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Chapter 7.1 Boundary Layers: Introduction 

1. Historical Background and Boundary Layer Concepts 

Before Prandtl 1905 Boundary layer theory: 

1. Mostly solutions of the linearized Navier Stokes equations for parallel and 
low Re flows for which balance is for pressure and/or gravity and viscous 
forces 

2. Advanced inviscid flow solutions for bodies of various shapes for which 
balance is for nonlinear inertia and pressure and/or gravity forces, i.e., 
potential flows 

3. Empirical hydraulics 

Potential flow theory was surprisingly accurate for streamlines bodies but suffered 
from D'Alembert's paradox 

 
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached 
in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for 
incompressible and inviscid potential flow – the drag force is zero on a body moving with constant 
velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial 
drag on bodies moving relative to fluids, such as air and water, especially at high velocities 
corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox. 
 
Ludwig Prandtl 

 
Ludwig Prandtl was a German fluid dynamicist, physicist and aerospace scientist. He was a 
pioneer in the development of rigorous systematic mathematical analyses which he used for 
underlying the science of aerodynamics, which have come to form the basis of the applied science 
of aeronautical engineering. In the 1920s he developed the mathematical basis for the fundamental 
principles of subsonic aerodynamics in particular; and in general, up to and including transonic 
velocities. His studies identified the boundary layer, thin-airfoils, and lifting-line theories. The 
Prandtl number was named after him. 

http://en.wikipedia.org/wiki/D'Alembert's_paradox
https://www.bing.com/images/search?q=prandtl&ufn=ludwig+prandtl&stid=f9484e24-93f1-cdfc-b512-ceaff72afb25&cbn=EntityAnswer&cbi=0&FORM=IARRTH
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Consider high Re flow (1) around streamlined/slender body for which viscous 
effects are confined to a narrow boundary layer near the solid surface/wall or (2) for 
free shear flows, i.e. jets, wakes and mixing layers for which the vorticity is similarly 
confined to a narrow region.  In both cases Prandtl’s boundary layer theory is 
applicable. 
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Boundary Layer Theory Approximations  

Momentum Scales 

𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈(𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦) 

𝑢𝑢𝑢𝑢𝑥𝑥~ 𝑈𝑈2

𝐿𝐿
= 𝜈𝜈𝑢𝑢𝑦𝑦𝑦𝑦~𝜈𝜈 𝑈𝑈

δ2
     

δ~�𝜈𝜈𝜈𝜈
𝑈𝑈

 or δ
𝐿𝐿

~ 1
√𝑅𝑅𝑅𝑅

  

Re~�
𝑈𝑈𝑈𝑈
𝜈𝜈

 

That is δ is small for large Re.  Note ~indicates order of magnitude 

 
Length Scales 

Convection: L=Ut 

Viscous diffusion: δ~√𝜈𝜈𝜈𝜈 

δ~�𝜈𝜈𝜈𝜈
𝑈𝑈

 or δ
𝐿𝐿

~ 1
√𝑅𝑅𝑅𝑅

 

 
Time Scales 

Convection: t=L/U 

Viscous diffusion: t = �𝜈𝜈𝜈𝜈
𝑈𝑈3

 << L/U 

� 𝜈𝜈
𝑈𝑈𝑈𝑈

= 1
√𝑅𝑅𝑅𝑅

 << 1 

Note: δ~√𝜈𝜈𝜈𝜈=�𝜈𝜈𝜈𝜈
𝑈𝑈

 i.e. δ
𝑈𝑈

= �𝜈𝜈𝜈𝜈
𝑈𝑈3

 = t 
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Boundary layer equations are derived from Navier Stokes equations under 
assumptions: 
𝜕𝜕
𝜕𝜕𝜕𝜕
≪ 𝜕𝜕

𝜕𝜕𝜕𝜕
  

𝜕𝜕2

𝜕𝜕𝑥𝑥2
≪ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
  

i.e. variation across the boundary layer are much larger than variation along the 
boundary layer.   

Next consider continuity equation 

𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 

Since u >> v and 𝜕𝜕
𝜕𝜕𝜕𝜕
≪ 𝜕𝜕

𝜕𝜕𝜕𝜕
 both terms are of equal order, which requires 

𝑣𝑣~
δU
𝐿𝐿 ~

𝑈𝑈
√𝑅𝑅𝑅𝑅

 

The order of magnitude of the pressure variations for which experimental data shows 
that the surface pressure is equivalent to the outer inviscid flow pressure which 
implies of order the inertia forces 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕~ρ𝑢𝑢𝑢𝑢𝑥𝑥 

𝑝𝑝 − 𝑝𝑝∞~ ρ𝑈𝑈2 

The proper nondimensional variables in the boundary layer are therefore 
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Note that δ = �𝜈𝜈𝜈𝜈
𝑈𝑈

 and that the distance and velocity across the boundary layer are 

stretched by √𝑅𝑅𝑅𝑅.  Transformation of the Navier Stokes equations into 
nondimensional variables leads to Prandtl’s boundary layer equations, which 
although retain streamwise convection neglect streamwise diffusion and in addition 
show that the pressure variation across the boundary layer is also negligible show 
that it can be determined from the outer potential flow solution and is imposed on 
the boundary layer.   
 
Lastly the order of magnitude of the wall shear stress is 

τw = µ𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = µU/δ = (µU/L) √𝑅𝑅𝑅𝑅 

𝐶𝐶𝑓𝑓 =  𝜏𝜏𝑤𝑤
(12)𝜌𝜌𝑈𝑈2

 = 2𝜇𝜇𝜇𝜇
𝜌𝜌𝜌𝜌𝑈𝑈2 √𝑅𝑅𝑅𝑅 = 2

 √𝑅𝑅𝑅𝑅
 

Where different solutions have different numerical factors than 2. 
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In physics and fluid mechanics, a boundary layer is the layer of fluid in the 
immediate vicinity of a bounding surface where the effects of viscosity are 
significant. In the Earth's atmosphere, the atmospheric boundary layer is the air layer 
near the ground affected by diurnal heat, moisture, or momentum transfer to or from 
the surface. On an aircraft wing the boundary layer is the part of the flow close to 
the wing, where viscous forces distort the surrounding non-viscous flow. 


