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Chapter 7.3 Turbulent BL

Introduction: Transition to Turbulence

The transition process can be described as a succession of Tollmien-
Schlichting waves, development of A - structures, vortex decay and
formation of turbulent spots as preliminary stages to fully turbulent
boundary-layer flow.

The phenomena observed during the transition process are similar for
the flat plate boundary layer and for the plane channel flow, as shown in
the following figure based on measurements by M. Nishioka et al.
(1975). Periodic initial perturbations were generated in the BL using an
oscillating cord.

~5x10°.
However, one can delay the transition to Re_, ~3x10° with care in

For typical commercial surfaces transition occurs atRe

x,tr

polishing the wall.

Iy

.
TS-Waves Spikes Decay
2- _ :
[ g > 3-dimensional —»»] |
Laminar |<_—————Transirion . =J| Turbulent

Fig. 15.38. Signals found at different regions in the transition at a plate at zero
incidence, after M. Nishioka et al. (1975, 1990)



ME:5160 Chapter 7.3
Professor Fred Stern  Fall 2021 2

Reynolds Average of 2D boundary layer equations

u=u+u; v=v+v;, w=w+w, p=p+p’

Substituting u, v and w into continuity equation and taking the time
average we obtain,

'

8L7 ov 8w ou ©ov ow
=0 +—+
ox 8y 0z ox oy Oz

Similarly, for the momentum equations and using continuity (neglecting
2,

=0

DV
—=-Vp+V.-.7,
P Dr P i
Where
v Ox; O wJ
Laminar Turbulent
Assume
0 — 9,
5()6) << X which means V <<Uu, Ox oy

mean flow structure is two-dimensional: W =0, g

Note the mean lateral turbulence is not zero, w2 #0 ,butits z
derivative is assumed to vanish.
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Then, we get the following BL equations for incompressible steady
flow:

or ov

—+—=0
ox Oy

Continuity

_Ou _ou dU, 10t

Uu—_—+v_—~= Ue + X-momentum
dx

ox oy p Oy

P, o0

oy P oy y-momentum

Where U, is the free-stream velocity and

ou
T=M{——pUv
oy
Note:

e The equations are solved for the time averages ¥ and V

e The shear stress now consists of two parts: 1. first part is due to
the molecular exchange and is computed from the time-averaged
field as in the laminar case; 2. The second part appears
additionally and is due to turbulent motions.

e The additional term is new unknown for which a relation with
the average field of the velocity must be constructed via a
turbulence model.

Integrate y- momentum equation across the boundary layer

p~p,(x)-p°
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So, unlike laminar BL, there is a slight variation of pressure across the
turbulent BL due to velocity fluctuations normal to the wall, which is no
more than 4% of the stream-wise velocity and thus can be neglected.

The Bernoulli relation 1s assumed to hold in the inviscid free stream:

dp,/dx =—-pU dU,/dx

Assume the free stream conditions, U, (x) 1s known, the boundary
conditions:

No slip: L_l(x,()) = V(X,O) =0
Free stream matching: L_l(x ,0 ) =U e (X )

Flat plate boundary layer (zero pressure gradient)

Re; = 5x10°~ 3x10%for a flat plate boundary layer
Recrit ~ 100,000
¢, do

2 dx

as was done for the approximate laminar flat plate boundary-
layer analysis, solve by expressing cf = ¢r(0) and 8 = 6(d) and
integrate, 1.e., assume log-law valid across entire turbulent
boundary-layer

1, yu' i
u _I In yu 4B neglect laminar sub layer and

vk v velocity defect region
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aty=0,u=U
E llnSL +B
oKV
\ c 1/2
Re S(Efj
5 1/2 o \V2
or (—J =2.44In Reé(—fj +5
Ce 2 » ¢r(0)
~1/6
cy =.02Rey  power-law fit
Next, evaluate
do_dju ( _ gjd
dx dxoU U Y
can use log-law or more simply a power law fit
1/7
u_ (zj Note: cannot be used to
U 0 | obtain cr(J) since Ty —> ®©
7
0=—0=0(0
72 ( ) )
| R ,do 7 , do
— T, =C,—pU " =pU"—= U —
w f 7 p p dx 72 —Pp
Re, 0 =9.72%
dx
or 9 _ 0.16Re"” 1.e., much faster
x growth rate than
O oC 6/7 almost linear laminar

boundary layer
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L _0.027
f 17
Re

