz i

+ (axy) + (ayy) + — az (azy)] dxdydz j

+ a (0yz) + @ (O'yz) + 3, (O'ZZ)] dxdydz k
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0 0 0
F =|—(c)+— (o )+—(0o.) |dxdyd.
S b(_x) 5 (@) az(_g}xyz

Divided by the volume:
f=Lo)+ (o) + (o)
= ox — oy X 0z —
0 o

O,

=V-.o, =—
A G 3

= — O .
y axj J

Since Gij= Giji

Putting together the above results,

DV ~
a=p—=—pok+V - o,
pra th P& ”

body force surface force = p + viscous terms
due to (due to stress gradients)
gravity

Inertial force

Note:
A = delta

V = nabla (Hebrew “nebel” means lyre or ancient harp
used by David to entertain King Saul in praise of God)
Vf = vector

v.r= scalar
V-0, = vector (decreases order tensor by one)
vf = tensor

vxy — vector
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Next, we need to relate the stresses i to the fluid motion,
i.e., the velocity field. To this end, we examine the

relative motion between two neighboring fluid particles.
B

dr

A (wv,w)=V

@B: V+dV=V+VV.-dr 1% order Taylor

Series

_ux U, uz__dx_
AV =VV-dr=\v, v, v |dy|=e;dx,
]‘ w, w, w, | dz

relative motion deformation rate

tensor = ei/.
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ou, 1| ou, Ou, 1( ou, Ou,
e =—b=— + + = ——L| =g +o,
Toox,  2(ox;, o 2\ ox; Ox Y

AN J AN J

symmetvric part anit—symnvaetric part

&..=€ .. .= ..
y i y J!
Ui
1 1
0 —w,-v) —(u.,—w
2( y X) 2( z x)
|1 1 _ ivid bod :
@, = E(Vx_uy) 0 E(vz—wy) =rigid body rotation
: , of fluid element
¢
Sovw) (n-v) 0
2 27
%,_J
i 5 ]
where &= rotation about x axis

n = rotation about y axis
¢= rotation about z axis

Note that the components of m;; are related to the vorticity
vector define by:

QszK:(wy—vz)er(uz—wx)j+(vx—uy)lgza)x1°+a)y}'+cozl€
\ ) %/_—/

H_/
2& 2n 2¢
= 2 x angular velocity of fluid element
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&; =rate of strain tensor

_ | | _
u —(u, +v.) —(u.+w
. 2( L) 2( Stw)
|1 1
= E(Veruy) v, 5(vz+wy)
l(w +u.) l(w +v.) w
_2 x z 2 y z z |

u +v, +w, =V-V = clongation (or volumetric dilatation)

: _1Dv

of fluid element = v Dr
%(uy +v ) = distortion wrt (x,y) plane
%(uz +w ) = distortion wrt (x,z) plane

%(vz +w,) = distortion wrt (y,z) plane

Thus, general motion consists of:

1) pure translation described by V

2) rigid-body rotation described by @

3) volumetric dilatation described by V-V

4) distortion in shape described by &;; 1#]
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It is now necessary to make certain postulates concerning
the relationship between the fluid stress tensor (oij) and
rate-of-deformation tensor (ej). These postulates are
based on physical reasoning and experimental
observations and have been verified experimentally even
for extreme conditions. For a Newtonian fluid:

1) When the fluid 1s at rest the stress 1s hydrostatic and
the pressure 1s the thermodynamic pressure

2) Since there 1s no shearing action in rigid body
rotation, 1t causes no shear stress.

3) 7j 1s linearly related to €;; and only depends on g;;.
4) There is no preferred direction in the fluid, so that

the fluid properties are point functions (condition of
1sotropy).
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Using statements 1-3

G,‘j = _pé:j + kz’jmngij

kimn = 4™ order tensor with 81 components such that each
stress 1s linearly related to all nine components of &;;.

However, statement (4) requires that the fluid has no
directional preference, i.e. oj is independent of rotation of
coordinate system, which means kjn, 1S an isotropic

tensor = even order tensor made up of products of 0;.

Ky = 28,8, + 115, 8, + 75,5,

jimn O in© jm
(A, i, y) = scalars
Lastly, the symmetry condition cj;= Gji requires:
Kijmn = Kjimn =2 Y = U = viscosity
= —p0;j + UOimOin&ij + UOnOimEij + A0;;jOmn&ij

—po, +2ue, +/15 o
VK
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A and p can be further related if one considers mean
normal stress vs. thermodynamic p.

o, =3p+QRu+34)V-V

p= _laii +(g/‘+ijv V
3 3

p=mean
normal stress

p—?{%mﬂjvz

Incompressible flow: p = p and absolute pressure is

indeterminant since there 1s no equation of state for p.
Equations of motion determineVp.

Compressible flow: p # p and A = bulk viscosity must be

determined; however, it 1s a very difficult measurement

. 1 Dp 1DV
requiring large V-V =-—-2=—-"""¢ o within shock

waves.

Stokes Hypothesis also supported kinetic theory
monotonic gas.

