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Chapter 6 Introduction Incompressible Turbulent Flow

3. Basic Concepts

Most flows in engineering are turbulent: flows over
vehicles (airplane, ship, train, car), internal flows (heating
and ventilation, turbomachinery), and geophysical flows
(atmosphere, ocean).

V(x, t) and p(x, t) are random functions of space and time,
but statistically stationary flows such as steady and forced
or dominant frequency unsteady flows display coherent
features and are amendable to statistical analysis, i.e. time
and space (conditional) averaging. RMS and other low-
order statistical quantities can be modeled and used in
conjunction with the averaged equations for solving
practical engineering problems.

Turbulent motions range in size from the width in the flow
& to much smaller scales, which become progressively
smaller as the Re = U&/u increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5,000 and
(b} Re = 20,000. From Dahm and Dimotakis {199¢) .

1(s)

Fig. 1.3, The time history of the axial component of velocity (/i(t) on the centerline
of a turbulent jet. From the experiment of Tong and Warhaft (1995).
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Fig. 1.4 The mean axial velocity profile in & turbulent jet. The mean velocity (U;)
is normalized by its value on the centerline, {U,}g; and the cross-stream {radial)
coordinate x; is normalized by the distance from the nozzle x;. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994).
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a. Randomness and fluctuations:

Turbulence is irregular, chaotic, and unpredictable.
However, for statistically stationary flows, such as steady
flows, can be analyzed using Reynolds’s decomposition.

u = mean motion

u' = superimposed random fluctuation

u"= Reynolds stresses; RMS = /u"”

Triple decomposition is used for forced or dominant
frequency flows

u=u+u"+u'

Where u'' = organized oscillation
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b. Nonlinearity

Reynolds stresses and 3D vortex stretching are direct
result of nonlinear nature of turbulence. In fact, Reynolds
stresses arise from nonlinear convection term after
substitution of Reynolds decomposition into NS equations
and time averaging.

c. Diffusion

Large scale mixing of fluid particles greatly enhances
diffusion of momentum (and heat), i.e.,

viscous stress

—
Reynolds Stresses: —pu'u', >> 1, = ue,
. . . ! ' 2
Isotropic eddy viscosity: —u,u';=vs; —551-,-7‘

d. Vorticity/eddies/energy cascade

Turbulence is characterized by flow visualization as
eddies, which vary in size from the largest Ls (width of
flow) to the smallest Lk. The largest eddies have velocity
scale U and time scale Ls/U.
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The orders of magnitude of the smallest eddies (Kolmogorov
scale) are:

Lk = Kolmogorov micro-scale = —
U

Lk = O(mm) >> Limean free path = 6x10%m
Velocity scale = (ve)Y4= 0(102m/s)
Time scale = (v/€)¥2= 0(10%s)

Largest eddies contain most of energy, which break up into
successively smaller eddies with energy transfer to yet
smaller eddies until L is reached and energy is dissipated by
molecular viscosity. Richardson (1922):

Ls Big whorls have little whorls
Which feed on their velocity;
And little whorls have lesser whorls,

Lk  And so on to viscosity (in the molecular sense).

Plate 3 Copy of Leonardo’s famous sketch
of water falling into a pool. Note the
different scales of motion, suggestive of
the energy cascade. See the discussion in
Section 1.6. [Courtesy of F. C. Davidson.]
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e. Dissipation

Energy comes from
2 2 2
uy =~k k=u"+v"+w" | | J|argest scales and
=0(U) fed by mean
] motion

£ = rate of dissipation = energy/time —

= r TOZ

=u01 independentu L, =|—
0

!

Dissipation

/ 0 _ ) ) —» occurs at
= eddies turn over time
Uy smallest

scales

37
> |4

il

Dissipation rate is

determined by the

inviscid large-scale
dvynamics.

Decreases as v decreases
scale of dissipation Lx not
rate of dissipation €.
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f. Examples Experimental Data for Wall Flows

Fig. below shows measurements of turbulence for
Re,=10’.