0-0135ﬂ1/7,06/7U13/7
Tw,turb — x1/7

Tw.urb decreases slowly with x, increases with p and U? and insensitive to
w

0.031 7
Co = G = o7 = 5 ()
§* =268
4
H=°=13

These formulas are for a fully turbulent flow over a smooth flat
plate from the leading edge; in general, give better results for
sufficiently large Reynolds number Rep > 107,

0.5 &

Seventh U (y)%

root profiles— =~
Eq. (739U

0.6

0.4 (See Table 4-1 on

Exact Blasius profile

for all laminar Re, Pag¢€ 13 of this
(Table 7.1)Jecture note)

Parabolic u 2 y y
approximation, 77 =~ (—) — (_)
Eq(76) U 1) )

[ | | |
0.2 0.4 0.6 0.8 1.0

2

Comparison of dimensionless laminar and turbulent flat-plate velocity profiles (Ref: White,
F. M., Fluid Mechanics, 7" Ed., McGraw-Hill)



ME:5160 Chapter 7.3
Professor Fred Stern  Fall 2021 7

Alternate forms by using the same velocity profile u/U = (y/6)"’
assumption but using an experimentally determined shear stress

formula 7, = 0.0225pU?(V/US)"* are:

o 15 0.058 0.074
;20.37Rex f :—Rel/S Cf :—Rel/S
X L
~0.029pU°

shear stress: 7, = ReS

X

These formulas are valid only in the range of the experimental
data, which covers ReL = 5 x 10° ~ 107 for smooth flat plates.

Other empirical formulas are by using the logarithmic velocity-
profile instead of the 1/7-power law:

2 = ¢£(0.98log Re, — 0.732)
cs = (2logRe, — 0.65)7%7

0455
;- (log1o Rep)?58

These formulas are also called as the Prandtl-Schlichting skin-
friction formula and valid in the whole range of Rep < 10°.

For these experimental/empirical formulas, the boundary layer is
usually “tripped” by some roughness or leading-edge disturbance, to
make the boundary layer turbulent from the leading edge.

No definitive values for turbulent conditions since depend on
empirical data and turbulence modeling.



ME:5160 Chapter 7.3
Professor Fred Stern  Fall 2021 8

Finally, composite formulas that consider both the initial laminar
boundary layer and subsequent turbulent boundary layer, 1.e., in the
transition region (5 x 10° < Rer < 8 x 107) where the laminar drag at
the leading edge is an appreciable fraction of the total drag:

~0.031 1440

f = 1 Re
L
ReZ

_0.074 1700

! 1 Re

5
ReL

C. = 0.455 1700
r - (logyo Re; )8 Re;,

with transitions at Re; =5 x 10° for all cases.

0.008
0.006 [~ ¢; = (2log Re, — 0.65)7%2
Turbulent smooth plate
Y
&)
0.058
0.004 g =—— (5% 10° < Re, < 107)
0.027
G=—x
. Rel
Laminar
0.002 0.664
o =
/ 4 \/ﬁ
0 A | R I | R
10° 10° 10 10° 10°
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0.008

C - 0.455
s (logyo Re )*%8

o

Transitional

Turbulent smooth plate

0.074
¢ =— (5x10° <Re, < 107)

0.002 |- 7~ (Ulogyo Re, )25
;
- Laminar 0.074 1700 . ,
C=—7- (5 % 10° < Re; < 107)
- 1328 o R %
G =—= s 0031 1440
B JRer f= Rg; Re,
0 ‘ Ll ol L L
10° 10° 10 10°
Re

Local friction coefficient ¢¢ (top) and friction drag coefficient
Cr(bottom) for a flat plate parallel to the upstream flow.
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0.014
0012 ——1

0.008

0.004 A

10° 106 07 10* 10°

Rey
Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on
smooth and rough flat plates.