)
p=p
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2
o =—(p+§,uV-Kj5ij +2 e,

Generalization 7 = ,u% for 3D flow.
Y

7,= ﬂ(a_”+%J [# ] relates shear stress to strain rate

OX,

J

i

0,-,-=—p—guV-K+2u % =—p+ 2u —lV-K+6u"
3 ox 3

normal viscous stress

Where the normal viscous stress is the difference between
the extension rate in the x; direction and average
expansion at a point. Only differences from the average =
I({ou ov ow

—| —+—+
3\ox oy oz
incompressible fluids, average =0 1.e. V-V =0,

j generate normal viscous stresses. For

Non-Newtonian fluids:
7, oc ¢, for small strain rates 8, which works well for
air, water, etc. Newtonian fluids

n

0
T.. oC & + — & :
i i ot Non-Newtonian

—_—
_ . L —
non—linear history effect

Viscoelastic materials
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Non-Newtonian fluids include:

(1) Polymer molecules with large molecular
weights and form long chains coiled together
in spongy ball shapes that deform under shear.

(2) Emulsions and slurries containing suspended
particles such as blood and water/clay

Navier Stokes Equations:

DV

4= p_==—pok+V .o
PE=P Ty =P8 y
DV ~ 0 2
Por - P8 pax.[ﬂ”ﬂ_”}

J

Recall p = w(T) pn increases with T for gases, decreases
with T for liquids, but if it is assumed that p = constant:

Dy . o 2 8
—==—pgk-Vp+2u—e¢,~~pu—V-V
Py = TPER VPG ey g VL

X

. Ou. 20
0 0 J 00w O O gy
ox. 7 (3xj Oxj Ox.
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2 0

DV
=—pgk-Vp+u|VV-=2—V.V
p—=="PEk=Vp A{ 3ar }

For incompressible flow V-7 =0

p—= —pghk-Vp  +uVV
Dt U S
—Vp where p=p+yz
plezometric pressure
Foru=0
DV ~ .
p——=—pgk-Vp Euler Equation

Dt

NS equations for p, pu constant

oV .
{8—? +V- VK} = —;Vp + WV V=" Linematic viscosity/
diffusion coefficient

Non-linear 2™ order PDE, as is the case for p, i not constant

Combine with V-7 for 4 equations for 4 unknowns 7, p
and can be, albeit difficult, solved subject to initial and
boundary conditions for ¥, p at t = to and on all
boundaries 1.e. “well posed” IBVP.
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Application of CV Momentum Equation:

>F = —fCVVpdV +fCSVpZRndA

——
net force on CV tlme rate of change net momentum
of momentum in CV outflux

F =F,+F, (F,includes reaction forces)
Note:
1. Vector equation
2. n = outward unit normal: V,-» <0 inlet, > 0 outlet

3. 1D Momentum flux, fixed CV

[vov-nda=3 (my,), ~>(mv,),

(N

Where V., pare assumed uniform over fixed discrete
inlets and outlets

mi :pzr/nzAz
Y F = _fcv Vpdv + Y (my E)Out Y. (mh; Z,;)i@

outlet momentum  inlet momentum flux
flux
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4. Momentum flux correction factors

|upv.nda= p[wran = ppavs = mpv,

axial flow with
non—uniform
velocity profile

1 u ’
Where 7 :ZNZJ dA

VavzljudA:%
A s
m = pAVy,

Laminar pipe flow:
1
r ro\?
u :UO [1_F]zUO(1_EJ

Vo =33U, B =2=133 V, smalland § > 1
Turbulent pipe flow:

uzyo(l_Lj %Smsls

R
V =U, 2 1
T my 2 em) for m= )5, Va=.82Up
po WemfQem) o 17 B=1.02
2(1+2m)(2 + 2m)

Vo large=1land f — 1
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5. Constant p causes no force; Therefore,
Use pgage = patm-Pabsolute

£, =—JPMA=—I Vpdv=0 for p = constant
CS cv

6. For jets open to atmosphere: p = py, 1.€., Paage = 0.

7. Choose CV carefully with CS normal to flow (if
possible) and indicating coordinate system and Y F
on CV similar as free body diagram used in
dynamics.

8. Many applications, usually with continuity and
energy equations. Careful practice 1s needed for
mastery.

a. Steady and unsteady developing and fully
developed pipe flow

Emptying or filling tanks

Forces on transitions

Forces on fixed and moving vanes

Hydraulic jump

Boundary Layer and bluff body drag

Rocket or jet propulsion

Nozzle

Propeller

Water-hammer

T E@ Mo a0 o
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P3.53 Consider incompressible fiow in the entrance of a cir-
cular tube, as in Fig. P3.53. The inlet flow is uniform,
uy = Uy, The flow at section 2 is developed pipe flow.

Fmdmewalldmgﬁ:rrceFasafuncumnf(p;,ph
Uy, R) if the flow at section 2 is f

(@) Laminar; 1, = u.m( ) * N v, (‘l_rftxvl"

r 17
(b} Turbulent: u, = .um(i - E)

—--P383 _ ~  Friction drag on fluid

First relate umax to Ug using continuity equation

Nl

-0,+0,=0= 0,=0,=0 =V, =V, . V.=
U, R = Tum (1 —%3)”2727’ dr

R

e ! ( 4) 2rrdr =V,
Vi =t
(1+m)(2+m)

m-= ]./2 Vav 53umax 9 Umax = Vav/ 53
m = 1/7 VaV = .82umax 9 Umax — Vav/ 82

U, =
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Second, calculate F using momentum equation:

F = wall drag force = 7,,27Rdx (force fluid on wall)
-F = force wall on fluid

SF=(p—p )R —F = Tuz(pu227z7f dr)—U (pnR’U,)