U L

° - s . ) ~ (9

Note the following mean-flow features:

(1) Fluctuations are large ~ 11% U

(2) Presence of wall causes anisotropy, i.e., the
fluctuations differ in magnitude due to geometric and
physical reasons. u" is largest, v* is smallest and reaches

its maximum much further out than «” or w". w" is
intermediate in value.

(3) u'v'#0 and, as will be discussed, plays a very
important role in the analysis of turbulent shear flows.
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(4) Although uu =0 at the wall, it maintains large values

right up to the wall

(5) Turbulence extends toy > 6 due to intermittency. The
interface at the edge of the boundary layer is called the
superlayer. This interface undulates randomly between
fully turbulent and non-turbulent flow regions. The mean
position isaty ~ 0.78 6.

(6) Fluctuating velocities merge at high frequencies
(isotropic behavior). All five spectra have same frequency
range.

(7) Near wall turbulent wave number spectra have more
energy, i.e. small A, whereas near 6 large eddies dominate.
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! Flat-plate measurements of the fluctuating veloeities [slreamwiac): v
y {normal), and v’ (Iateral) and the turbulent shear u's’. [After Klebanoff (1966).]
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FIGURE 3.38

MPBured frequency spectra of fluctu-
ations in a low-speed turbulent bound-
ary layer, scaled by inner-law variables
{wre); o', o, o' from Bradshaw and
Ferriss (1965); p. from Bakewell
(1964).
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- FIGURE 6-6
0.1 The wave-number spectrum of the stream-

wise turbulent velocity fluctuation in flax-
plate flow. [Adapted from Klebanoff (1955).
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Averages:

For turbulent flow V (x, t), p(x, t) are random functions of
time and must be evaluated statistically using averaging
techniques: time, ensemble, phase, or conditional.

Time Averaging

For stationary flow, the mean is not a function of time and
we can use time averaging.

. 1 g+t B
u=— Ju(t)dt T>anysignificant period of u'=u—u
{0

(e.g. 1 sec. for wind tunnel and 20 min. for ocean)

Ensemble Averaging

For non-stationary flow, the mean is a function of time
and ensemble averaging is used

_ N . _
u(t) = % >u'(t) Nislarge enough that u independent
i=1

u'(t) = collection of experiments performed under

identical conditions (also can be phase aligned
for same t=0).

11
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Phase and Conditional Averaging

Like ensemble averaging, but for flows with dominant
frequency content or other condition, which is used to
align time series for some phase/condition. In this case
triple velocity decomposition is used: u =u +u'+u' where
u'' is called organized oscillation. Phase/conditional
averaging extracts all three components.

Averaging Rules:

f=r+f g=g+g s=xort
['=0 f=r fg=fg  f'g=0
f+g=f+g LY fe=fg+1'¢

13
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Reynolds-Averaged Navier-Stokes Equations

For convenience of notation use uppercase for mean and
lowercase for fluctuation in Reynolds’s decomposition.

p=P+p

0 Ui
OX;

=0

8u,~+ui8ui 10p

ot ox;

p Ox,

=———%+v

Mean Continuity Equation

Q(Ui fu)= oU, +8u,- _oy, 0
OX, ox, ~ Ox  Ox
GuZGUi+8ui:O %:O
ox  Ox  Ox OX,

Both mean and fluctuation satisfy divergence

condition.

14

—>

NS

equation

=0
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Mean Momentum Equation

0 0 1 0
—(U. +u )+(U, +u,)— U, +u,)=———(P+ p)+
6f( i ul) ( J u])ax.( i uz) p axi( p)

J

5:;,-)?,- (Ui + ui) - g5i3
_ga[+u):aua+&h:au
or ' ot ot ot

(U+uA)£(Ul+ui):U‘ﬂ+[/i+zj—f+u%
J J ax] ja j i

X, " Ox "ox, Tox
ou 0 —
=U,—+—uu
‘ox,  ox,
. ou ou ou
Since —uu =u ——+u —=u —
x x  ox.  Tox
i(P+ ):8P dp _oP
X ox Ox  Ox
—80,=-89,
2 2 2 2
0°U, 0 0°U
v— U +u)=v—"+v L;l—u S
Ox ; Ox ; Ox; Ox;

15
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oU, oU, O(uu, 1 6P 2
ot 8xj 8xj P Ox; Ox =
J
DU, oU. ——
Or l :_la_P_g5i3+ g O_—— Ul
Dt P OX; Ox;| Ox;
0O %—_ O: +l£g
" Tpr 8T a0 RANS
5y =—Ps, +ﬂ£5U,» N aanj—Pf% Equations
with ﬂ:O
ox —

The difference between the NS and RANS equations is the
Reynolds stresses — puu , which acts like additional stress.

