Summary of Reynolds Stresses and TKE Levels for Different Flows

Geometry	$\sqrt{k}/U_{\rm max}$	$\sqrt{uu}/U_{\rm max}$	$\overline{vv}/\overline{uu}$	ww/uu	uv/uu	uw/uu	vw/uu
Wall y+<50	0.089	0.1 (v+-12)	0.24	0.35	0.15	/	/
BL (0.1 <y td="" δ<0.7)<=""><td>/</td><td>\sqrt{k}/U_{max}</td><td>$\overline{vv} + \overline{w}$</td><td>$\overline{w} = \overline{uu}$</td><td>/</td><td>/</td><td>/</td></y>	/	\sqrt{k}/U_{max}	$\overline{vv} + \overline{w}$	$\overline{w} = \overline{uu}$	/	/	/
BL (y/δ>0.7)							
BL (flat plate,	0.14	0.12	0.12	0.29	0.11	/	/
$y/\delta < 0.8, Re_x = 10^7$)							
Wake	0.98	0.90	0.89	0.89	/	/	/
Jet	0.21	0.29	0.56	0.63	0.25	/	/
Plane mixing layer	0.19	0.17	0.60	0.77	0.33	0	0
Separated turbulent	0.11	0.13	0.23	0.41	0.00108	/	/
boundary layer							
Backward-facing step	0.18	0.18	0.44	0.63	0.0031	/	/
NACA0024	0.55	0.71	0.40	0.60	0.40	0.33	0.07
$(\text{Re}=2.26\times10^6)$							
Landing Gear	0.50	/	/	/	/	/	/
$(\text{Re}=6\times10^5)$							
Flat plate at high	0.55	0.50	/	/	/	/	/
incidence							
$(\text{Re}_{c}=2\times10^{4})$							
Sphere	0.32	0.24	/	/	/	/	/
$(\text{Re}=1\times10^4)$							

* non-dimensionalized by $U_{\rm max}^2$

TKE Budget and Reynolds Stress for Canonical Flows

C-convection; P-production; T-Transport; VD- viscous diffusion; VP-velocity pressure gradient; ɛ-dissipation

1. DNS of a plane mixing layer (Rogers & Moser, Physics of fluids, 1994)

Figure 1.Comparison of the time-averaged ($\xi = x_2/\delta_m$) simulation results for the components of the Reynolds stress tensor (-) with the results of Bell and Mehta (1990) and the simulation profiles at τ = 187.5 (----).

Figure 2. TKE budget for a plane mixing layer: δ_m is the momentum thickness.

Main conclusions:

(1) Reynolds normal stresses (+): peak in the center of the mixing layer;

 \overline{uu} (0.030)> \overline{ww} (0.023)> \overline{vv} (0.018)

- (2) **Reynolds shear stress** (-): peaks in the center of the mixing layer; $-\overline{uv}$ (0.010) $< \overline{vv}$ (0.018)
- (3) **TKE** (+): peaks in the center of the mixing layer (0.036)
 - A. Production (+): $P_{ij} = -\overline{u_i u_j} \frac{\partial U_i}{\partial x_j} = -\overline{u_i v} \frac{\partial U_i}{\partial y} = -\overline{u v} \frac{\partial U}{\partial y} \overline{v v} \frac{\partial V}{\partial y} \overline{w v} \frac{\partial W}{\partial y}$ dominant and main

producing term, peaks in the center of the layer

B. **Dissipation** (-):
$$\varepsilon_{ij} = -\frac{1}{\text{Re}} \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k} = -\frac{1}{\text{Re}} \left(\frac{\partial u_i}{\partial y} \right)^2 = -\frac{1}{\text{Re}} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial y} \right)^2$$
 main consuming term;

peaks in the center of the layer, $\varepsilon/P = 0.66$

C. **Transport** (+ or -): $T_{ij} = -\frac{1}{2} \frac{\partial \overline{u_i u_i u_j}}{\partial x_j} = -\frac{1}{2} \left(\frac{\partial \overline{uuv}}{\partial y} + \frac{\partial \overline{vvv}}{\partial y} \right)$ peaks in the center of the layer with

T/P = 0.57. Zero at two locations that correspond to the half-thickness of the layer. , i.e., move TKE from the middle of the shear layer (bounded by half-thickness of the layer $\xi = \pm 1.5$) to the edge of the shear layer.