R
F=(p —p,)nR* + pU;nR’* —Ipu§2ﬂr dr

N

BpAV2

ayv

= U¢? from
<« continuity

F = (p1 — p2)mR? + pUsnR? — B,pAVS,
pUSTRZ(1-p5)

P30 () aa

A Vav

momentul flux
correction factor

4/3 laminar flow
= 1.02 turbulent flow

F =(p—p)R - % pU "R’

N—

Complete analysis

using BL theory or
F,, =(p —p)mR —.02pU, R’ CFD!
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Reconsider the problem for fully developed flow:
Continuity:

_min + mout = O

=i =i or Q = constant

Momentum:
D F =(p—p)aR —F=plu(V-n)dd+p [ u(V -n)dd

out

==p(BAV 1)+ P(BAV 1)
:pQI/ave(ﬁout _ﬁin)
=0

(p1 — p2)TR? — 1,2nRdx = 0

ApmtR? — 1,,2mRdx = 0

Since Ap = p; —p, = —dp = —(p2 — p1)

T = E(— d—pj or for smaller CVr<R, 7= f(— d—pj
T2\ dx 2\ dx

(valid for laminar or turbulent flow, but assume laminar)

ap < 0 favorable pressure gradient, i.e., Ap = p; —p, = —dp >0

dx

dp : :

o >0 adverse pressure gradient, i.e., Ap = p; —p, = —dp <0
X
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du du r( dp
T=U—="U—=—| —— = R-r (wall coordinate)
“ dy “ dr 2 ( dxj Y

du _ _L(_ d_P)
dr 2u\  dx

u(r=R)=0 - c=R2(—d—pj
4u\  dx

R -r( d
u(r) = . (If Z—z < 0 flow moves from left to right)

41 dx
u = R (_d_pj u(r)zumax(l— i j
" 4u\ dx R’
Q=Tu(r)27z7f dr = R (— dpj
0 8u\ dx
2

I/ave ZQZR_(_d_pj :uma/

A 8u\ dx
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e 8,  32u  64u 64
Ve PRV, pV,D Re

ave ave

D
Re — I/ave

1%
Exact solution NS for laminar fully developed pipe flow!

Piezometric head
h=z+ P
14

For a horizontal pipe
Ap =yAh, Az =0

2dx1'w__ . __2LTy 8ty
R - dp=lp=—r, =20
2 2
Ap — 2LpVayf — LoVayf
8R 2D
Dividing by y
Ap  LoViaf  LVg
y 2Dy ‘D2 g
More generally
L V3, : .
Ah = f ——— Darcy—Weisbach equation

BZg
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Application of relative inertial coordinates for a
moving but non-deforming control volume (CV)

The CV moves at a constant velocity V., with respect to
the absolute inertial coordinates. If ¥, represents the
velocity in the relative inertial coordinates that move
together with the CV, then:

Ve =V =V
Reynolds transport theorem for an arbitrary moving deforming
CV:

—S = — | BpdV+ | BV, n dA
% dtchﬂp stﬂp_R n

For a non-deforming CV moving at constant velocity, RTT for
incompressible flow:
styst — J‘

dt
1. Conservation of mass
Bsyst :Ma and IBZl:
au _

dt

op

—dV+p | BV, -ndA

Lo el

O:dijpdV+IpKR-QdA
tCV cS

d
~—|pdv=[pV,nda
cr cS
For steady flow and p=constant:

jQ-QdA:o
CS
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2. Conservation of momentum

B, =M(Vy+Vs) and B=dB,, [dM =V, +V =V

syst

dIM (V, +V s )]
dt

(Ve +Vcs)
ot

=Y F=p|

crv

dV+pI(E+KCS)E-QdA
CS

For steady flow with the use of continuity:

LE=p ] (Ve+Ves)Vy-ndd
(N

0
ZPIVRVR'ECZA"‘,OKCS 7 hdA
cs cs

(since 7= constant and using continuity)

2E =p[ Vel ndd
CS
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Example (use relative inertial coordinates):

A jet strikes a vane which moves to the right at constant velocity V. on a
frictionless cart. Compute (a) the force F, required to restrain the cart and (b)
the power P delivered to the cart. Also find the cart velocity for which (c) the
force F, 1s a maximum and (d) the power P is a maximum.

V., A /A

p» j: _]
— V.= constant

© €

Solution:

Assume relative inertial coordinates with non-deforming CV i.e. CV moves
at constant translational non-accelerating

VCS = qui + stjA + Wcsk = Vci

then ¥V =V —V s . Also assume steady flow V # V(t) with p = constant and
neglect gravity effect.