—puu =—puu (i.e.,, Reynolds stresses are symmetric)
—pu>  —puv - puw

=|—puv —pv’ —pww

— puw  — pvw  — ,ow2

u’ are normal stresses

uu. I#j are shear stresses

o

16
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6 new unknowns

For homogeneous/isotropic turbulence uu, i=j =0

and u’ =v =w’ = constant; however, turbulence is
generally non-isotropic.

Isotropic Anisotropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a nv-pair at a certain ==
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Consider shear flow with au > (0 as below,

dy

U(y)

fluid

y+dy

particle

v>0

\

v<O0

y-dy

/.

X}> é:l—x

The fluid velocity is: V = (U +u,v,w)

If fluid particle retains its velocity V from y to y#dy gives,

v>0 - u<0
L > uv<0

v<0) — u>0

X-momentum tends towards
decreasing y as turbulence
diffuses gradients and

dU
decreases —
dy

18
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x-momentum transport in y direction, i.e., across y =
constant AA per unit area

M,y = [ pilV - n dA, where @i = (U + u)

Myy = - = —
” =p(U +u)v=pUv+ puv = puv
i.e puu = average flux of j-momentumin

i-direction = average flux of

i-momentum in j-direction

19
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Closure Problem:

1. RANS equations differ from the NS equations due to
the Reynolds stress terms

2. RANS equations are for the mean flow (U,,P); thus,
represent 4 equations with 10 unknowns due to the
additional 6 unknown Reynolds stresses #u;

3. Equations can be derived for uu; by summing
products of velocity and momentum components
and time averaging, but these include additionally
10 triple products #uu,unknowns. Triple products
represent Reynolds stress transport.

4. Again, equations for triple products can be derived
that involve higher order correlations leading to
fact that RANS equations are inherently non-
deterministic, which requires turbulence modeling.

5. Turbulence closure models render deterministic
RANS solutions.

6. The NS and RANS equations have paradox that NS
equations are deterministic but have
nondeterministic solutions for turbulent flow due to
inherent stochastic nature of turbulence, whereas
the RANS equations are nondeterministic, but have
deterministic solutions due to turbulence closure
models.

20



058:0160

Chapter 6-part3
Professor Fred Stern  Fall 2021 21
\Lt.—%;‘_ Em\ K o\ é"“v‘m Wittt \6::4‘2{"’»«3}#
) o
N
QU i i 1 e
.%-_?“; :,‘U;\.Z_},!L = ""'?SSI-; e lé-%g\ Sy @
s b ¥ ¥
‘
e o ; ol A U DU
(;“ o 5;; TAUNED TR MW E i o "l\
Ty, oL
i 3 — e
R \ \‘w (yoH) = u%*%}‘ %\c‘\, Ly
kg o o (g
nv‘"(“ s \ E(Tf g 5 ?'f,}‘f" &U 0; \ e (L«; e
231
= (et = —cw 12 (=Y & & 20T — 0w T
s o = =
O D N\
i %R{%. ~2VE o bt
C~' ‘.b_?f \——"—\-—-————-:: "\ﬁ A
e RDx ’
; A Bt
= E'.:‘ (61. +wa;\ ! Dy, =
LI [PPSR S PR o e e
= B € SO BRI sl Aot Dogndts Shurnen,
)
B (hwd) =3, (C T s wvmey - W)
:\__’/‘\‘-___..._\ _T./w&-\e.»*- [ p O Mﬁ\\&&lu\.ﬂ.
y DO ‘A“""‘(‘}; &Y
P I e -2/ E €L-\—\-ML,‘U\\ :;‘“ =l me
e
d‘b MAS Lo S ,Qm,\__—tx Lm_t:
) \1_. u.w% M\&.
Eiy x TV E':'\ 2 'U\\.“-'\\ E— “,ze»ﬁ?sm T h'«“-“ﬂ'\
Wmﬁshm X Msnn A %%\“‘g‘“ ‘MQ"M
e Aok S Shaaan = e M
.h '1,\“54\' M
L% § Aurse AT Viteont AU yrbeaa — e
T, AT i
7 '“-‘\, \ i:i. - Aim A G e U\ . y
i T ~ 1 WS, T g Wi <0 e
=7