- D. Convection: $C_{ij} = -U_j \frac{\partial k}{\partial x_j} = -V \frac{\partial k}{\partial y}$ not available.
- E. Velocity-pressure gradient (+ or -): $VP_{ij} = -\frac{\partial \overline{p'u_j}}{\partial x_j} = -\frac{\partial \overline{p'V}}{\partial y}$, peaks in the center of the layer with

VP/P = 0.15. Zero at the same location of the zero for transport and shows opposite sign of transport.

F. Viscous diffusion: $D_{ij} = \frac{1}{\text{Re}} \frac{\partial^2 k}{\partial x_j^2} = \frac{1}{\text{Re}} \frac{\partial^2 k}{\partial y^2}$ an order of magnitude smaller than any other term

across the entire layer and thus neglected.

2. DNS of a separated turbulent boundary layer (DNS, Na and Moin, JFM 1998)

Figure 5. TKE budget for a **separated turbulent boundary layer under APG (entire region)**: (a) in the detachment region ($x/\delta_{in}^* = 160$); (b) in the middle of the separation bubble ($x/\delta_{in}^* = 220$)

Figure 6. TKE budget for a **separated turbulent boundary layer under APG (CLOSE TO THE WALL**): (a) in the detachment region ($x/\delta_{in}^* = 160$); (b) in the middle of the separation bubble ($x/\delta_{in}^* = 220$)

Main conclusions:

- (1) Reynolds normal stresses (+): peak near the toe and reach local maxima on the high-speed side of the free shear line (the separation streamline that divides the separation bubble from outer region).
 <u>uu</u> (0.125)><u>ww</u> (0.08)><u>vv</u> (0.06)
- (2) **Reynolds shear stress** (+): maxima are significantly reduced up to the middle of the separation bubble. It increases thereafter and reaches its maximum value downstream of the reattachment region. $-\overline{uv}$ (0.0041) < \overline{vv} (0.06)
- (3) **TKE** (+): peaks near the toe (0.133)
- (4) **TKE budget near the toe** $x/\delta_{in}^* = 160$:
 - A. **Production** (+): **dominant term**, peaks on the high-speed side of the free shear line; decrease to zero on the wall.
 - B. **Dissipation** (-): peaks on the high-speed side of the free shear line ($\varepsilon/P = 0.64$); significant consuming term near the wall and balanced mainly by viscous diffusion.
 - C. **Transport** (+ or -): peaks on the high-speed side of the free shear line (T/P = 0.15). Zero at two locations. One is very close to the wall $(y/\delta_{in}^* = 1.5)$ and the other is on the high-speed side $(y/\delta_{in}^* = 9.0)$ even farther away from the wall than P and ε), i.e., move TKE from the shear layer
 - $(y/\partial_{in} 9.0 \text{ even faither away from the wall that I and <math>\varepsilon$), i.e., move TKE from the shear fayer towards the wall and outer region.
 - D. **Convection** (-): peaks at $y/\delta_{in}^* = 9.0$ even farther away from the wall than P and ε , C/P = 0.22; decrease to zero on the wall; The main contribution to the convection term is from the longitudinal component C₁₁:

$$C_{11} = -U \frac{\partial \overline{uu}}{\partial x} - V \frac{\partial \overline{uu}}{\partial y}, \text{ where the first term } -U \frac{\partial \overline{uu}}{\partial x} \text{ is dominant.}$$

At $x/\delta_{in}^* = 160$, U>0, $\frac{\partial uu}{\partial x} > 0$, so C<0.

