Chapter 6: Viscous Flow in Ducts

6.2 Stability and Transition

Stability: can a physical state withstand a disturbance and still return to its original state.

In fluid mechanics, there are two problems of particular interest: change in flow conditions resulting in (1) transition from one to another laminar flow; and (2) transition from laminar to turbulent flow.

- (1) Transition from one to another laminar flow
 - (a) Thermal instability: Bernard Problem

A layer of fluid heated from below is top heavy, but only undergoes convective "cellular" motion for

Raleigh #:
$$Ra = \frac{g\alpha\Gamma d}{vw/d^2} = \frac{g\alpha\Gamma d^4}{kv} > Ra_{cr}$$
 $\frac{bouyancy\ force}{viscous\ force}$

$$\alpha = coefficient\ of\ thermal\ expansion = -\frac{1}{\rho} \left(\frac{\partial\rho}{\partial T}\right)_{p}$$

$$\Gamma = \Delta T/d = -\frac{dT}{dz} \quad \rho = \rho_0 \left(1 - \alpha\Delta T\right)$$

$$d = depth\ of\ layer$$

$$k,\ v = thermal,\ viscous\ diffusivities$$

w=velocity scale: convection ($w\Gamma$) = diffusion ($k\Gamma/d$) from energy equation, i.e., w=k/d

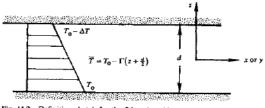
Solution for two rigid plates:

$$Ra_{cr} = 1708$$
 for progressive wave disturbance $\alpha_{cr}/d = 3.12$ $\omega = we^{i\alpha(x-ct)} = e^{c_i t} [\cos(x-ct) + \sin(x-ct)]$ $\lambda_{cr} = 2\pi/\alpha = 2d$ $\tau = Te^{i\alpha(x-ct)}$ $\alpha = \alpha_r$ $c = c_r + ic_i$ For temporal stability $\alpha_r = 2\pi/\lambda = wave number$ $c_r = wave speed$

$$c_i: > 0$$
 unstable
= 0 neutral
< 0 stable

 $Ra > 5 \times 10^4 \text{ transition}$ to turbulent flow

Thumb curve: stable for low Ra < 1708 and very long or short λ .



Fall 2021

Fig. 11.2 Definition sketch for the Bénard problem.



Fig. 11.3 Flow pattern and eigenfunction structure of the gravest even mode and the gravest odd mode in the Bénard problem.

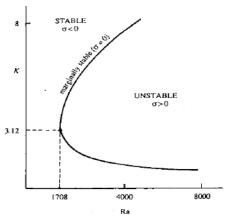
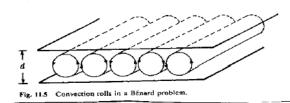


Fig. 11.4 Stable and unstable regions for Bénard convection



(b) finger/oscillatory instability: hot/salty over cold/fresh water and vise versa.

$$(Rs - Ra)_{cr} = 657$$

$$Rs = g\beta d^{4}(ds/dz)/vk_{s}$$

$$\rho = \rho_{0}(1 - \alpha\Delta T + \beta\Delta S)$$

058:0160 Chapter 6- part2 Professor Fred Stern Fall 2021 4

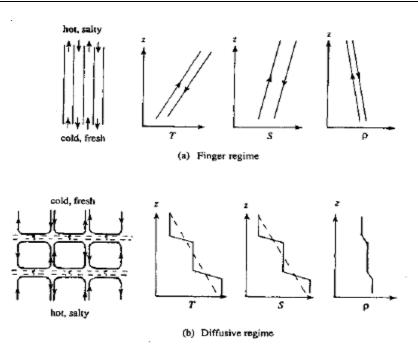


Fig. 11.7 Two kinds of double-diffusive instabilities. (a) Finger Instability, showing up- and down-going salt fingers and their temperature, salinity, and density. Arrows indicate direction of motion. (b) Oscillating instability, finally resulting in a series of convecting layers separated by "diffusive" interfaces. Across these interfaces T and S vary sharply, but heat is transported much faster than salt.