21



058:0160

Chapter 6-part3
Professor Fred Stern  Fall 2021

22

=

ol S0 \I\A.af\.\_ﬂ-L *\AJMW’, (G

&,
Q
e 1 T
2y €4 v (v e ; it
= RN o Uy ~ U
o, 2 qu,% o/ L . e
*bx‘\ it =

se A e \,Hy\_m R I Ly T .

Brrsad MMM& %% NP ook, M\.;ﬁ.ﬂa &»—"&L@wmﬂ%

¥ ﬂk‘ i
M 9‘./‘—»‘ vx«* Xs"h@wn

Mt g_(\.af\-a Logan. «‘Z«fmaa,?ﬂ -tb émv’\\j.a.a i \.M

S Gy
Vi \MM&L~%%~4. 4 e N2 o MX

A MM‘_K SS— \}\5—0‘5.»)\6 oA o TL.‘E‘- M\',»A\»A—(,nw\

22



058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2021 23

Turbulent Kinetic Energy Equation

= %f — %(J V4 W) = turbulent kinetic energy

Subtracting NS equation for u; and RANS equation for U,
results in equation for u;:

Ou, ou; U,  ou; 1op  0u,
Ot / Ox / Ox / Ox P OX; o

Multiply by u; and average

Dk 1 & — 0 U,
—— = U, ———— U u +2U—ue —uu, ——ZUelel
Dt p Ox, 2 0Ox, Ox; 8xj #
7 Jii Jiii v
Dk _ok ., ok 1 Ou, Ou,
Where Dt o ! ox, and € 55757

H_J

Vi

23
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| =pressure transport
llI= turbulent transport
llI=viscous diffusion

IV = shear production (usually > 0) represents loss of

mean kinetic energy and gain of turbulent kinetic energy

due to interactions of uu, and o,

Oox,
V = viscous dissipation = €
VI= turbulent convection
Recall previous discussions of energy cascade and
dissipation:

Energy fed from mean flow to largest eddies and
cascades to smallest eddies where dissipation takes place

Different scales in a turbulent flow

. 0 I
é X Sosn ¥ "\:*. c R e S\ 2t
Q o L\ o B f s d BN
,,\'ﬂg ) By, | P Ay L2 - w8y
. First instability
\
\’r.é S e

Second instability

ggo3 ODOD 0DV

Third instability

i

Energy flux _
CopD BOMOCORTEZ BBV ODOVT LAY

Figure 1.14 A schematic representation of *
the energy cascade (after Frisch 1995). See

; Viscosity
also Leonardo’s sketch—Plate 3.

24



058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2021 25

Kinetic energy = k = uy?

l

0 i
TO = — = turn over time
U

g=—"C=—" lo = Ls = width of flow

(i.e., size of largest eddy)
Kolmogorov Hypothesis:

(1) local isotropy: for large Re, micro-scale £ << £,
turbulence structures are isotropic.

(2) first similarity: for large Re, micro-scale has
universal form uniquely determined by v and «:
universal equilibrium range

/4
n= (03 /5)l length nll,= Re>'*
U, = (80)1/4 velocity u, luy = Re ™!
T, = (u/g)l/2 time

-1/2
T77 /TO — Re Micro-scale<<large scale

o J
'

25



058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2021 26

Also shows that as Re increases, the range of scales
increase.

(3) second similarity: for large Re, intermediate scale
has a universal form uniquely determined by € and
independent of v: inertial subrange

(2) and (3) are called universal equilibrium range in
distinction from non-isotropic energy-containing range.
(2) is the dissipation range and (3) is the inertial
subrange.