\
C/=(2.87+1.58log )
& > Fully rough flow

Cp =(1.89+ 1.621og 2y 25 )
&

Again, shown on Fig. 7.6. along with transition region curves developed
by Schlichting which depend on Re, = { 5%10°
3%10°
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Momentum Integral Equations valid for BL solutions

The momentum integral equation has the identical form as the laminar-
flow relation:

ﬁ+(2+H) ==
dx U, dx pU, 2

QdUe_ T Cf

w

For laminar flow:

2
(C r ,H ,0) are correlated in terms of simple parameter 2 =0—d56
v X

For Turbulent flow:

(C f,H ,0) cannot be correlated in terms of a single parameter.

Additional parameters and relationships are required that model the
influence of the turbulent fluctuations. There are many possibilities all of
which require a certain amount of empirical data. As an example, we
will review the n—3 method.
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-8 Method

As mentioned earlier. the momentum mntegral equation for turbulent
flow has the identical form as the laminar-flow relation:
dgd C g dU
B em 28
de 2 U, dx
With U(x) assumed known, there are three unknown (' f'H & for

turbulent flow. Thus, at least two additional relations are needed to find
unknowns. There are many possibilities for additional relations all of
which require a certain amount of empirical data. As an example we will
review the m—p method.

Cole’s law of the wake:

By addmng the wake to the log-law. the velocity profile for both overlap
and outer layers can be written as:

S
u’ =lB]J*' +8 +£f{r,.1]
K 'y

where
n=y/d

. T 3
f(m)=sin’(>-m)=3n"—27
IM=xAd/2

The quantity IT 1s called Coles' wake parameter.

By integrating wall-wake law across the boundary layer:
H
A=a(ll)——
(IT) 71

2+3.179T1+1.5IT*
w(1+1I)
_Ue_1+1I

Re. = exp(icd — x5 — 211
oo xKH

a(Tl) =
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If we eliminate ITbetween these formulas. we obtain a unique relation
among C,=2/4" Hand 6.

C,=2/4A"=2/[a(ll)—/T]
; (oD ——]
o 23T+ 1 STE
x(1+1I) (II)
Re, =20 -1 oot — xB—2m)
| ¥, e

Clauser's equilibrium parameter -

For outer layer,

- ap
U —-u=fir,.po.v.06,—

. fr,.p.. {ﬁ}
Usmg dimensional analysis:

T _}c‘i'ci"p

(T, [ o) r.'i'rdr

Clauser (1954) replaced & by displacement thickness 5™

U -u ¥
W=E{E”ﬂ}
_ddp_ g dU,
r, dx I, dx

B 15 called Clauser's equalibrum parameter.

Das (1987) showed that EFD data pomts fit into the following
polynomial correlation:
8 =—04+0.76IT+0.421T°

Therefore:

& au, 2
A'H 'L_f = —0.4+076I1+04201 (III)




ME:5160

Chapter 7.3
Professor Fred Stern  Fall 2021

14

If we eliminate TTusing that Re, _Ue_ %H:p(itﬂ —xE-21IT). we obtamn
-

another relation among €, =2/ A* Hand 8.

Equations (I). (II). and (III) can be solved simultaneously using say a
Runge-Kutta method to find C ¥ .H .. Equations are solved with matial

condition for 8(x;) and integrated to x=x;+Ax iteratively. Estimated 6
gives Reg and IT, B gives H. Lastly Cris evaluated using Rep and H.

Iterations required until all relations satisfied and then proceed to next
Ax

Separation

The increasing downstream pressure slows down the wall flow and
can make it go backward-flow separation.

dp/dx >0 adverse pressure gradient, flow separation may occur.

dp/dx <0 favorable gradient, flow separation can never occur

Previous analysis of BL was valid before separation.
Separation Condition

| -
T—-
Edge of | —p
boundary >
W
layer o
P i -
X/ ‘¢ Separation
u =0 streamline

TEOTLL T T URERT ERRNRR R AR RANANAA
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Free-stream air

W////////// VT T
airtoil surface®
Separation point

Note: 1. Due to backflow close to the wall, a strong thickening of the
BL takes place and BL mass is transported away into the

2. At the point of separation, the streamlines leave the wall at a
certain angle.
Separation of Boundary Layer

Fig. 2.6. Separation of the boundary layer
and vortex formation at a circular cylinder
(schematic). S = separation point

Notes:
1. D to E, pressure drop, pressure is transformed into kinetic energy.