Fig. 11.8 Salt fingers, produced by pouring salt solution on top of a stable temperature gradient. Flow visualization by fluorescent dye and a horizontal beam of light. [From Turner (1985).]

(c) Centrifugal instability: Taylor Problem

Bernard Instability: buoyant force > viscous force Taylor Instability: Couette flow between two rotating cylinders where centrifugal force (outward

from center opposed to centripetal force) > viscous force.

$$Ta = \frac{r_i c(\Omega_i^2 - \Omega_o^2)}{V^2} \qquad c = r_0 - r_i << r_i$$

= centrifugal force/viscous force

$$Ta_{cr} = 1708$$
 $\alpha_{cr}c = 3.12$ $\rightarrow \lambda_{cr} = 2c$
 $Ta_{trans} = 160,000$ Square counter

Square counter rotating vortex pairs with helix streamlines

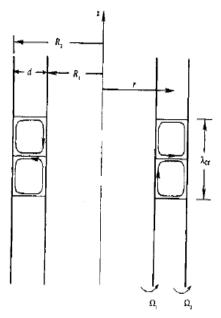


Fig. 11.10 Definition sketch of instability in rotating Couette flow.

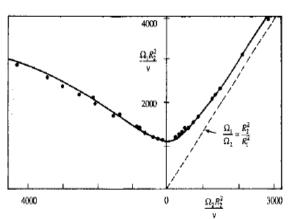


Fig. 11.11 G. I. Taylor's observation and narrow-gap calculation of marginal stability in rotating Couette flow of water. The ratio of radii is $R_2/R_1 \approx 1.14$. The region above the curve is unstable. The dashed line represents Rayleigh's inviscid criterion, with the region to the left of the line representing instability.

058:0160 Chapter 6- part2 Professor Fred Stern Fall 2021 6

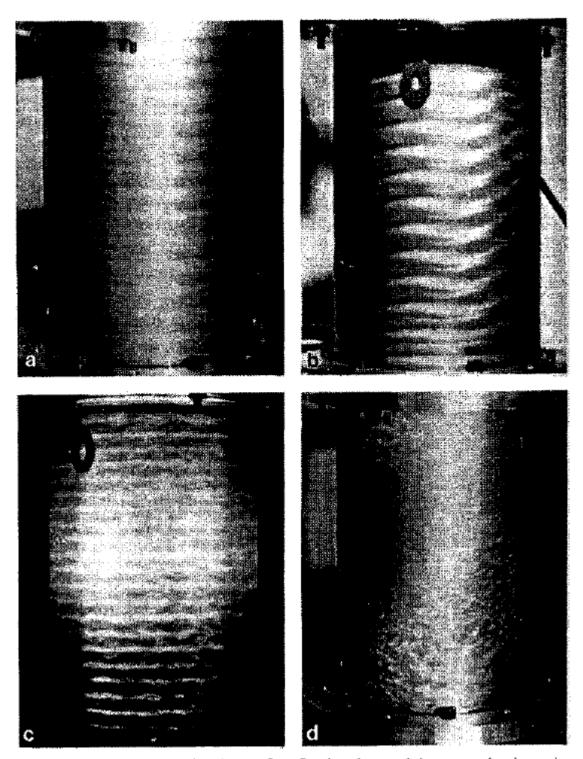


Fig. 11.12 Instability of rotating Couette flow. Panels a, b, c, and d correspond to increasing Taylor number. [From Coles (1965).]

(d) Gortler Vortices

Longitudinal vortices in concave curved wall boundary layer induced by centrifugal force and related to swirling flow in curved pipe or channel induced by radial pressure gradient and discussed later with regard to minor losses.