- E. Velocity-pressure gradient (+ or -): almost zero across the shear layer and only significant near the Wall (+).
- F. Viscous diffusion (+): an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

(5) TKE budget in the middle of the separation bubble $x/\delta_{in}^* = 220$:

- A. **Production** (+): peaks on the high-speed side of the free shear line, $P/\varepsilon = 0.43$; decrease to zero on the wall.
- B. **Dissipation** (-): **dominant term** peaks on the high-speed side of the free shear line; significant consuming term near the wall and balanced mainly by viscous diffusion.
- C. **Transport** (+ or -): peaks on the high-speed side of the free shear line with $T/\varepsilon = 0.22$. Zero at two locations. One is very close to the free shear line $(y/\delta_{in}^* = 16)$ and the other is on the high-speed side $(y/\delta_{in}^* = 31$ even farther away from the solid surface than P, ε , and C), i.e., move TKE from the region bounded by the free shear line and the high-speed side of the free shear line into the separation bubble and outer region.
- D. Convection (+): peaks at almost the same location as dissipation, $C/\varepsilon = 0.78$; The main contribution

to the convection term is from the longitudinal component C₁₁: $C_{11} = -U \frac{\partial \overline{uu}}{\partial x} - V \frac{\partial uu}{\partial y}$, where the

first term $-U \frac{\partial \overline{uu}}{\partial x}$ is dominant. At $x/\delta_{in}^* = 220$, U>0, $\frac{\partial \overline{uu}}{\partial x} < 0$, so C>0.

- E. **Velocity-pressure gradient** (+ or -): almost zero across the shear layer and only significant near the wall (+).
- F. Viscous diffusion (+): an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

3. DNS of a backward-facing step flow (Le, Moin, and Kim, JFM 1997)

Figure 7. TKE budget for a **backward-facing step** flow at x/h=4.0: (a) overall; (b) near the wall.

Figure 5.63. Reynolds shear stress contours $(-\overline{u'v'}/U_0^2)$.

- (1) **Reynolds normal stresses** (+): peak on the high-speed side of the free shear line, NOT near the separation point. \overline{uu} (0.18)> \overline{ww} (0.14)> \overline{vv} (0.12)
- (2) **Reynolds shear stress** (+): peak on the high-speed side of the free shear line, NOT near the separation Point. $-\overline{uv}(0.01) < \overline{vv}(0.12)$.
- (3) **TKE** (+): peaks on the high-speed side of the free shear line (0.22).
- (4) **TKE budget in the middle of the separation bubble** x/h = 4:
 - A. **Production** (+): **dominant term**, peaks on the high-speed side of the free shear line and decrease to zero on the wall. Production is mostly due to the production of the longitudinal stress, $P_{11} = -\overline{uu} \frac{\partial U}{\partial x}$,

which is different from what found by Piirto *et al.* (Measuring Turbulence Energy with PIV in a Backward-facing Step Flow, Experiments in Fluids Vol. 35, 2003.) who concluded that "Production

is mostly due to the Production of the longitudinal stress, $P_{21} = -\overline{uv}\frac{\partial V}{\partial x}$,"

- B. **Dissipation** (-): peaks on the high-speed side of the free shear line ($\varepsilon/P = 0.78$); significant consuming term near the wall and balanced mainly by viscous diffusion.
- C. **Transport** (+ or -): peaks on the high-speed side of the free shear line (T/P = 0.21) and decreases to zero on the wall; Also zero at y/h=0.3 and on the high-speed side (y/h=1.1) even farther away from the wall than P and ε), i.e., Transport moves TKE from 0.3<y/h

region.

- D. Convection (+): peaks on the high-speed side of the free shear line (C/P = 0.21) and decreases to zero on the wall.
- E. **Velocity-pressure gradient** (+ or -): at least one-order smaller than other terms and only significant near the wall (+).
- F. **Viscous diffusion**: an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