Continuity:
0=p Ve ndA
—pVr141 + pVra4; =0
Vr1d1 = VRa Ay = (V] - VC) A;

L ——
VR1=VR,1=Vj-V¢
Bernoulli without gravity:

o 1 o 1
//1 +5PVR21:,/2 +§IOVR22

VRI = VRZ
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Momentum:

2E=p Ve Vr - ndA
cS

D F,==F,=p|_VVs-ndd
—F = pVra(=Vr141) + pVr,2(VroA2)
—Fe = p(V; = Ve)[=(V; = Vo)A + p(V; = Ve) cos 6 (V; — Ve )4
Fe = p(V; — V) A;[1 — cos 6]

Power = V.F, = ch(l/}- — VC)ZAj(l — cos 6)

Fepoyw = PVPA(1—cosB), V=0
dP
Pmax = d_VC =0

p = [/Cp(Vj2 —2VcV; + V(;Z)Aj(l — cosh)
= p(V?Ve = 2VEV; + V) A;(1 — cos 6)

dP

—=p(V? -4 A;(1— =
v p(I/} V-V, +3V) (1—cosf) =0

3VE —4ViVe + VP =0

2 2
+4Vji\/16vj 12V, 4y

+ 2V,
6 6
v

2V

Vc:?: Pmax—?p(3 pA;(1— cos8)

) A(l—cosé’)—i7
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Example (use absolute inertial and relative inertial

coordinates)

P3.51  Aliquid jet of velocity V; and area A, strikes a single 180°
bucket on a turbine wheel rotating at angular velocity {1,

P3.51

as in Fig. P3.51. Derive an expression for the power P

delivered to this wheel at this instant as a function of

the system parameters. At what angular velocity js the

maximum power delivered? How would your analysis

differ if there were many, many buckets on the wheel,

50 that the jet was continually striking at least one
. _bucket?

Assume gravity force 1s negligible and the cross section
area of the jet does not change after striking the bucket.
Taking moving CV at speed V&= QR 1 enclosing jet and
bucket:

Solution 1 (relative inertial coordinates)

Continuity: ~,z + 1, =0

mR = min,R = mout,R

=p|Vy-ndd
cS

Bernoulli without gravity:
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//10 +%pV;j,R :,Vz/o +%pl/oit,R
Vin,R = Vout,R
Ving = (Vi — QR)1

Inlet
Outlet Vourr = —(V; — QR)1
Since =PV A+ PV g4, =0
A =4,=4,
Momentum:
I/in,R

ZFX =—Fyher = mRVouz,R - mR
Fruier =15 | =V, =QR) = (V, - QR) |
=211, (V, ~ QR)
=2pA,(V, —QR)’
titg = pA;(V; —QR)
P =QRF,,,,, =2p4,QR(V, - QR)’
dP 2
= 2pA;R(V; — QR)" — 2pA;QR2(V; — OR)R

ds
= 2pAR|(V; - 2R)” — 2RQ(V; — 0R)|
= 2pA;R(V; — QR)|V; — QR — 2RQ]

P 0 5 v —30R Vi — R
- = - : — = - — =
dn ] 3
Vi, VW vt s
Pm“xzz’oAf?(f_?) =2pdig g = 27 P4V
0.296
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If infinite number of buckets: 7z = pAV,

all jet mass flow

F ]
result in work.

bucket

=2pAV,(V,~QR)

P=2pAVQRY,-QR)

Solution 2 (absolute inertial coordinates)
Ve=V—Ves = V=Vp+Ves
Vi = Vj i
Vour =—(V; —QR) i+ QR i = —(V; — 20R) i
Continuity: from solution 1

_Vin,R + Vout,R =0

express in the absolute inertial coordinates: Vg =V — V-

—(V;—0QR) 1+ (V; +20R - OR) 1 =0

S
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Momentum:
> e = ~Fpucker = 1Vous = Vin)
= pA;(V; — 2R)[-(V; — 20R) - V}]
Fyucket = 2pA;(V; — OR)”

Same as Solution 1.
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Application of CV continuity equation for steady
incompressible flow, fixed CV, one inlet and outlet with
A = constant

p_[V ndA = pr ndA =m = pQ

out

Qin_Qout
VoA, = (VareA),,,

ave ave

For A = constant (V). =(Ve).
> F= ij (V-n)dAd+p [V (V-n)dd

out

Pipe:
SF, = pj (V-n)dA+p [ u(V-n)dd
=—p(ﬁAvae) +p(pav),)
=pOV,..(B...— ) change in shape u
Vane:

ZE = m(Vout - Vin); |Vout| = |Vin|

If 0=180:
ZF;C — m(uout _uin) — m(_zum)

For arbitrary 0:
2 E, = m(uyy: cos 0 — u;,) = mu;,(cos8 — 1)

change in direction u
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Application of differential momentum equation:

1. NS valid both laminar and turbulent flow; however,
many orders of magnitude difference in temporal
and spatial resolution, i.e., turbulent flow requires
very small time and spatial scales

Uod
2. Laminar flow Regsit = - < about 2000

Re > Reuit  instability
3. Turbu16nt ﬂOW Retransjtjon Z 10 or 20 Recrjt

Random motion superimposed on mean coherent
structures.

Cascade: energy from large scale dissipates at
smallest scales due to viscosity.
Kolmogorov hypothesis for smallest scales

4. No exact solutions for turbulent flow: RANS, DES,
LES, DNS (all CFD)
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5. 80 exact solutions for simple laminar flows are
mostly linear 7 -VV=0. Topics of exact analytical

solutions:
I. Couette (wall/shear-driven) steady flows
a. Channel flows
b. Cylindrical flows
II. Poiseuille (pressure-driven) steady flows
a. Channel flows
b. Duct flows
III. Combined Couette and Poiseuille steady flows
IV. Gravity and free-surface steady flows
V. Unsteady flows
VI. Suction and injection flows
VII. Wind-driven (Ekman) flows
VIII. Similarity solutions

6. Also, many exact solutions for low Re linearized
creeping motion Stokes flows and high Re nonlinear
BL approximations.

