Final Exam Report 12/14/2022

1. Summary

Total number of students	7
Attended	7
Missed	0
Number of problems	6
Average grade	82.68
Standard deviation of grades	11.33

2. Grade distribution

3. <u>Comparison with past years</u>

4. Individual problem breakdown

5. Grade distribution per problem

6. Comments

PROBLEM 1

- One student received 100% score
- Some of students could not integrate correctly the velocity distribution, and did not find the relation between H and b
- Two students used $Q = \rho UA$, which is valid only if area, density and velocity are constant on the section.
- Overall, the approach of using mass and momentum equations was understood by everyone

PROBLEM 2

- Four students received 100% score
- One student did not apply BCs to obtain the final expression for the velocity field
- One student could not simplify the momentum equation appropriately and the integration process had several errors

PROBLEM 3

- One student received 100% score
- Several students had trouble to use the moment equation and did not calculate the tipping velocity correctly
- Three students used the balance of forces, instead of considering the moment, obtaining a wrong value for the velocity
- All students answered correctly to the question on the variation of angle for the wind Most of the students imposed Re scaling, but could not obtain the new tipping velocity

PROBLEM 4

- Two students received 100% score
- Several students could not derive the appropriate boundary layer thickness with the given formula
- One student derived the frequency correctly, but made a calculation error
- One student used $U\omega$ for the velocity and did not solve point b)
- Overall, most of the students applied the concepts of boundary layer theory successfully

PROBLEM 5

- One student received 100% score
- Many students struggled to find the velocity in the initial pipe and could not apply energy equation correctly
- Several students could not use the energy equation with the second pipe and obtain the new velocity in the pipe
- Two students could only approach point a) but could not obtain satisfactory solutions

- Some students did not exclude pipe 2, when considering the flow through pipe 1 and 3, obtaining a wrong value for the velocity
- Overall, this was the problem that had the lowest score

PROBLEM 6

- No student received 100% score
- However, all the students solved the problem, with minor mistakes
- Two students used the formula for u_r instead of u_{θ} in the calculation
- Some students forgot to add the hydrostatic variation on the surface of the dome
- All students approached point c) but some got wrong value for the mass