Turbulent Kinetic Energy Budget and Reynolds Stress Budget Analysis

1. Canonical Flow (c—convection; p—production; ε—dissipation; T—transport; VP—velocity-pressure gradient)

Constant	Parameter/ TKE budget								Reynol		Commente	Reference		
Geometry	Approach	С	Р	З	Т	VP		С	Р	З	Т	VP	Comments	Reference
Axisymmetric wake of sphere	$\operatorname{Re}_{D} = 8,600$ EFD	Dominant, Peaks near axis	P=0.2 ε P=0.15C	Peaks at axis; $\epsilon = 0.5C$	T=0.5C	N/A	Ν	J/A	N/A	N/A	N/A	N/A	Turbulence is strongly influenced by conditions upstream. Reynolds stress reach self- similarity for (50 <x d<150).<="" td=""><td>Uberoi and Freymuth (1970), Physics of fluids, 13, 2205-2210.</td></x>	Uberoi and Freymuth (1970), Physics of fluids, 13, 2205-2210.
Plane mixing layer	Re=2x10^4 DNS	N/A	Dominant term, peaks at the center of the mixing layer (ML)	Peaks at the center of ML, ε =0.71P	Peaks at center of ML, T=0.65P	N/A	$\frac{\overline{u^2}}{\overline{v^2}}$ $\overline{w^2}$ \overline{uv}	N/A N/A N/A	Dominant, peaks at center of ML N/A N/A Dominant, peaks at center of	Peaks at center of ML, $\varepsilon = 0.25P$ Peaks at center of ML, $\varepsilon = 0.5VP$ Peaks at center of ML, $\varepsilon = 0.6VP$ Peaks at center of ML,	Peaks at center of ML, $\epsilon = 0.25P$ Peaks at center of ML, T = 0.5VP Peaks at center of ML, T = 0.36VP Peaks at center of ML,	Peaks at center of ML, VP=0.5P Dominant, peaks at center of ML Dominant, peaks at center of ML N/A	All terms peaks at center of mixing layer; Production is always dominant terms for $\overline{u^2}$ and \overline{uv} , while VP is the dominant term for $\overline{v^2}$ and $\overline{w^2}$. Flow rate of TKE increases linearly with x, which in contrast to jet and wakes.	Rogers and Moser, 1994, Physics of fluids 6 (2)
Turbulent boundary layer	R ₀ =1410 DNS	C=0 (y+<50) Peaks at BL edge	Peaks at y+=12; P= ϵ (y+=40~ y/ δ =0.4); P=0 (y> δ)	Peaks at wall; $\mathcal{E}=P$ (y+=40~ y/ δ =0.4)	Peaks at BL edge	Peaks at y/δ=0.8; VP=0.5C; VP=0 for most BL	C=0 Peak edge	(y+<50) s at BL	P11 is the dominant term of $\frac{u^2}{u^2}$	Peaks at wall except for shear stress	Peaks at BL edge	VP dominant terms compared to 0 in TKE budget	Effect of pressure fluctuation is to redistribute energy from $\overline{u^2}$ to $\overline{v^2}$ and $\overline{w^2}$	Spalart (1988), JFM, 187, pp. 61-98.
Fully developed channel flow	Re=13,750 DNS	C=0 (y+<50)	Peaks at y+=12, where $P = 1.8\varepsilon$	Peaks at wall, $\varepsilon = P$	Peaks at y+=5 (>0) and y+=12 (<0)	VP=0]	N/A	N/A	N/A	N/A	N/A	Peak P occurs where viscous stress and the Reynolds stress equal. Transports energy toward the wall and the log-law region.	Kim et al., 1987, JFM, 177, 133- 166.

	Parameter/		ТК	E budget			Reynolds stress Budget							
Geometry	Approach							С	Р	3	Т	VP	Comments	Kelelelice
		C	Р	3	Т	VP								
							$\overline{u^2}$	Peaks at centerline, C=0.65 ε	Dominant term, Peaks at $r/(x-x_0)=0.06$ P=1.48 ε	Peaks at $r/(x-x_0) = 0.06$	Peaks at $r/(x-x_0) = 0.06$ T=0.28	Peaks at centerline, VP=0.65E	At edge, turbulence production goes to zero and turbulent transport balances dissipation, Reynolds stress	Panchapake san and Lumley (1993),
Axisymmetric	EFD	Peaks at centerline; C=0.74 ε	Peaks at $r/r_{1/2} = 0.6$ P=0.82 &	Dominant; peaks at centerline	Peaks at $r/r_{1/2} = 0.5$ T=0.35 ε	N/A	$\overline{v^2}$	Peaks at centerline, C=0.46 ε	Peaks at centerline, P=0.20&	Dominant term, peaks at centerline	Peaks at $r/(x-x_0)=0.1$ T=0.5E	Peaks at centerline, VP=0.72E	decay. Reynolds stress decay when approaching the edge and exhibit significant	JFM, 246, 197-223.
jet							$\overline{w^2}$	Peaks at centerline, C=0.46 ε	Peaks at centerline, P=0.10E	Peaks at centerline	Peaks at centerline T=0.58&	Dominant term, Peaks at centerline, VP=1.42E	ansonopy.	Hussein et al. (1994), JFM, 258, 31-75.
							\overline{uv}	Peaks at $r/(x-x_0) = 0.05$ C=0.1T	Peaks at $r/(x-x_0) = 0.05$ C=0.17T	N/A	Dominant term, peaks at $r/(x-x_0)=0.05$	N/A		