For
$$\delta/R > .02 \sim .1$$
 and $Re_{\delta} = U\delta/\upsilon > 5$

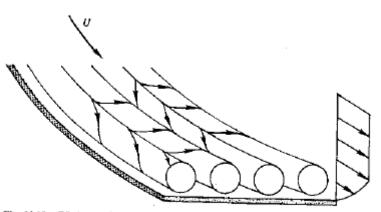


Fig. 11.13 Görtler vortices in a boundary layer along a concave wall.

(e) Kelvin-Helmholtz instability

Instability at interface between two horizontal parallel streams of different density and velocity with heavier fluid on bottom, or more generally ρ =constant and U = continuous (i.e. shear layer instability e.g. as per flow separation). Former case, viscous force overcomes stabilizing density stratification.

$$g(\rho_2^2 - \rho_1^2) < \alpha \rho_1 \rho_2 (U_1 - U_2)^2 \rightarrow c_i > 0 \text{ (unstable)}$$

 $U_1 \neq U_2$ large α i.e. short λ always unstable

Vortex Sheet

$$\rho_1 = \rho_2 \rightarrow c_i = \frac{1}{2}(U_1 + U_2) > 0$$

Therefore always unstable

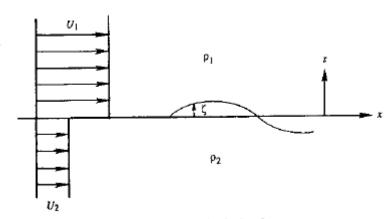


Fig. 11.14 Discontinuous shear across a density interface.

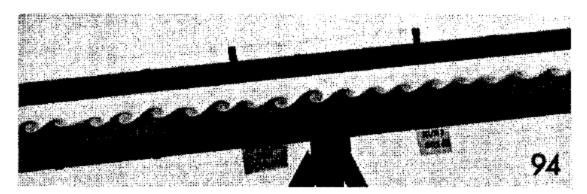


Fig. 11.16 Kelvin-Helmholtz instability generated by tilting a horizontal channel containing two liquids of different densities. The lower layer is dyed. Mean flow in the lower layer is down the plane and that in the upper layer is up the plane. [From Thorpe (1971).]

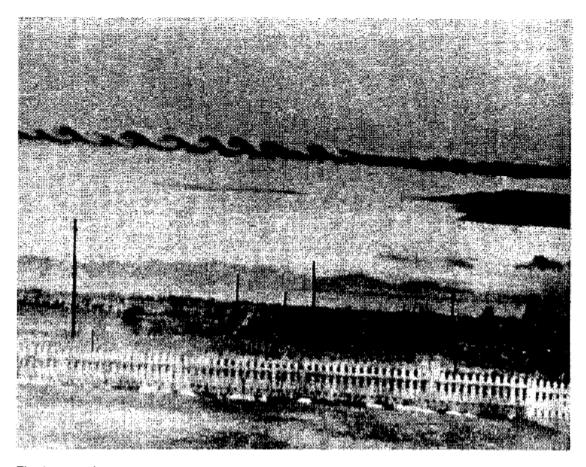


Fig. 11.17 Billow cloud near Denver, Colorado. [From Drazin and Reid (1981).]

(2) Transition from laminar to turbulent flow

Not all laminar flows have different equilibrium states, but all laminar flows for sufficiently large Re become unstable and undergo transition to turbulence.

Transition: change over space and time and Re range of laminar flow into a turbulent flow.

$$\operatorname{Re}_{cr} = \frac{U\delta}{v} \sim 1000$$
 $\delta = transverse \ viscous \ thickness$

$$Re_{trans} > Re_{cr}$$
 with $x_{trans} \sim 10-20 x_{cr}$

Small-disturbance (linear) stability theory can predict Re_{cr} with some success for parallel viscous flow such as plane Couette flow, plane or pipe Poiseuille flow, boundary layers without or with pressure gradient, and free shear flows (jets, wakes, and mixing layers).

Note: No theory for transition, but recent DNS helpful.