Universal equilibrium range Energy-containing

|
|
|
| range
1 |
Dissipation range ] Inertial subrange |
: Aec T XN7 Lox {
| | ! T i
n bpp = G~ bpr # % Uy L

Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.

26
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Spectrum of turbulence in the inertial subrange S=S(k,¢)

u’ = [S(k)dk  k=wave number in inertial subrange.
0

S = A82/3k_5/3 for I' <<k<<py™ (based on dimensional
analysis) A~ 1.5 Called Kolmogorov k3 law

Kn
L{ = A a log-log scale
Flg. 1212 A typical wavenumber spectrum chserved in the ocean, pletted on g-log

The wnit of 5 is arbitrary, and the dois represent hypothetical daza.

Dissipation ¢ Production P

T
Transfer of energy to
successively smaller scales

| — e e e ; ;
1 £p1 Cex Lo L
Dissipation Inertial subrange Energy-containing
range range

Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.

172

Log (energy) | Energy cascade ’
> =
| A |

Energy generated ! |
at rate 78S, |
|

| Dissipation of
| energy at rate &
I

Inertial
subrange

I [ ! Log (k)

. | |
Figure 5.3 Schematic representation of the - ——
energy cascade. Eddies depend on Jand u Eddies depend on v

27
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Boundary Layer

u)

L i (0)

total stress T

turbulent
stress = pus—

U

¥
edge of boundary layer A TRk N S Sy, ¢
B s i e

i 3 T R Ak e,

29
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Velocity Profiles: Inner, Outer, and Overlap Layers

Detailed examination of turbulent boundary layer
velocity profiles indicates the existence of a three-layer
structure:

104 10~ 0.01 0.1 0.3 |

—_ N E— f I | y/8
OUTER LAYER
overlap region
log-law region
INNER LAYER
viscous wall region
buffer layer
viscous sublayer
¥
| | | [ | | |
1 5 10 050 100 1,000 10, 000

Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of
vt = p/d, and y/o, for turbulent channel flow at high Reynolds number (Re, = 107).

(1) A thin inner layer close to the wall, which is
governed by molecular viscous scales, and
independent of boundary layer thickness o, free-
stream velocity U, and pressure gradient.

(2) An outer layer where the flow is governed by
turbulent shear stresses, 0, U. and pressure
gradient, but independent of v.

(3) An overlap layer which smoothly connects inner
and outer regions. In this region both molecular
and turbulent stresses and pressure gradient are
important.

30
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Considerably more information is obtained from the
dimensional analysis and confirmed by experiment.

Inner layer: U = f(ty, 0, 1, Y)

+ U _ v ¥ Wall shear
U™ = u* f( % ) “ TW/'O velocity
="

U*, y* are called inner-wall variables

Note that the inner layer is independent of 6 or rg, for
boundary layer and pipe flow, respectively.

Quter Layer: U,—-U = g(ty,p,y,6) forpy=0
~———
velocity defect

Ue_U
u*

=g(n) where n=y/0

Note that the outer layer is independent of u.

31
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Overlap layer: both laws are valid

In this region both log-law and outer layer is valid.

It is not that difficult to show that for both laws to
overlap, f and g are logarithmic functions.

Inner region:
w2

dU u df

dy 14 dy+

Outer region:

dU_u* dg
dy o6 dn

2

yu* df_yu*dg

*

. AN

uw v odyt ut o dn

YT

fly+) a(n)

; valid at large y* and small n.

32
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Therefore, both sides must equal universal constant, !

| N . .. :
S )=;1ny +B=U/u" (inner variables)

1 U -U
g(n)=;1n77+/1= eu* (outer variables)

K, A, and B are pure dimensionless constants

K = 041 Von Karman constant
Values vary
somewhat
depending on
different exp. B — 5 5

arrangements ]

The difference is due to
loss of intermittency in

= 0.65  pipeflow duct flow. A =0 means
small outer layer

A = 235 BL flow

The validity of these laws has been established experimentally as
shown in Fig. 6-9, which shows the profiles of Fig 6-8 in inner-law
variable format. All the profiles, except for the one for separated
flow, are seen to follow the expected behavior. In the case of
separated flow, scaling the profile with u* is inappropriate since
u*~0.