1. Canonical Flow (c—convection; p—production; ε—dissipation; t—transport; vp—velocity-pressure gradient)

2. Separated Flow (separated turbulent boundary layer under Adverse Pressure Gradient)

Geometry	Parameter/	TKE budget								Reynold	I	Comments	Reference		
Geometry			С	Р	з	Т	T VP		С	Р	3	Т	VP	Comments	
		x*= 160	C= 0.2P	Dominant, peaks at y*=6	Two peaks at wall (E=1.2P); at y*=6 (0.64P)	Peaks at y*=5, T=0.2P	Peaks at y*=0.2, VP=0.25P	$\overline{u^2}$	N/A	N/A	N/A	N/A	N/A	$x^{*}=160$ is located at the detached region; $x^{*}=220$ is located at the middle of separation bubble;	
Turbulent boundary layer (separated)	$\begin{array}{c} \operatorname{Re}_{\theta} = 300 \\ \operatorname{DNS} \end{array}$	x*= 220	Peaks at y*=20; C=0.7 8 ε	Peaks at y*=18; P=0.44ε	Dominant, Peaks at y*=20	Peaks at y*=20; T=0.17 ε	Peaks at y*=8; VP=0.11 ε	$\overline{u^2}$	Domi nant, peaks at y*=25	Peaks at y*=20, P=0.08C	Peaks at $y^*=21$, $\varepsilon = 0.63C$	Peaks at y*=25 T=0.4C	Peaks at y*=21, VP =0.92C	$x^{+}=270$ is located at the reattachment region; $x^{+}=320$ is located at far downstream.	Na and Moin, 1998, JFM.
		x*= 270	Peaks at y*=11 C=P	dominant term ; Peaks at y*=9;	Peaks at wall; ε =2.2P	Peaks at y*=5; T=0.3P	Peaks at y*=0.25; VP=0.65P	$\overline{u^2}$	N/A	N/A	N/A	N/A	N/A	$x^* = x / \delta_{in}^*$ $y^* = y / \delta_{in}^*$	
		x*= 320	Peaks at y*=12 ;0.19P	Peaks at y*=0.4; dominant term	Peaks at wall; ε =1.4P	Peaks at y*=0.5; T=0.38P	Peaks at y*=0.5; VP=0.19P	$\overline{u^2}$	Peaks at wall, C=0	Dominant, peaks at y*=0.45	Peaks at wall, $\epsilon = 0.88P$	Peaks at y*=0.2, T=0.25P	Peaks at wall, VP=0.88P		

3. Separated Flow (backward-facing step, DNS by Huang Le, 1995, Ph.D. thesis) HSSL stands for "high-speed side of the free shear layer line"

Coometry Parameter/ TKE budget (x/h=-2 , before separation								eynolds st	ress Budget	aration)			
Geometry	Approach	С	Р	3	Т	VP		С	Р	3	Т	VP	Comments
							$\overline{u^2}$	0	Dominant, peaks at (y-h)/h =0.04	Peaks at wall, ε=viscous diffusion	Peaks at (y-h)/h =0.02, T=0.5P	Peaks (y-h)/h >0.1 VP=0.13P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is \overline{uv}
Backward- facing step	Re _h =10^5 DNS	0	Dominant, y/h=1.03	Peaks at wall, ε=1.35P	Peaks at y/h =1.019	Peaks at y/h=1.01 VP=	$\overline{v^2}$	Peaks at (y-h)/h =0.7 C=0.19V P	0	Peaks at (y-h)/h =0.1 E=0.57 VP	0	Dominant, Peaks at (y-h)/h =0.2	dominant term. For v^2 and w^2 , velocity-pressure gradient term is dominant.
					T=0.54P	0.07P	$\overline{w^2}$	0	N/A	Peaks at wall, ε=VP	0	Dominant, peaks at y/h=0.025	
							\overline{uv}	0	Dominant, peaks at (y-h)/h =0.08	0	Peaks at (y-h)/h =0.04	Peaks at (y-h)/h =0.05	
											T=0.54P	VP=P	