Outline linearized stability theory for parallel viscous flows: select basic solution of interest; add disturbance; derive disturbance equation; linearize and simplify; solve for eigenvalues; interpret stability conditions and draw thumb curves.

$$u = u + u$$
 $u, v = mean flow, which is solution steady NS
 $v = v + v$
 $p = p + p$ $u, v = small 2D$ oscillating in time disturbance is solution unsteady NS$

Linear PDE for \mathcal{U} , \mathcal{V} , \mathcal{D} for $(\mathcal{U}, \mathcal{V}, \mathcal{D})$ known.

Assume disturbance is sinusoidal waves propagating in x direction at speed c: Tollmien-Schlicting waves.

$$\Psi(x, y, t) = \phi(y)e^{i\alpha(x-ct)}$$

$$u = \frac{\partial \psi}{\partial y} = \phi'e^{i\alpha(x-ct)}$$

$$v = -\frac{\partial \Psi}{\partial x} = -i\alpha\phi e^{i\alpha(x-ct)}$$

Stream function *y* = *distance across* shear layer

$$u_x + v_y = 0$$

Identically!

$$\alpha = \alpha_r + i\alpha_i = wave \ number = \frac{2\pi}{\lambda}$$
 $c = c_r + ic_i = wave \ speed = \frac{\omega}{\alpha}$

Where $\lambda = wave\ length\ and\ \omega = wave\ frequency$

Temporal stability:

Disturbance ($\alpha = \alpha_r$ only and c_r real)

$$\begin{array}{ll} c_i &> 0 & \quad \mbox{unstable} \\ &= 0 & \quad \mbox{neutral} \\ &< 0 & \quad \mbox{stable} \end{array}$$

Spatial stability:

Disturbance ($c\alpha = real only$)

$$\begin{array}{ll} \alpha_i & <0 & \quad \mbox{unstable} \\ & =0 & \quad \mbox{neutral} \\ & >0 & \quad \mbox{stable} \end{array}$$

Inserting u, v into small disturbance equations and eliminating p results in Orr-Sommerfeld equation:

inviscid Raleigh equation
$$\overbrace{(u-c)(\phi"-\alpha^2\phi)-u"\phi}^{i} = -\frac{i}{\alpha \operatorname{Re}}(\phi^{IV} - 2\alpha^2\phi"+\alpha^4\phi)$$

$$u = u/U$$
 $Re = UL/v$ $y = y/L$

 4^{th} order linear homogeneous equation with homogeneous boundary conditions (not discussed here) i.e. eigen-value problem, which can be solved albeit not easily for specified geometry and $(\bar{u}, \bar{v}, \bar{p})$ solution to steady NS.

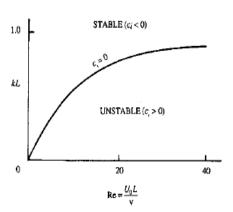


Fig. 11.23 Marginal stability curve for a shear layer $u = U_0 \tanh(y/L)$.

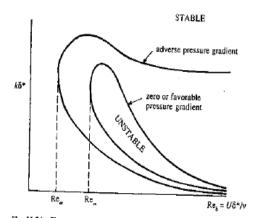


Fig. 11.24 Sketch of marginal stability curves for a boundary layer with favorable and adverse pressure gradients.

TABLE 11.1 Linear Stability Results of Common Viscous Parallel Flows

Flow	$U(y)/U_0$	Rece	Remarks
Jet	$sech^2(y/L)$	4	
Shear layer	tanh(y/L)	0	Always unstable
Blasius		520	Re based on δ^*
Plane Poiseuille	$1 - (y/L)^2$	5780	L = half width
Pipe flow	$1 - (r/R)^2$	00	Always stable
Plane Couette	v/L	90	Always stable

Although difficult, methods are now available for the solution of the O-S equation. Typical results as follows

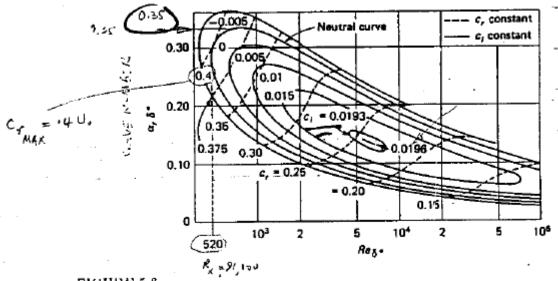


FIGURE 5-6 Amplification curves for the Blasius flat-plate boundary layer. [After Wazzan, Okamura, and Smith (1968a).]