33
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FIGURE 6-9 :
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Details of Inner Layer

Neglecting inertia and pressure forces in the 2D
turbulent boundary layer equation we get:

d dau _
@(M (E) —puv ) =0
au _
-> U (E) — pUV =T
The total shear stress is the sum of viscous and turbulent

stresses. Very near the wall y=0, the turbulent stress
vanishes. Sublayer region:

lim,u(d—U>—pW= ,u(d—U> = Ty,
y-0  \dy dy y=0
From the inner layer velocity profile:

(d_U) _ YO _ T

dy)y_g v dy W

d +
[ =1 3 foM=y*+ ¢

No slip condition at y = 0 requires C = 0.

Sublayer: U*=y* valid for y*<5
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Buffer layer: Merges smoothly the viscosity-dominated
sub-layer and turbulence-dominated log-layer in the
region 5< y* < 30.

Unified Inner layer: There are several ways to obtain
composite of sub-/buffer and log-layers.

Evaluating the RANS equation near the wall using p
turbulence model shows that:

Me ™Y y >0
Several expressions which satisfy this requirement have

been derived and are commonly used in turbulent-flow
analysis. Thatis:

p, = e [e’(U+ —1-xU" - (KU2+)2]

Assuming the total shear is constant very near to the wall
a composite formula which is valid in the sub-layer,
blending layer, and logarithmic-overlap regions is
obtained

U=y ’f{e"’”—l—,cyu("w)z (KU+)3}

o —e —_
Y 2 6
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Fig. 6-11 shows a comparison of this equation with
experimental data obtained very close to the wall. The
agreement is excellent. It should be recognized that
obtaining data this close to the wall is very difficult.

\, Spaiding's law of the wall:
10 = Eq. [S-41) [x =04, &= 6.5

D\Ih{l'rdl.-l"ldﬂnﬂ [1965):
V U ;- &, 100
v = 10,000

o = 27,000
= = 48,000

i 10 . o 1060 -““ 1,008

FIGURE 6-11
Comparison of Spalding's inner-law expression with the pipe-flow data of Lindgren (19650

Details of the Outer Law

At the end of the overlap region the velocity defect is

given approximately by:

Upg—U
u*

= 9.6(1 —1)?
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With pressure gradient included, the outer law becomes

(Fig. 6-10):
YU _etn.p)
u

*
B = §_de Clauser equilibrium
n=ylo _Tw dx ~ parameter

30
& Strong favorable, 4 =1.0
i v Flat plate, A =2.5
- © Mild adverse, A - 5.6
A & Strong adverse, 4 =13
20
"
Y
ry
F
=¥ | @ A
| 1= L
::1:- T N
1|:I W La
¢.*? o A
4.. w o
«. ¥ "
¥ L] Lv F 1
] o o
o 7 4
0 ! | * AR o §
0.0 0.2 0.4 0.6 0B 1.0
¥
&
FIGLURE 610

Replot of the velocity profiles of Fig. 6-8 using outer-law variables from Eq. {6-38). Success is not
evident because each profile has a different value of the parameter £,
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Clauser (1954,1956):
BLs with different px but constant £ are in equilibrium,
i.e., can be scaled with a single parameter:

U -U
; vs. y/A

u

A = defect thickness = j(]e—:(]dy =51
u
0

A=2/C

Also, G = Clauser Shape parameter

0 2
:ij(Ue:Uj d = 6.1JB+1.81-1.7
u
0 Curve—fit by Mach

Which is related to the usual shape parameter by
H=(1- G//I)_1 # const. due to A = A(x)

Finally, Clauser showed that the outer layer has a wake-
like structure such that

1, ~0.016pU,5
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Mellor and Gibson (1966) combined these equations into
a theory for equilibrium outer law profiles with excellent
agreement with experimental data: Fig. 6-12

T Y Dtz
H d  Fresrnan I
3 = © & isbanoll and Dieh!