7. Can also use CFD for non-simple laminar flows

8. AFD or CFD requires well posed IBVP; therefore,
exact solutions are useful for setup of IBVP,
physics, and verification CFD since modeling errors
yield Usm = 0 and only errors are numerical errors
Usn, 1.€., assume analytical solution = truth, called
analytical benchmark.
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Energy Equation:

B = E = energy
B = e =dE/dm = energy per unit mass

Integral Form (fixed CV):

dE 0 L
—= [ —(ep)d¥ + [epV-ndd =Q-W
dt crv at CS o
rateof Vchange rateof Voutﬂux
Ein CV E across CS R
ate work
Rate of Rate of heat done by CV
change E added CV
"]

e=u+ Evz + gz = internal + KE + PE

Q = conduction + convection + radiation

W= thaﬁ + W + VVV

pump/turbine Pressure  viscous

d Wp = ( p EdA) -V - pressure force x velocity

W, = [ p(V-n)da

p
cS
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dW, =—tdA-V

- viscous force x velocity

W:—jg-sz

v
(A

O-1, -, = [ Z(ep)d¥+ [ (e+ p/ p) pV nd

cv

For our purposes, we are interested in steady flow one
inlet and outlet. Also W, = 0 in most cases; since, V=0
at solid surface; on inlet and outlet only 1, ~ 0 since its

perpendicular to flow; or for V' #0 and Tstreamtine ~ 0 1f
outside BL.

L 1
O-W, = I (u+§V2+gz+p/pij-gdA

inlet &outlet

Assume parallel flow with p/p,+gz and u constant over
%K_J

\

= constant i.e.,
hydrostatic pressure
variation

O-Wy=(i+plp+g:) [ pUondd+Z [ V@ mdd

inlet &outlet inlet &outlet

inlet and outlet.

Q—WS:(ﬁ+p/p+gZ ( m, )—BIV3dAm

+(d+p/p+gz),, (n,,) IV dA,,,

out
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Define kinetic energy correction factor

3 )
a:ij—z-¢4-» Bpﬂ@gmwzazﬁm
AV 2 2

Laminar flow: u= U{l — (%) j
Vave=0.5 B =4/3 a=2
Turbulent flow: u = UO(I — %)

- (1+m)3 (2+m)3
41+ 3m)(2+3m)

m=1/7 a=1.058 as with B, o~1 for
turbulent flow

) W 2 X 2
2 f=OH1ﬂp+gZ+aff%m—W+p/p+g%H%€fM
m

m

Letin=1, out =2, V= Vav., and divide by g

P | G o _ Py [ % e
+—V +z+h, = +—=V, +z,+h +h

pg 2g pg 2g
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i, _ W W,
. . . t p
gm gm gm

Where h; extracts and h, adds energy

| :
h, =—(u, _7/‘1)_.2
mg

hr = thermal energy (other terms represent mechanical energy
m=pAV, = pAV,

Assuming no heat transfer mechanical energy converted
to thermal energy through viscosity and cannot be
recovered; therefore, it 1s referred to as head loss > 0,
which can be shown from 2" law of thermodynamics.

1D energy equation can be considered as modified
Bernoulli equation for hp, h¢, and hy.
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Application of 1D Energy equation fully developed pipe
flow without h,, or h..

Recall the horizontal pipe flow using continuity and

R d . d 2T
momentum: T,, = E( dZ) c., dz TW

Similarly, for non-horizontal pipe: — % (p+yz) = ZTTW

Using energy equation, L = dx and p = p + yz:

by =P 4 (2 - 7)) = |- (0 +72)|

L dp L (2Ty dp :
h; = 7 (— d—Z) Y (%) (If ﬁ < 0 flow moves from left to right)

Where 1, = % fpV2,

2

h; = hf = Darcy-Weisbach Equation (valid for laminar or Turbulent
Where hy is the friction loss
. 4UV,

Also recall for laminar flow that 7, = ~—2¢

8 32
f=—2 =P _64/Re,

PVae PRV
Re, =V D/v

32uLV,,

h, =——= lon!
L D’ o€ Ve exact solution!
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Note:

Po = Poiseuille number = fRe = 64 = pure constant, which
is the case for all laminar flows regardless duct cross
section but with different constant depending on cross
section; SINCE, TwoC Vaye

FOI‘ turbUICnt ﬂOW, Recrit -~ 2000, Retrans ~ 3000
f=f (Re, k/D) Re = VaveD/v, k = roughness
Tw and hL oc I/aie

Pipe with minor losses,

2
-k L

hy = he+ 2hy, where 28
K = loss coefficient

hm = “so called” minor losses, e.g., entrance/exit,
expansion/contraction, bends, elbows, tees, other
fitting, and valves.
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P3.149 A jet of alcohol strikes the vertical plate in Fig, P3.149.
A force F =425 N iy required to hold the plate sta-
tionary. Assuming there are no losses in the nozzle, esti-
mate {a) the mass flow rate of alcohol and (b)Y the
absolute pressure al section |,

L
D_‘ =5cm

P3.149

(a) First suppose 2D problem: D; and D> denotes width in
y instead of diameter and we take unit in z (span-wise)
direction

Y F. =—F=-mV, = 79%989x0.02x1xV;’ =425 N
P4

V,=522m/s, m=81.6kg/s

Continuity equation between points 1 and 2

D
VA =V,A, =V, =V,—==2.09m/s
Dl
Bernoulli neglect g, p>=pa
1 1
2 +§PV12 =D, +§PV22 h1.=0, z=constant