(1) Flat Plate BL:

$$Re_{crit} = \frac{U\delta^+}{\nu} = 520$$

- (2) $\alpha \delta^* = 0.35$ $\rightarrow \lambda_{min} = 18 \ \delta^* = 6 \ \delta \ (smallest \ unstable \ \lambda)$:. unstable T-S waves are quite large
- (3) c_i = constant represent constant rates of damping $(c_i < 0)$ or amplification $(c_i > 0)$. $c_{i max} = .0196$ is small compared with inviscid rates indicating a gradual evolution of transition.

(4) $(c_r/U_0)_{max} = 0.4 \rightarrow$ unstable wave travel at average velocity.

(5) $Re_{\delta * crit} = 520 \rightarrow Re_{x crit} \sim 91,000$

Exp: Re_{x crit} ~ 2.8 x 10^6 (Re_{δ *crit} = 2,400) if care taken, i.e., low free stream turbulence

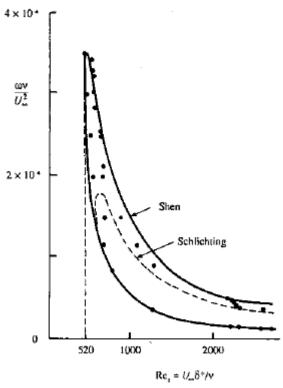


Fig. 11.26 Marginal stability curve for a Blasius boundary layer. Theoretical solutions of Shen and Schlichting are compared with experimental data of Schubauer and Skramstadt.

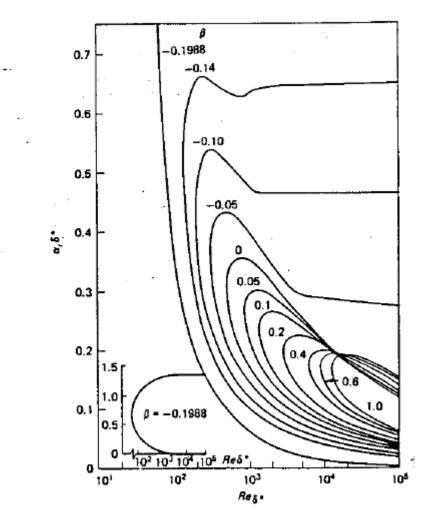


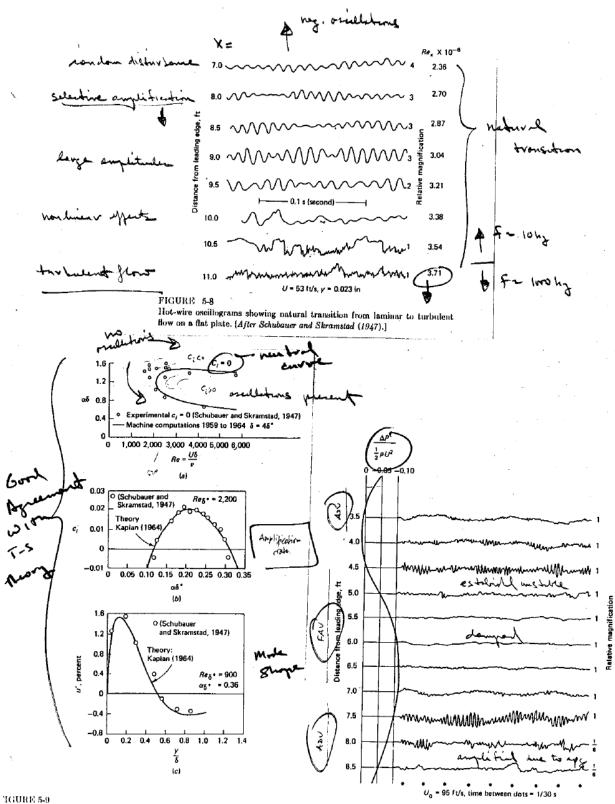
FIGURE 5-7 Neutral-stability curves for the Falkner-Skan boundary-layer profiles. [After