0	Coometer/ TKE budget (x/h=4, recirculation region)							Reynolds stress Budget (x/h=4, recirculation region)					
Geometry	Approach	С	Р	3	Т	VP		С	Р	3	Т	VP	Comments
							$\overline{u^2}$	Peaks y/h=1.3 C=0.11P	Dominant term, peaks at HSSL	Peaks at HSSL ε=0.34P	Peaks at y/h=0.1 T=0.14P	Peaks at HSSL VP=0.69P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Backward-	Re _h =10^5 DNS	0	Dominant term, peaks	Peaks at y/h=0.8	Peaks y/h=0.9	Peaks y/h=0.18	$\overline{v^2}$	Peaks y/h=1.2 C=0.25V P	Peaks at y/h=0.62 P=0.4VP	Peaks at y/h=0.7 ε=0.88VP	Peaks at y/h=0.02 T=0.83VP	Dominant term, peaks at y/h=0.8	velocity-pressure gradient term is dominant.
facing step		0	y/II=0.8	ε=0.83P	T=0.28P	VP=0.11P	$\overline{w^2}$	Peaks y/h=1.0 C=0.21V P	N/A	Peaks at y/h=0.8 ε=0.8P	Peaks at y/h=0.85 T=0.2VP	Dominant term, peaks at y/h=0.8	
							\overline{uv}	0	Dominant term, peaks at y/h=0.7	0	Peaks at y/h=0.70 T=0.22P	Peaks at y/h=0.60 T=0.72P	

	Parameter/ TKE budget (x/h=7 , reattachment region)							Reynolds stress Budget (x/h=7, reattachment region)					
Geometry	Approach	С	Р	3	Т	VP		С	Р	3	Т	VP	Comments
	Re _h =10^5	0	Dominant term, peaks at	Peaks at y/h=0.7,	Peaks y/h=0.7	0	$\overline{u^2}$ $\overline{v^2}$	Peaks at y/h=0.5, C=0.2P Peaks at y/h=1.25, C=0.26V	Dominant term, peaks at HSSL (y/h=0.8) Peaks at y/h=0.5 P=0.43VP	Peaks on wall, $\varepsilon_{sL}=0.33$ P Peaks at y/h=0.6, a=0.63VB	Peaks at HSSL, T=0.25P Peaks at y/h=0.05	Peaks at HSSL, VP=0.6P Dominant term, peaks at	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$, velocity-pressure gradient term is dominant.
Backward-	DNS		y/h=0.75	ε=0.67P	T=0.55P			P	r=0.43 vr	2-0.03 V F	P	y/II=0.05	
Tacing step							$\overline{w^2}$	0	N/A	Peaks at y/h=0.7 ε=VP (in SL)	0	Dominant term, peaks at y/h=0.7	
							\overline{uv}	Peaks at y/h=0.5 C=0.11P	Dominant term, peaks at y/h=0.0075	0	Peaks at y/h=0.05, T=0.5P	Peaks at y/h=0.007 5, VP=0.67P	