P =p +%p(Vf -17) > p= 101,000+w(5.222 —2.09%)

p, =110,020 Pa

p p P
Note: )2 +5V22 = Ds +5V32 =D, +5Vf

D,=py=p,=p,—> V,=V,=V,
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O:ZPK'A_) AV, =4V, + AV,
Cs

A=A+4,

YF, =0=) pVV-A=pVV, 4+ p(-V,)V,A,
CS

= VA —pVid, > 4=4

(b) For the round jet implied in the problem statement
N F, =—F =—mV, = 79%989 02>V =425 N
%/_/ 4

p

4,
V,=41.4m/s, m=10.3 kg/s
Continuity equation between points 1 and 2

1

2
D
V1A1:V2A23V1:V2[32j

2 2
4 =41-4(§j V.=6.63m/s

Bernoulli neglect g, p>=pa

1 1
D +5PV12 =P, +5,0sz h.=0, z=constant

197908 41,4~ 6.63°)

p=ptop(Vi-VE) > 1 =101,000+
p, = 760,000 Pa
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Example 7.9

Water is being discharged from a large tank open to the atmosphere through a vertical
tube, as shown in Fig. 7.5. The tube is 10 m long, | c¢m in diameter, and its inlet is 1 m
below the level of the water in the tank. Find the velocity and the volumetric flowrate in the

pipe, assuming: 4
. 10m ||
a.  Frictionless flow. .
b.  Laminar viscous flow. Figure 7.5 Flow from a water [al;":
through a vertical tube.
VZ
(a) 2 __+Zz a =1,h =0,z =11,z =0
Tomicelli’s |7, =\/2g<z1 —z) =~2%981*11 =147 m/s
eXpression g
for speed of
efflux from -
i 2
reserverr 0O, = AV, ==(01)>*14.7%3600 5 4.16 m’ / h
4

Reo VD _147X001_ o
1% 10
32VL
(b) = V2+Z Th a2:2,hL:2—’u,v:10‘6m2/s
2¢ D pg

VE+3.2V,-107.8=0

Vo=8.9m/s
O=2.516 m’/h

Re=89,000=8.9*10" >>2000
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v, LV}
z, =, —=—+z,+ f——= -
(c) 2g D2g 02=1
V2
z,—z, 2g(1+fL/D)
V, :[2g(z1 _Zz)/(l'*'](L/D)]%
= [216/(1+ £ ¥1000)] - FRe.Re=D
14

guess f=0.015 (smooth pipe Moody diagram)
V,=3Tm/s —Re=3.7x10*, f=.024
V,=294m/s —Re=2.9x10°, f=.025

V,=2.88m/s — Re=2.9x10"

2000v
B VD B D=
(d) Re = 7 =2000 V
(z,—z,)=« sz + 32vLV,
LT e 200072
g %
V2 32vLV;
(21_22) = £ >
2g 2000 Vg
32LV; V2

D =0.00182m
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Low U and small D to actually have laminar flow
Differential Form of Energy Equation:

dE %, ! .
— = || =(ep)+V-(epV) dV=0-W
— j B (ep) <ep_? 0

B I i

I
6e+ ap+ V.(pV) + pV.Ve = De _ (ae+vv)
Pac™ %ot ?'p— PLYE=Ppe =P\ot T+ ¢

=0

A 1 2 o) 1 2
e=u+—V"4+oz=u+—V=——-9o-r
5 & 7 gr

De S Du DV
= (Q-W)IV=¢—1= +V =gV
y Q-w) q p(Dt D g_j
q=—V-q=V-(kVT) Fourier’s Law
, ou;
Ww=-V-(V-05)=-V- (V-0) —f’ija—;
DV J
o(pe-2)
momentum
equation

First term for w
DV DV
—K-(V-Gij)=—z-p(——g)=—p(V-——K-g)

Dt = — Dt =
Where
V DK—V (6K+V VV)—6V2+V VVZ—VDV
— Dt — \ot — —) ot — Dt
Therefore
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And

Substitute equation for ¢ and w

. . DV aui
q—w= —V-(kVT)+p(V/?t*(f'g)+aija—xj
D1l DV
=0 (5e + L=V 0)

DU Y. (kVT)+oy, 2
p Dt B O-ij aX]
Second term on right hand side
6‘ui _ 5 aui _ aui V.V
Oij ox; = (45 — o) ox; = Tij ox; p
From continuity
bp +pV.V =0->V.V 10p
—_— . —_ - . —_— e ——
D PVE == T oDt
pDp D (p) Dp
—pV.V === —p— (=) + =
Y T TAVI AT
Therefore
ou; ou; D (p) N Dp
o, = Tj; p —+—=
Yox; Y ox; Dt\p/ Dt
And
Dii du; D p\ Dp
DO v vy 41y 2 p 2 (2) 4 22
P Dt ( )+T”axj thp+Dt

Rearranging equation and substituting dissipation

. ou;
function @ = 7y; a_xl >0
J
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D % Dp
—(i4+=)=-V-(kVT]) + —+ @

P Dt( p) ( ) Dt

Summary GDE for compressible non-constant property

fluid flow

0

0
Continuity: 5 V-(pV)=0

Momentum: p % =pg—Vp+ V.7

Tij = Z‘LlEl'j + AVK(SU

o~

g =—gk

Dh Dp
Ener — =L 4+V- (kVD)+D
gy P 5 = Dy (kVT)