apg

Falkner-Skan Profiles:

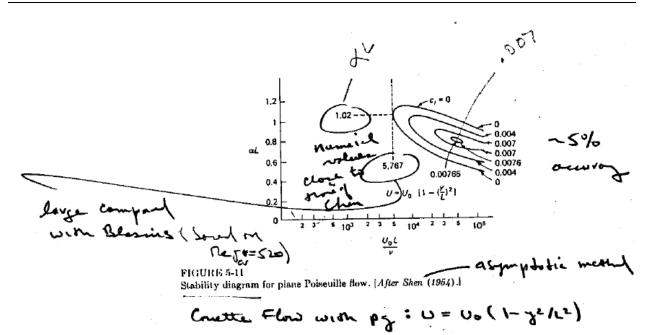
(1) strong influence of β

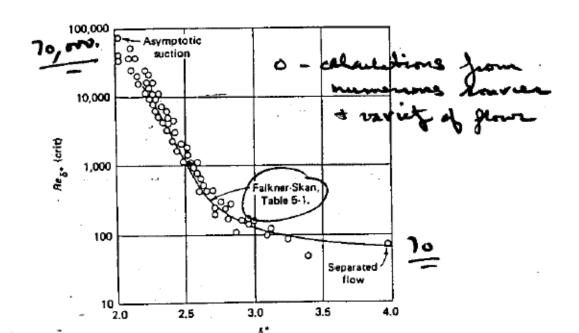
$$Re_{crit} \uparrow \quad \beta > 0 \quad \uparrow \quad fpg$$
 $Re_{crit} \downarrow \quad \beta < 0 \quad \downarrow \quad apg$



comparison of stability theory for the Blasius profile with the flat-plate experitent of Schubauer and Skranstad (1947): (a) neutral curve; (b) amplification actors; (c) longitudinal velocity fluctuation.

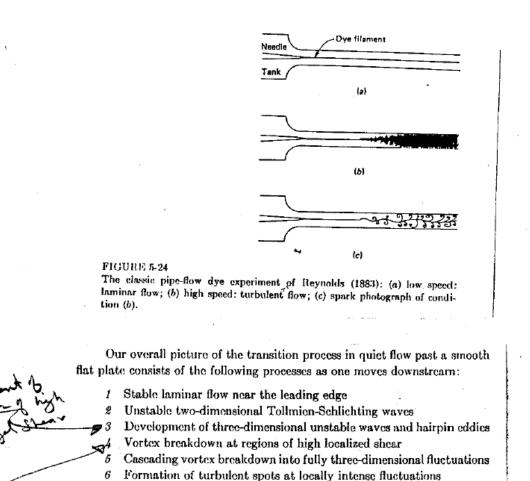
FIGURE 5-10 Effect of pressure gradient on laminar-boundary-layer oscillations. [After Schubaner and Skramstad (1947).]





 $H = \frac{\delta^*}{\theta}$

FIGURE 5-12 Correlation of the critical Reynolds number with the profile shape factor for laminar flow.



Extent and details of these processes depends on Re and many other factors (geometry, pg, free-stream, turbulence, roughness, etc).