3. A fluid particle directly at the wall in the boundary layer is also
acted upon by the same pressure distribution as in the outer flow
(inviscid).

4. Due to the strong friction forces in the BL, a BL particle loses so
much of its kinetic energy that is cannot manage to get over the
“pressure gradient” from E to F.

5. The following figure shows the time sequence of this process:

a. reversed motion begun at the trailing edge
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b. boundary layer has been thickened, and start of the reversed
motion has moved forward considerably.

c. and d. a large vortex formed from the backflow and then soon
separates from the body.

Fig. 2.7 a-d.
after L. Prandtl; O. Tietjens (1931)

Examples of BL: Separations (two-dimensional)

Features: The entire boundary layer flow breaks away at the point of
zero wall shear stress and, having no way to diverge left or right, has to
go up and over the resulting separation bubble or wake.

Thin wall

1. Plane wall(s)

Fig. 2.10. Stagnation point flow, after H. Féttinger (1959}, (a) f]‘e?e stagnatiqn—
point flow without separation, (b) retarded stagnation—point flow, with separation

(a). Plane stagnation-point flow: no separation on the streamlines of
symmetry (no wall friction present), and no separation at the wall

(b). Flat wall with right angle to the wall: flow separate, why?
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2. Diffuser flow:

Fig. 2.9. Flow in 2 widening channel (diffuser) (a) separation at both diffuser
walls, (b) suction of the boundary layer at the upper diffuser wall, (c) suction at
hoth diffuser walls (after L. Prandtl; Q. Tietjens (1931))

(b)

Influence of a strong pressure gradient on a turbulent flow

(a) a strong negative pressure gradient may re-laminarize a flow

(b) a strong positive pressure gradient causes a strong boundary
layer top thicken. (Photograph by R.E. Falco)

Examples of BL: Separations (three-dimensional)

Features: unlike 2D separations, 3D separations allow many more
options.

There are four different special points in separation:

(1). 4 nodal Point, where an infinite number of surface streamlines
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merged tangentially to the separation line
(2). A saddle point, where only two surface streamlines intersect and
all others divert to either side
(3). A4 focus, or spiral node, which forms near a saddle point and
around which an infinite number of surface streamlines swirl
(4). A three-dimensional singular point, not on the wall, generally
serving as the center for a horseshoe vortex.

1. Boundary layer separations induced by free surface (aglimation)

CFDSHIP-IOWA

2. Separation regions in corner flow

Profile NACA 0015

FIGURE 4-47

Separation regions in corner flow
between airfoils. [ After Gersten
Separation (1959).]
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3. 3D separations on a round-nosed body at angle of attack

5 ; Separation
Py < A
A . vortex
. Attached /

Approach
flow

surface
streamline

FIGURE 4-49. Three-dimensional separation on a round-nosed body at angle of attack, first
described by Legendre (1965). Point A is a nodal attachment point, point S is a saddle point, and
point F is a focus of separation.

Video Library (animations from “Multi-media Fluid Mechanics”,
Homsy, G. M., etc.)

Separations on airfoil (different attack angles)
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| 09.6 || 231 ][ 26.0 || 30.2 ][ 2000 |[10,000]

Reynolds Number

Laminar Separation

Transition to Turbulence

A _——Turbulent
Separation

Laminar and Turbulent separation

26.8 || s6.5 |[ 118 |[ 250 |[15,000][30,000]

Reynolds Number
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Vertical Plate

Forward Facing Step Backward Facing Step

Rectangular Tower Rectangular Cavity

Flow over edges and blunt bodies Flow over a truck

g T o W

" Golf Ball

Baseball

Tennis Ball

Effect of separation on sports balls
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