Parameter/ TKE budget (x/h=10, behind reattachment							leynolds str	ess Budget (hment)			
Approach	С	Р	3	Т	VP		С	Р	3	Т	VP	Comments
	0	Dominant	Peaks at	Peaks at		$\overline{u^2}$	Peaks at y/h=0.5, C=0.2P	Dominant term, peaks at HSSL	Peaks at wall, $\epsilon_{sL}=0.2P$	Peaks at y/h=0.75, T=0.18P	Peaks at HSSL, VP=0.5P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Re _h =10^5 DNS	-	term, peaks at y/h=0.8	wall. At y/h=0.8, ε=P	y/h=0.8 T=0.5P	0	$\overline{v^2}$	Peaks at y/h=1.5 C=0.29V P	Peaks at y/h=0.6, P=0.36VP	Peaks at y/h=0.7, ε=0.7VP	Peaks at y/h=0.05 T=1.29VP	Dominant term, peaks at y/h=0.05	velocity-pressure gradient term is dominant.
						$\overline{w^2}$	0	N/A	Peaks at y/h=0.7 ε=VP	0	Dominant term, peaks at y/h=0.7	
						uv	Peaks at y/h=0.6 C=0.11P	Dominant term, peaks at y/h=0.75	0	Peaks at y/h=0.005 T=0.57P	Peaks at y/h=0.05 VP=0.9P	
	Parameter/ Approach Re _h =10^5 DNS	Parameter/ Approach C 0 Re _h =10^5 DNS	Parameter/ Approach C P 0 Dominant term, peaks at y/h=0.8	TKE budget (x/h=10, behind in ApproachCP ϵ 0Dominant term, peaks at y/h=0.8 $\epsilon=P$ Peaks at wall. At y/h=0.8, $\epsilon=P$	Parameter/ Approach TKE budget (x/h=10, behind reattachme P T C P ε T 0 Dominant term, peaks at y/h=0.8 Peaks at wall. At y/h=0.8, ε=P Peaks at y/h=0.8 NS Image: Complex structure Peaks at y/h=0.8 Peaks at wall. At y/h=0.8	Parameter/ ApproachTKE budget (x/h=10, behind reattachmet/ PNethod SettingCP ϵ TVP0Dominant term, peaks at y/h=0.8Peaks at wall. At y/h=0.8, $\epsilon=P$ Peaks at y/h=0.8Peaks at y/h=0.8NS0Dominant term, peaks at y/h=0.8Peaks at wall. At y/h=0.8, $\epsilon=P$ Peaks at y/h=0.8Peaks at y/h=0.8	$\begin{array}{ c c c c } \hline Parameter' \\ \hline Approach \\ \hline C \\ \hline P \\ \hline c \\ \hline C \\ \hline P \\ \hline c \\ \hline P \\ \hline c \\ \hline r \\ \hline r \\ \hline r \\ r \\ r \\ r \\ r \\ r \\$	$\begin{array}{ c c c c } \hline Parameter' \\ \hline Approach \hline C & P & \epsilon & T & VP & C \\ \hline C & P & \epsilon & T & VP & C \\ \hline C & P & \epsilon & T & VP & C \\ \hline C & P & \mu & \mu$	Parameter/ ApproachTKE budget (x/h=10, behind reattachment)Reprodes to the point of	$\frac{\operatorname{Parameter}{\operatorname{Approach}}}{\operatorname{PC}} \frac{\operatorname{TKE} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{Parameter/Approach}{Parameter/Approach} \frac{TKE \cup Uget (x/h = 10, behint = extachmu)}{C} P \\ \hline C P \\ h \ C P \\ h \$	$\frac{\operatorname{Parameter}{Approach}}{\operatorname{PC}} \frac{\operatorname{TKE} \cup \operatorname{Uget} (x \cup -\operatorname{Id}, \operatorname{behind} -\operatorname{Urath} \operatorname{Id}, Id$

	Parameter/ TKE budget (x/h=18 , recovery region)							Reynolds s	tress Budge	region)			
Geometry	Approach	С	Р	3	Т	VP		С	Р	3	Т	VP	Comments
							$\overline{u^2}$	0	Dominant term, peaks at y/h=0.05	Peaks at wall, &=0.42P	Peaks at y/h=1.2 T=0.01P	Peaks at y/h=1.5 VP=0.2P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Backward-	Re _h =10^5 DNS	0	Dominant term, peaks at y/h=0.05	Peaks at wall, ε=Ρ	Peaks at y/h=1.0 T=0.5P	0	$\overline{v^2}$	Peaks at y/h=0.6 C=0.19V P	Peaks at y/h=0.5 P=0.08VP	Peaks at y/h=0.75 ε=0.61VP	Peaks at y/h=0.05 T=0.76VP	Dominant term, peaks at y/h=1.0	velocity-pressure gradient term is dominant.
facing step							$\overline{w^2}$	C=T=0.2 VP	N/A	ε=VP	T=C=0.2 VP	Dominant term, peaks near wall, y/h=0.01	
							\overline{uv}	Peaks at y/h=0.8, C=0.14P	Dominant term, peaks at y/h=1,0.1	0	Peaks at y/h=1, T=0.29P	Peaks at y/h=0.05, VP=1.35P	