Coalescence of spots into fully turbulent flow

Rapid development of spanwise flow, and initiation of nonlinear processes

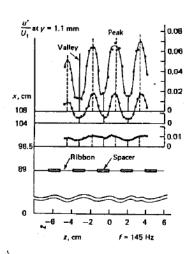
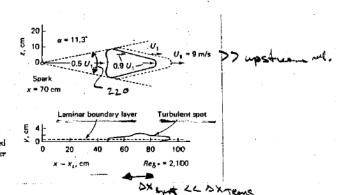


FIGURE 5-25

Development of spanwise variations in the streamwise velocity fluctuation downstream of a vibrating ribbon with spacers. [After Klebanoff, Tulstrom, and Sargent (1982).]

- stretched vortices disintigrate
- cascading breakdown into families of smaller and smaller vortices
- onset of turbulence

FIGURE 5-26
Plan and elevation of the measured growth of a turbulent spot. [After Schubauer and Klebanoff (1955).]



Note: apg may undergo much more abrupt transition. However, in general, pg effects less on transition than on stability

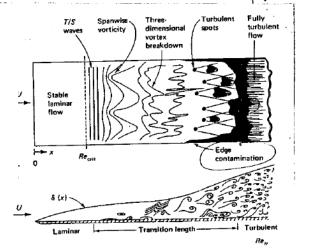
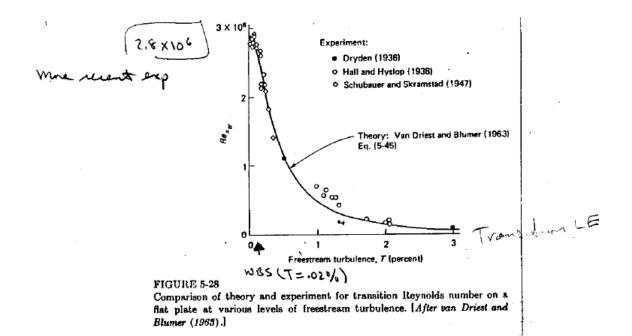


FIGURE 5-27 Idealized sketch of transition process on a flat plate.



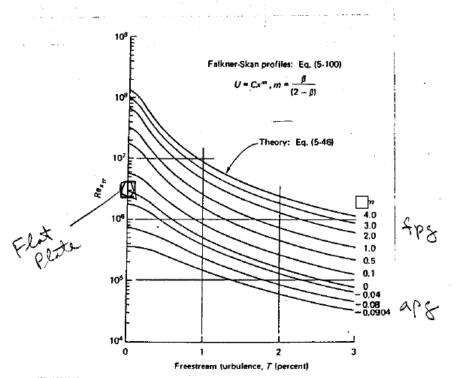
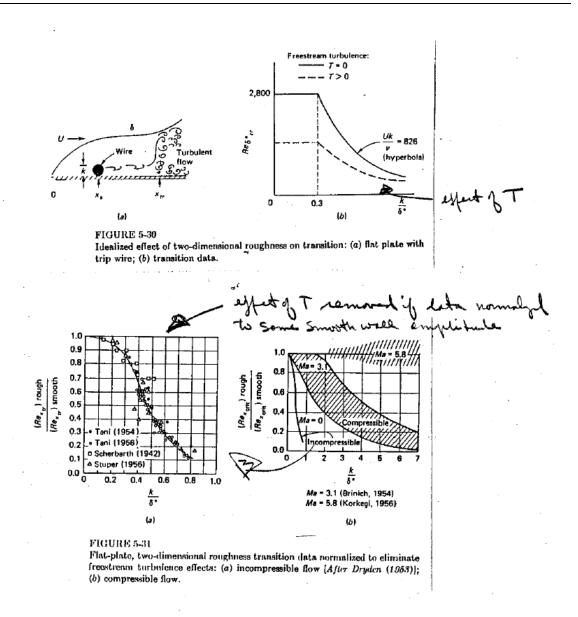


FIGURE 5-29
Effect of pressure gradient and freestream turbulence on transition Reynolds number. [After van Driest and Blumer (1963).]



Some recent work concerns recovery distance:

J Etimulator!