Primary variables: p, V, T

(p,T)
(p,T)

Auxiliary relations:  p=p (p,T)
h (p,T)

~ =
|
~ e

(equations of state) h

Restrictive Assumptions:
1) Continuum
2) Newtonian fluids
3) Thermodynamic equilibrium

4 g=- gk
5) heat conduction follows Fourier’s law
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6) no internal heat sources
For incompressible constant property fluid flow

diu=c,dT cv W, k, p ~ constant

DT
—=kVT+®
pCV Dt

For static fluid or J small

oT
pc —=kV'T heat conduction equation (also valid for solids)

"ot

Summary GDE for incompressible constant property fluid
flow (cy ~ ¢p)

V-V =0
DV -
pp =P8k =Np+ V'V “elliptic”
o's ﬂ:kV2T+CI> where @zr..%
" Dt " ox

Continuity and momentum uncoupled from energy;
therefore, solve separately and use solution post facto to
get T.
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For compressible flow, p solved from continuity equation,
T from energy equation, and p = (p, T) from equation of
state (e.g., 1deal gas law). For incompressible flow, p =
constant and T uncoupled from continuity and momentum
equations, the latter of which contains Vp such that
reference p is arbitrary and specified post facto (i.e., for
incompressible flow, there is no connection between p
and p). The connection is between Vp and V-V =0, i.e., a
solution for p requires V-V =0,

DV 1 A 2
e VW 5 —

V- (NS) (See derivation details on p.87)

Poisson equation determines pressure up to additive
constant.
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Approximate Models:
1) Stokes Flow

L
For low Rer—<< I, V-V ~0
1%

. Linear, “elliptic”
V- K =0 Most exact solutions NS; and for steady
ov 5 - » flow superposition, elemental solutions and
8—7 =——Vp+ W7V separation of variables
yo,

V- (NS)=V'p=0
2) Boundary Layer Equations

For high Re >> 1 and attached boundary layers or fully
developed free shear flows (wakes, jets, mixing layers),

v<<U., o << Q, p. =0, and for free shear flow px = 0.
ox oy

u,+uu, +vu, =—p +tvu,  non-linear, “parabolic”

p,=0
-p,=U,+UU,

Many exact solutions; similarity methods
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3) Inviscid Flow

op
—+V-(pV)=0
= TV (ol)
DV : : :
Jo, E =pg—Vp Euler Equation,nonlinear," hyperbolic"
Dh D
pE :F]Z+V~(kVT) p.V,T unknowns and p,h,k= f(p,T)

4) Inviscid, Incompressible, Irrotational

VXV =0->V=Vop
V.V=0- V% =0 linear elliptic

[ Euler Equation = Bernoulli Equation:
p +§V2 + pgz = const

Many elegant solutions: Laplace equation using
superposition elementary solutions, separation of
variables, complex variables for 2D, and Boundary
Element methods.
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Couette Shear Flows: 1-D shear flow between surfaces of

like geometry (parallel plates or rotating cylinders).

Steady Flow Between Parallel Plates: Combined Couette

and Ppiseuille Flow.

A
nEY T, » U
S':M-'-k-é'i'f-- l--ll-_. ‘.‘___bx . M'“{“.J.‘.‘r‘-ﬂ*\t%i'm'
hJ-M‘.nthhr*‘%‘l& /,z’,‘,/’k Zz 7 7 7 P
S&u\m o \-D nze , TaT,
=0
u +v,+w =0
u =0
DV A
PEZ—VP+/N2K —u+uux+vuy+wuz:O
ot
O=-—p +uu,
oT
DT 2 —+4ul +vI +wIl =0
pcpE:kV T+ ot X Y z
0=kT + pu’

D = ,u[Zui +2v§ +2w’

+(v, +l/ly)2 +(w, +v.)" +(u, +wx)2]
+A(u, +v, +w,)

_ 2
_luuy

(note inertia terms vanish identically and p is absent from

equations)
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Non-dimensional equations, but drop *

T-T

u =u/U T = 0 y =y/h
-1
u =0 (1)
hZ
uyy:,u—U p. =—B =const 2)
Hu- :
T =——|- 3
e 3)
%/_/
PrEc
B.C. y=1 u=1 T=1
y=-1 u=0 T=0

(1) 1is consistent with 1-D flow assumption. Simple
form of (2) and (3) allow for solution to be
obtained by double integration.

1 1 5
= u=§(1+y?+§B(l—y? y=y/h

NN

+1

-1

¥ o B‘,:EH -% o ’T:ﬁ)
(===

=1 [ 1

) Parabolic flow
Linear flow due to px Note: linear
due to U superposition since
V-VV =0
2
Solution depends on 8= —ﬂ—Uﬁx (P, =0p/ox+yoz/ox)
B<0 D, is opposite to U
B<-0.5 backflow occurs near lower wall
IB| >>1 flow approaches parabolic profile
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Pressure gradient effect
o

