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Chapter 7 Bluff Body

Fluid flows are broadly categorized:

1. Internal flows such as ducts/pipes, turbomachinery, open
channel/river, which are bounded by walls or fluid interfaces:

Chapter 6.

2. External flows such as flow around vehicles and structures,
which are characterized by unbounded or partially bounded
domains and flow field decomposition into viscous and
inviscid regions: Chapter 7.

a. Boundary layer flow: high Reynolds number flow
around streamlines bodies without flow separation.
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b. Bluff body flow: flow around bluff bodies with flow

separation.
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3. Free Shear flows such as jets, wakes, and mixing layers,
which are also characterized by absence of walls and
development and spreading in an unbounded or partially
bounded ambient domain: advanced topic, which also uses
boundary layer theory.
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FIGURE 4-19
Flow in the wake of a body immersed in a stream. Figure 20.16 Plane laminar jet into an infinite medium.

Basic Considerations

Drag is decomposed into form and skin-friction
contributions:
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Streamlining: One way to reduce the drag

—> reduce the flow separation—>reduce the pressure drag
—> increase the surface area - increase the friction drag

—> Trade-off relationship between pressure drag and friction drag
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Benefit of streamlining: reducing vibration and noise
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Draq of 2-D Bodies

First consider a flat plate both parallel and normal to the

flow
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where C, based on experimental data
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In general, Drag = f(V, L, p, 1, C, t, &, T, etc.)
from dimensional analysis
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Figure 10.23 Pressure distributions around a cylinder for subcritical, supercritical, and inviscid
fows.
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Potential Flow Solution: v = —Uw(r — a—Jsin 0
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Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: {(a) drag coefficient of a smooth cylinder and sphere (data from many sources);
(b) increased roughness causes earlier transition to a turbulent boundary layer.

Fic. 34.—Flow round sphere below critical point. (Wieselsberger.) Fiu. 35.—Owing to a thin wire ring round the sphere, thg faw becomes of the
other type with turbulent boundary layer. (Wiesdsberger.)



58:160 Intermediate Fluid Mechanics
Professor Fred Stern Fall 2021 Bluff Body
9

426 XV. Non-stcady boundary layers

Fig. 15.5a to {. Formation of vortices in flow pa.std circular cylinder after acceleration from rest
(L. Prandtl)

$§ = point of separation

Fig. 2.12. Diagrammatic represen-
tation of flow in the boundary
layer near a point of separation
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alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed-
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre-.
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

where 7 is the frequency of shedding of vortices from one side of cylinder, in

Hz, d is the diameter of cylinder, and ¥, is the free-stream velocity. ,
The relationship between the Strouhal number and the Reynolds number for

vortex shedding from a circular cylinder is given in Fig. 11-10. C

040
KN i “
] - .
. Spread of data
“ 030 Pr |
2 s
. E o
2 L ,t-//.
© 0.20 - — e S -
0.10 .
102 10? - 104 108 108 10?
Vod K
Re = il

[

FIGURE 11-10  Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23)]

Other cylindrical and two-dimensional bodies also shed vortices. Conse--
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

EXANPLE 11-2  For the cylinder ind conditions of Example 11-1, at what fre-
quency will the vortices be shed?
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area

Plate: Half-cylinder:

—_— I 20 . G 12

Square cylinder:

—_— 21 _— D L7
Equilateral triangle: -
— O 1.6 T Q 1.6

Half tube:

_ C 12 —_— D 20

Elliptical cylinder: Laminar Turbulent
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Figure 10.24 bmg coefficients for a family of struts. (5. Goldstein, “Modern Developments in
Fluid Dynamics,” Dover Publications, New York, 1965.)
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Table 73

DRAG OF THREE-DIMENSIONAL BODIES AT Re = 10°

Body Ratio Cp based on frontal area

Cube:

—_— 1.07

—_ 0 0.1
60° cone:

. — <?, 0.5

bisk:

a— I 1.17
Cup:

S ) 14
_ C 0
Parachute (low porosity):
— @ 1.2
Reaangular plate:
: bh 1 1.18
— h 5 1.2
b 10 1.3
20 1.5
h «© 20
Flat-faced cylinder:
L/id 05 1.15
1 0.90
—_— d 2 0.85
4 0.87
L 8 0.99
Ellipsoid: . Laminar Turbulent
T L/d 075 0.5 02
—_— d 1 0.47 0.2
_ 2 027 0.13
| L | 4 0.25 0.1
8 0.2 0.08
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Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979) '
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Figure 2-5. Appendage decomposition (from Kirkman, et al., 1979)

Shell Line

DWL7

< Propeiler Shalt ‘ ;
17 ]

——— Mode! Scale
———== Full Scale
ST Nominsl Boundary Layer Thickness

Pt

Figure 2-6. Nominal boundary layér thickness in way of the DDG 51
appendages. : ' :



58:160 Intermediate Fluid Mechanics Bluff Body
Professor Fred Stern Fall 2021 17

Effect of Compressibility on Drag: CD = CD(Re,
Ma)

Mazﬁ

a
v\speed of sound = rate at which infinitesimal
disturbances are propagated from their
source into undisturbed medium

Ma<1 subsonic < 0.3 flow is incompressible,
Ma~ 1 transonic (=1 sonic flow) i.e., p ~ constant
Ma>1 supersonic

Ma>>1 hypersonic

Cp increases for Ma ~ 1 due to shock waves and wave drag

Macritical(Sphere) ~ .6

Magriical(Slender bodies) ~ 1

For U > a: upstream flow is not warned of approaching
disturbance which results in the formation of

shock waves across which flow properties
and streamlines change discontinuously
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FIGURE 11.12

Drag characteristics of
projectile, sphere, and
cylinder with
compressibility effects.
[After Rouse (26}]

FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.
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