3 & Schuler-Grursms
- Hama
0 JLHL. - rosagh wal
= Moors - vy rough wall

m — - Dwta: Clanmer | 19541
" a A=14 g=80
o ox= 13 PR
& = FEF =
| =34 = 7T
FIGURE 612 0

Equilibrium-defeet profiles ag
correlated by the Clauser pa-
rameter 8 and the theory al —_

Mellor and Cibson (1966) (a)
Aat-piate data: () equilibrium
adverse gradients

A weakness of the Clauser approach is that the
equilibrium profiles do not have any recognizable shape.
This was resolved by Coles who showed that:

/ Deviations above log-overlap layer

U" =25y’ =55 1,05
U’ -25I6 -55 2

RN

YT

Max deviation at & Single wake-like function of y/6
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W = wake function = 2Sin2(§§j =3n*-2n°, n=y/0

o J

“
curve fit

Thus, it is possible to derive a composite which covers
both the overlap and outer layers, as shown in Fig. 6-13.

U =Lty + B+ Zw(y/0)
K K

7 = wake parameter = 1(6)

=0.8(f + 0.5)0'75 > (curve fit for data)

Note the agreement of Coles’ wake law even for 8 =

constant. Bl’s is quite good.

FIGURE &-13
T!‘.rblﬂtr.l .wflc-my profiles computed from the Coles wall wake formula Eq. (6-47), assumin
&%= 100, ‘The curve for [T = 0 is the pure law of the wall from Eq. (41}, L
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We see that the behavior in the outer layer is more
complex than that of the inner layer due to pressure
gradient effects. In general, the above velocity profile
correlations are extremely valuable both in providing
physical insight and in providing approximate solutions for
simple wall bounded geometries: pipe, channel flow and
flat plate boundary layer. Furthermore, such correlations
have been extended using additional parameters to
provide velocity formulas for use with integral methods
for solving the BL equations for arbitrary py.

Summary of Inner, Outer, and Overlap Layers

Mean velocity correlations

Inner layer:

Ur=50u")

Ut =U/lu yi=y/u" u =,/ p
Sub-layer: U* =y’ for 0<y <5

Buffer layer: where sub-layer merges smoothly with

log-law region for S< " <30
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Outer Layer:

U -U *
eu* =g(n,p) n=ylo, p="p,

T w

forn>0.1

Overlap layer (log region):

1
U* =;lny+ + B inner variables

Uu,-U 1

w—=——Innp+4 outer variables
u K

fory*>30and n<0.3

Composite Inner/Overlap layer correlation

B (K'U+)2 B (K'U+)3
2 6

U”* :y+—e_Kb e —1-xU*

forO<y" <50
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Composite Overlap/Outer layer correlation

. T
U” :llny+ +B+2?”W(77) W= Slnz(znj = 3772 — 2773

K

7 =0.8(8+0.5)°"7

for y* > 50
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Reynolds Number Dependence of Mean-Velocity Profiles
and Reynolds stresses

M.
\\\\
T,
I \\_\ IDE lw
ID" I Ak “; region
yo Ny ‘\5
2 ' buffer | ™
1072} NW
f N
VISCOLS
0~} sublayer |
-4 . J
10
10’ i0* 10° 10°

1. Inner/overlap U* scaling shows similarity; extent of
overlap region (i.e., similarity) increases with Re.

2. Outer layer for px = 0 may asymptotically approach
similarity for large Re as shown by AU (=27/k) vs.

Reg, but controversial due to lack of data for Reg 5 x
104.
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3. The normalized Reynolds stresses wu,/k,
production-dissipation ratio and the normalized
mean shear stress are somewhat uniform in the log-
law region. Experiments in flat plate boundary layer,
pipe and channel flow shows k = 3.34 - 3.43 v in
lower part of log-law region.

4. Decay of k ~ y2 near the wall.

5. Streamwise turbulence intensity ™ =M% vs. y*

u
shows similarity for 0 < y* <15 (i.e., just beyond the

point of kmax, Y = 12), but u* increases with Re.
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Fig 10. Comparison of mean-velocity profiles with loarithmic law st low

Reynolds numbers. Boundary layer date from Purtell ef af (1981).
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Fig 12. Meao-velocity profiles aon-dimeasionalized ou inger varisbles,
Chaonel fllow data from Wei and Willmarth (1989).
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