~

1 PrE PrE B PrE B’
T=—(1+)+—=(1-y)——=(-y)+———(1-)")
2 8 6 12
Pure T rises due to Dominant term
conduction viscous dissipation for B> «
+1 +1 +1
= {0 ‘—!—-—_________h
. 9 3 PrEc=0 YO.2 '} a5
¥ a / — "_/ ¥* 0 I /
0 0.5 1 1.5 2 o 4 8 12 16 20
r r
) {2}
FIGURE 3-3
T ture distributi for flow between . (3-12): (a
G{e:-:le[:etamﬂuw: EmTﬂ;tE;T?mméﬂy Pﬂiseuil.l: Eﬁ::a‘gﬂ-ﬂ;&ﬂﬂp - (12 (@) pure
Note: usually PrE. is quite small
Substance PrE. dissipation
Air 0.001 very small
Br=PrE
Water 0.02 .
= Brinkman #
Crude oil 20 large

Prandtl number Pr = uC,/k = momentum diffusivity/thermal diffusivity

Eckert number Ec = U%/Cy(T;-To) = advection transport/heat dissipation
potential

Br# = heat produced viscous dissipation/heat transported molecular
conduction
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Shear Stress

1) =0 i.e., pure Couette Flow
h2
B=——p,=0
wU Px
Using solution shown previously
1 1 1
w = (1+y7) +§B(1 —y*?) = S +y7)
Calculating wall shear stress

u 1 y
5—%(”5)
o (1) _1
Y
(%)
v Fayl ., Ton
ul
C Tw 2h _ U
%puz %pu2 pUh
Since Rey, = pUh/u
1
Cr = —
! Reh

Po = CiRe = 1: Better for non-accelerating flows
since p 1s not in equations and Py = pure constant
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2) U=0 1.e. pure Poiseuille Flow

* . 1 *2 * * BU -
u —EB(I—y ) uy*:—By u, =- e y V. =u
—h 2u
B — — max
Where U ==

B 1h y ? )
Dimensional form “~ 757, (1_(4) j O=Judy Zﬁh”max
7,_/ —h 3

max

0 2

u

= _umax Vave
2h 3
. . 1
Remember that for laminar pipe flow, V,,,, = p Umax

BU
r=pu| = —,u—h upper
BU
=+ /17 lower
_ ocu lam.
. Z,UBU:,Uzumax:/u'?’L/ _
w h A h oc pu  turb.
C =t :6fl: 6 or P=C Re =6
g 1 2 puh Re ’ g '
Pl h

Remember that for laminar pipe flow, ¢, = 2> and ,, = £

Rep 2

i.e. Except for numerical constants same as for circular
pipe.
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Rate of heat transfer at the walls:

2
zzk_h(T‘_T‘))i”z_h + = upper, - = lower

q, = ‘kﬁ—T
oy

yth

Heat transfer coefficient:

g:%—n)

For Br > 2, both upper & lower walls must be cooled to
maintain Ty and T
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Conservation of Angular Momentum: moment form of
momentum equation (not new conservation law!)

B=H,= _[ rxVdm= gngular momentum of system about inertial

Sys

coordinate system () (extensive property)
dB . .
g = FIV A =1 XV (intensive property)

dH,

dt J(rxV)pdV+f(r><V)p

Rate of
change of

angular
momentum

=Y'M, = vector sum all external moments applied
on CV due to both Fsand Fs, including reaction forces

For uniform flow across discrete inlet/outlet:
[ (exV)pVpndd=2(rxV), thou—X(rxV), rin

M,= [z-dAdxr + [(pgdV)xr+M,

A4 A4
surface forcemoment  body force moment

M . = moment of reaction forces
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@ Absolute outlet
velocity

]1—-1- Vo= Vol — Rl

EXAMPLE 3.15

Figure 3.14 shows a lawn sprinkler arm viewed from above. The arm rotates about O at
constant angular velocity . The volume flux entering the arm at @ is (, and the fluid is
cv incompressible. There is a retarding torque at @, due to bearing friction, of amount —T k.
! / . Find an expression for the rotation  in terms of the arm and flow properties.
Retarding .
torque Ty —

Fig. 3.14 View from above of a
. single arm of a rotating lawn
sprinkler,

Inlet velocity

‘ru= ——k
Apipe

Take inertial frame 0 as fixed to earth such that CS
moving at Vs=-Rw 1

Vo=Vol—Rwi=Vy—Rw)l 1r,=R]j

V. = %
0 A .
Retarding torque due to pipe

bearing friction \

0= —TOE = (Zz X Zz)mout - (ﬁl X Z1)min

N
=

I =11, = pO T,k = R(V, — Ro)(—k) pQ

= e POR —>interestingly, even for To=0, Wmaux=Vo/R
(limited by ratio such that large R small o; large Vo large o)
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Differential Equation of Conservation of Angular
Momentum:

Apply CV form for fixed CV:
Z M, = 3}% CLrv) ead + § (ewu)gvon AN
T a0 by 5
‘%

—~ p-YZ
L)ua,"'sf. bﬂ-,gt_j l Q.' T E_wa -\"‘f_a% AR
% =5

o~

Z'-‘_-- 'B&Y;l

@_ = angular acceleration

I = moment of inertia

1o —ady by —cax g Y
2 2 2

Io, =(r, -7, ) dxdy
Since 1= 1'0 [dxdy + dydx’ ] £ dxdy[a’x +dy’ ]
%[a’xz + dyzjd)z =7,-T,

lim T, =T, Similarly, r.=t., 1. =71

dx—0,dy—0 yz 2y
1.e. T, =71, Stress tensor is symmetric (stresses

themselves cause no rotation)



